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COUNTEREXAMPLES FOR METRIC DIMENSIONS
OF PLANE SETS AND THEIR PROJECTIONS

SoON-Mo JUNG

1. Introduction

Throughout this article R” will be the n-dimensional Euclidean space.
The diameter of any subset C of R™ will be denoted by d(C) and the
Hausdorff dimension of C by dimyC.

Let Lg be the line through the origin of R? that makes an angle
6 € [0,2r) with the z-axis. We denote orthogonal projection onto Ly
by projg, so that if C is a subset of R? then projgC is the projection of
C onto Lyg.

J. M. Marstrand [5] found the relationships between the Hausdorff
dimensions of the plane set and its projections, i.e.,

(HD1) if C ¢ R? with dimyC < 1 then dimyC = dimpyprojeC for
almost all 8 € [0, 27);

(HD2) if C C R? with dimyC > 1 then dimpyprojsC = 1 for almost
all 8 € [0,2m).

The lower and upper metric dimensions of any non-empty bounded
subset C' of R™ respectively are defined as

dimpC = limint EYUD) g Fmpe = timeup 2ENE)
§—0 — 10g5 5—0 . lOg(S

?

where Ng(C') is the least number of sets of diameter at most é which
are needed to cover C. If the lower and the upper metric dimensions of
C coincide we say that their common value is the metric dimension of
C and we will denote it by dimpC. The subscript ‘B’ in the notation of
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the metric dimension is due to its another name ‘box dimension’. The
definition of metric dimension is quite empirical. Metric dimension is
one of the most widely used dimensions, since its calculation is usually
easier than those of other dimensions. But the definition of metric
dimension has nothing to do with the measure. Therefore, it is often
awkward to handle the metric dimension mathematically.

We can now raise the following questions analogous to (HD1) and
(HD2):

(BD1) Is there a subset C' of R? with dimgC < 1 satisfying digC #
dimgprojeC for almost all 6 € [0,27) ?

(BD2)’ Is there a subset C of R? with dimgC > 1 satisfying dim gprojg
C # 1 for almost all 8 € [0,27) ?

As far as we know, no author has solved these problems. In this
paper we shall answer these questions.

In §§3 we construct a compact uncountable subset €', of R? satisfying
dimpCy = 1 and dimgprojgCy < 1 for all 6 € [0,27) and in the same
section a compact uncountable subset Cy of R? satisfying dimgC, > 1
and (Ti;;“projgcz < 1 for all 8 € [0,27).

2. Preliminaries

For any ¢ > 0 we call My 5 = {[mé,(m +1)é] | mm € Z} and My s =
{Im16, (1 +1)8] x [m2é, (mq +1)8] | my,mq € Z} the 6-mesh of R and
R?, respectively. Let 8 € [0,27) be fixed and f : R? — R? a rotation
about the origin through the angle 6, i.e.,

fle,y) = (rcosf —ysinb, zsind + y cos ).

By M{ s = {f([mé,(m+1)8]) | m € Z} and Mf, = {f([m1,(m; +
1)é] x [maé, (me + 1)8]) | my,my € Z} we denote the (6,8)-mesh of
R and R?, respectively. In short, ]\lgé (z = 1,2} is the rotation of
M; 4 about the origin through the angle 6. For any subset C of R?,
Nf’b(pr()j;;C) denotes the number of (4, 6)-mesh intervals of Mf!é that
intersect projaC', and N;é(C) denotes the number of (4, )-mesh squares
of M}, that intersect C.
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According to §3.1 in [3] we can replace N4s(C'} by N]o‘é(prong) or
by Ng‘ s(C) in the definitions of the lower and upper metric dimensions.

LEMMA 1. Let 8 € (0,27) be fixed. If C is any bounded subset of
R? then

. . .. log N s(projsC)
dimpgprojeC = hgn_}(x)lf "oz and
S log N¢ (projsC
dimpgprojeC = limsup g Ny y(proie )

§—0 - log 6

LEMMA 2. Let 8 € [0,27) be fixed. If C is any bounded subset of
R? then

lo Ng C _ lo N0 C
dim,C = lirariigf—-—g—_%((ﬁ) and dimpC = lim sup R L 13);(5 )

3. Construction of compact uncountable sets C; and C;

Fix a natural number m > 2. Let (éx) and (z) be strictly decreasing
sequences satisfying éx = o(xy) as well as 6y < z for all k € N, and
Qo = [0,1]x[0,1] the closed unit interval of R%. Let Qx(¢y,...,2x) (where
k € Nand ¢;,....,7x = 1,2) be the closed square with the side length
¢y of the form [a,b] x [a,b] (0 < a < b < 1) satisfying the following
properties:

(1) Qulirs s th—157k) C Qr=1(21, -0y 2k—1);
(2) the left and lower sides of Q(i1,...,7x—1, 1) respectively lie on
the left and lower sides of Qg_1(21,...,06—1);
(3) the right and upper sides of Qi(zy,...,2k-1,2) respectively lie
on the right and upper sides of Qx_1(?1,...,05—1).
Divide each Qg (i1,...,7x) (kK € N; 71,...,2x = 1,2) into (¢x/éx)? squares
Q{(il,...,ik) (7 = 1,...,(€x/6x)?) with the side length 8;. Choose the
middle point p} (71, ...,7) from every square Q}(71....,7x) and let Py be
the collection of all pi (71, ..., k), L.,

Pr = {plliy, i) i1y enin = 1,2 and j = 1,...,(€x/6x)2).
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Let Sy = [0,1] x [0, 1] and

. )
UPiU U Qrt1(01, .. 2kgr)
=1 , ]

for all & € N. Then {Si} is a decreasing sequence of compact sets.

CONSTRUCTION OF C. Let b6 = m~kA+tD) o — p—k(k+1)/2 41 g
by = ry for all & € N, and define

C] = ﬂ Sk.

CONSTRUCTION OF C,. Let 6 = 771_'“2, Ty = m=2* /5 and (=
éx[zx/0k] for all k € N, where [z] denotes the largest integer that does
not exceed r, and then define

ﬂ Sk.

k=0
4. Counterexample to (BD1)

In this section we shall show that the set C; defined in §§3 satisfies
dimgCy = 1 and dnn;;prongl < 1 for all 8 € [0, 25).

THEOREM 3. For the set Cy we have
(a) dimpC, =1,
(b) dimpprojeCy < 1 for all 6 € [0, 27).

Proof. (a) Let k € N be sufficiently large and let ¢ be given with
S < & < ép_y. According to the structure of C; we have for 6 = 0

(1) NJs(Proy) < N9 o(C1) < NJS(Sicy).
As bdp < b, we obtain

2
NY, U Qcliteoin) | < #Px = 25(rx/ox)?

1, .ik:]
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where # P, denotes the number of points of P;. Therefore

k-1
ZN'?,a(Pi) + Ngs U Qrl(t1y . 1k
=1

< k=]

N3 §(Sk=1)

IA

[SV]
~—

< Y NPS(P) + 25(wi/6k)

As each point of P; (# = 1,...,k— 1) meets at least one and at most four
of (4, 0)-mesh squares of ]\12‘6, it follows from (1) and (2) that

k—1
25 oo /8r—1)? < NJS(Cr) < 42 2ai/6:)° + 2K(ri/0k)?
=1
Hence
k k242k+2
2- mk(k 1} < JV“C] SZ 1+2i+2§ Z
Therefore
log NJ ,(C log 251y k(k=1)
liminfgz—’é(]) > liminf 08 = ]
50 —logé k—oo - log b
and
. log N3 4(Cy) _ log m(mkz'”k“"2 -1)/(m—1)
limsup —————— < limsup - = 1.
b—0 —log é k—oo —log 01

Conscquently, by lemma 2
dimpC; = 1.

(b) Let 6 € [0,27) be fixed and k € N sufficiently large. Let é be
given with 6; < 6 < 6x_1, d(projg[0, xx]?) = agzs with an ag satisfying
1 < ap < V2. Choose a natural number

= [V2/3k]+1
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As projgp, p € P, (i = 1,...,kg — 1), meets at most two of (6, 8)-mesh
mtervals of M ]0' s5» we have

Nle,b(l)r"jecl ) < N](),A(PTOjesko— 1)

k()'_l 2
<Y NsprojeP) + 3" Nf(projeQu,(ir o ik, )
121 il,"',ikozl
k()"l .
<237 2(a /o)t + 2%d(projsl0, a4, )/
=1
kg—l
‘2
< Z it Tt + 2k0(lrg;l7k0/(5k
=]
(ko—1)2+2(ko—1)+1
< Z mt 4+ aemk(k+1)~k0(ko—1)/z.
i=1
Consequently
) log N? ,(projeC)
litn sup - -
60 —logé
: log N7 4(projeCh)
<limsup :
k— o0 "‘Iogbk"l
< max{(ko ~1)> +2(kg — 1) + 1, k(k + 1) — ko(ko — 1)/2}
1m
T koo k(k—1)
=2/3.

Finally, the statement of part (b) follows from lemma 1.

5. Counterexample to (BD2)
We prove that the set C, constructed in §§3 has the following prop-

erties: dimpC, > 1 and dimgprojsCy < 1 for all 8 € [0,27). The proof
of next theorem is analogous to that of theorem 3.
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THEOREM 4. For the set C, we have
(a) dimpC, = 6/5,
(b) dimpgprojgCq, < 1 for all 6 € [0,27).

Proof. (a) Let k € N be sufficiently large and let 6 be given with
b < & < ék_;. According to the structure of C; we have for § =0

(1) N3 4(Peo1) < N3s(C2) < NJs(Sk-1).
As 8, < 4, we obtain
N3 U Qi(i1, k) | < #Px = 24[z /6%,
lk 1

Hence

x~
|

Ng,.s(sk-—l) <

M

N3 s(Pi) + N3 U Qk(H,---J‘k))

1 l1 lk =1

i

o~

@) " ND (P + 2¥ek/6 )
1

1

As cach point of P; (i = 1, ...,k — 1) meets at least one and at most four
of (4,0)-mesh squares of 1’\/[3,6, it follows from (1) and (2) that

k—1
2 Mrgoy for1]? < NPG(Ca) < 42 2w /6 + 28wk /0k)

=1

Hence

k
2k_1(nL3(k"])2/5 — 1) SN;)‘[)(CQ) < Z:Z“'”ms'q/‘5

=1
k [6k%/5+k]+3
W -2 - .
< Z mb? /5+i+2 < Z mt.
=1 =1
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Therefore
log N (C log 2F—1(my3(k=1)"/5 _ 1)2
liminf—gLﬁ(—?—) > liminf 8 (m ) = 6/5
6—0 —log é k—o0 —log 6
and

) log Nj 4(Cy) ) log m(ml6k*/5+kl+3 _ 1)/(m —1)
lim sup ——=——— < lim sup ‘
A0 —logé k—oc —~log éx_4
=6/5.

IA

Consequently, using lemma 2
dimpC; = 6/5.

(b) Let 8 € [0,27) be fixed and k € N sufficiently large. Let 6 be
given with 6p < 6 < 84y, d(proje(0, 24)?) = agri with an ay satisfying
1 < ag < V2. Choose a natural number

ko = [v/5/8k] + 1.

As projep, p € P; (1 = 1,..., ko — 1), meets at most two of (é,8)-mesh
intervals of M ,g’ s» We obtain

NY s(projaCa) < NP ,(projeSk,_1)

kog—1 2
<D NPsprojel) + YT NYs(projeQuy(ins ik, )
i=1 i1, k=1
k()—l

<2. Z 2'(ri/86:]* + 2% d(projgl0, 4, ]2)/6
=1

ko—1
< Z [7n3i1/‘r’]2771"+] + 2R qgry, /6x
i=1
[(6(ko—1)?/5]4(ko—1)+2
< Z m' + (r97nk2_2k3/5+k°.

=1
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Consequently
: log NY 4(projeCa)
litn sup :
6—0 —logé
: log N} ;(projeCs)
<limsup :
k—oc - 1()g 6k—1
< i mex{(6(ko — 1)2/5] + (ko — 1) +2, ko +k? — 2k3/5)
T k—o00 (k _ 1)2
=3/4.
Finally, the statement of part (b) follows from lemma 1. 0
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