• 제목/요약/키워드: Hausdorff metric

검색결과 58건 처리시간 0.024초

HAUSDORFF TOPOLOGY INDUCED BY THE FUZZY METRIC AND THE FIXED POINT THEOREMS IN FUZZY METRIC SPACES

  • WU, HSIEN-CHUNG
    • 대한수학회지
    • /
    • 제52권6호
    • /
    • pp.1287-1303
    • /
    • 2015
  • The Hausdorff topology induced by a fuzzy metric space under more weak assumptions is investigated in this paper. Another purpose of this paper is to obtain the Banach contraction theorem in fuzzy metric space based on a natural concept of Cauchy sequence in fuzzy metric space.

퍼지 수 공간의 컴팩트 볼륵 집합에 관한 연구 (On compact convex subsets of fuzzy number space)

  • Kim, Yun-Kyong
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.14-17
    • /
    • 2003
  • By Mazur's theorem, the convex hull of a relatively compact subset a Banach space is also relatively compact. But this is not true any more in the space of fuzzy numbers endowed with the Hausdorff-Skorohod metric. In this paper, we establish a necessary and sufficient condition for which the convex hull of K is also relatively compact when K is a relatively compact subset of the space F(R$\^$k/) of fuzzy numbers of R$\^$k/ endowed with the Hausdorff-Skorohod metric.

  • PDF

가측인 퍼지 사상의 특성 (A note on measurable fuzzy mappings)

  • Kim, Yun-Kyong
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.277-280
    • /
    • 2002
  • In this paper, we characterize the Borel $\sigma$-field generated by the Hausdorff-Skorokhod metric on the space of normal and upper-semicontinuous fuzzy sets with compact support in the Ecleadean space R$\^$n/. As a result. we give a characterization of measurable fuzzy mappings .

  • PDF

국지적 패턴 유사도에 의해 수정된 Hausdorff 거리를 이용한 개선된 객체검출 (An Improved Object Detection Method using Hausdorff Distance Modified by Local Pattern Similarity)

  • 조경식;구자영
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권6호
    • /
    • pp.147-152
    • /
    • 2007
  • 디지털 영상에서의 얼굴탐색은 얼굴인식을 위한 기본 단계이면서 인식 성능에 큰 영향을 미치는 중요한 처리 단계이다. 템플릿 정합 방식의 객체 검출방식에서 사용되어 얼굴 인식 등에서 좋은 성능을 보이는 Hausdorff 거리는 주어진 점의 집합들 사이에서 기하학적 유사도만을 고려한 측도이므로 원래의 영상이 포함하고 있는 다른 정보들을 추가적으로 이용함으로 효율을 높일 수 있다. 이러한 점에 착안하여 본 논문에서는 점들 사이에 서로 다른 정도를 측정하기 위해서 거리뿐만 아니라 점들 주위의 국지적 계조패턴 정보까지 포함하는 측도를 정의함으로써 보다 정밀한 템플릿 정합결과를 얻는 방법을 제안한다.

  • PDF

A New Metric for A Class of 2-D Parametric Curves

  • Wee, Nam-Sook;Park, Joon-Young
    • 한국CDE학회논문집
    • /
    • 제3권2호
    • /
    • pp.140-144
    • /
    • 1998
  • We propose the area between a pair of non-self-intersecting 2-D parametric curves with same endpoints as an alternative distance metric between the curves. This metric is used when d curve is approximated with another in a simpler form to evaluate how good the approximation is. The traditional set-theoretic Hausdorff distance can he defined for any pair of curves but requires expensive calculations. Our proposed metric is not only intuitively appealing but also very easy to numerically compute. We present the numerical schemes and test it on some examples to show that our proposed metric converges in a few steps within a high accuracy.

  • PDF

POSITIVE EXPANSIVITY, CHAIN TRANSITIVITY, RIGIDITY, AND SPECIFICATION ON GENERAL TOPOLOGICAL SPACES

  • Devi, Thiyam Thadoi;Mangang, Khundrakpam Binod
    • 대한수학회보
    • /
    • 제59권2호
    • /
    • pp.319-343
    • /
    • 2022
  • We discuss the notions of positive expansivity, chain transitivity, uniform rigidity, chain mixing, weak specification, and pseudo orbital specification in terms of finite open covers for Hausdorff topological spaces and entourages for uniform spaces. We show that the two definitions for each notion are equivalent in compact Hausdorff spaces and further they are equivalent to their standard definitions in compact metric spaces. We show that a homeomorphism on a Hausdorff uniform space has uniform h-shadowing if and only if it has uniform shadowing and its inverse is uniformly equicontinuous. We also show that a Hausdorff positively expansive system with a Hausdorff shadowing property has Hausdorff h-shadowing.

Some Characterizations of the Choquet Integral with Respect to a Monotone Interval-Valued Set Function

  • Jang, Lee-Chae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권1호
    • /
    • pp.83-90
    • /
    • 2013
  • Intervals can be used in the representation of uncertainty. In this regard, we consider monotone interval-valued set functions and the Choquet integral. This paper investigates characterizations of monotone interval-valued set functions and provides applications of the Choquet integral with respect to monotone interval-valued set functions, on the space of measurable functions with the Hausdorff metric.

EXISTENCE OF SOLUTIONS FOR GENERALIZED NONLINEAR VARIATIONAL-LIKE INEQUALITY PROBLEMS IN BANACH SPACES

  • Jeong, Jae-Ug
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1453-1462
    • /
    • 2011
  • In this paper, we study a new class of generalized nonlinear variational-like inequalities in reflexive Banach spaces. By using the KKM technique and the concept of the Hausdorff metric, we obtain some existence results for generalized nonlinear variational-like inequalities with generalized monotone multi-valued mappings in Banach spaces. These results improve and generalize many known results in recent literature.

DIMENSION MATRIX OF THE G-M FRACTAL

  • Kim, Tae-Sik
    • Journal of applied mathematics & informatics
    • /
    • 제5권1호
    • /
    • pp.13-22
    • /
    • 1998
  • Fractals which represent many of the sets in various scien-tific fields as well as in nature is geometrically too complicate. Then we usually use Hausdorff dimension to estimate their geometrical proper-ties. But to explain the fractals from the hausdorff dimension induced by the Euclidan metric are not too sufficient. For example in digi-tal communication while encoding or decoding the fractal images we must consider not only their geometric sizes but also many other fac-tors such as colours densities and energies etc. So in this paper we define the dimension matrix of the sets by redefining the new metric.