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EXISTENCE OF SOLUTIONS FOR GENERALIZED

NONLINEAR VARIATIONAL-LIKE INEQUALITY PROBLEMS

IN BANACH SPACES†

JAE UG JEONG

Abstract. In this paper, we study a new class of generalized nonlinear
variational-like inequalities in reflexive Banach spaces. By using the KKM
technique and the concept of the Hausdorff metric, we obtain some ex-
istence results for generalized nonlinear variational-like inequalities with
generalized monotone multi-valued mappings in Banach spaces. These re-
sults improve and generalize many known results in recent literature.
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1. Introduction

Variational inequality theory provides techniques to solve a variety of applied
problems in fluid flow through porous media, elasticity, optimization, nonlinear
programming, economics, transportation and engineering (see [4,7,8]).

It is well known that the KKM technique has played a very important role
in the study of many fields such as optimization, mathematical programming
problems, equilibrium problems, game theory, variational inequality theory and
so on (see [6,9,10]).

In 1997, by using the KKM technique , Konnov and Yao proved in Ref.[10]
some results about the existence of solutions for vector variational inequalities
with Cx-pseudomonotone multi-valued mappings. In 1999, Chen [1] obtained the
existence of solutions for a class of variational inequalities with semi-monotone
single-valued mappings in nonreflexive Banach spaces. In 2003, Fang and Huang
[6] considered two classes of variational-like inequalities with generalized mono-
tone and semi-monotone mappings. Utilizing the KKM technique they proved
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the existence of solutions for these variational-like inequalities with relaxed η-α-
monotone mappings in reflexive Banach spaces.

In this paper, we introduce and study a new class of generalized variational-
like inequality problem with generalized monotone multi-valued mappings. By
applying the KKM technique and the concept of the Hausdorff metric, we es-
tablish some existence results for generalized variational-like inequalities with
generalized monotone multi-valued mappings in reflexive Banach spaces.

2. Preliminaries

Let R = (−∞,+∞), let E be a Banach space with norm ‖ · ‖, let E∗ be the
topological dual space of E and let (u, v) be the pairing between u ∈ E∗ and
v ∈ E. Let K be a nonempty closed convex subset of E. Let the functional
b : K ×K → R satisfy the following conditions:

(2a) for each u ∈ K, b(u, ·) is a convex functional,
(2b) b(u, v) is bounded, that is, there exists a constant γ > 0 such that

b(u, v) ≤ γ‖u‖‖v‖, ∀u, v ∈ K,

(2c) for all u, v, w ∈ D

b(u, v)− b(u,w) ≤ b(u, v − w).

Remark 2.1. In view of (2b) and (2c), we know that

b(u, v)− b(u,w) ≤ b(u, v − w)

≤ γ‖u‖‖v − w‖,

b(u,w)− b(u, v) ≤ b(u,w − v)

≤ γ‖u‖‖w − v‖
for all u, v, w ∈ K. That is,

|b(u, v)− b(u,w)| ≤ γ‖u‖‖v − w‖, ∀u, v, w ∈ K. (2.1)

Let Ψ : K ×K × E∗ → R, α : E × E → R be functionals and let T : K →
2E

∗
, A : E∗ → E∗ be mappings. Now we consider the following generalized

nonlinear variational-like inequality problems with generalized monotone multi-
valued mappings: Find x ∈ K such that for each y ∈ K there exists s ∈ Tx
satisfying

Ψ(y, x;As) + b(x, y)− b(x, x) ≥ 0, (2.2)

where b satisfies (2a)-(2c).

Special cases

(I) If Ψ(x, y, z∗) = 〈z∗, η(x, y)〉, T is single-valued and Ax = N(Sx,Bx)−w∗

for a given w∗ ∈ E∗, where N : E∗ ×E∗ → E∗, S,B : K → E∗, η : K ×K → E
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are four mappings, then problem (2.2) reduces the following nonlinear mixed
variational-like inequality problem: find x ∈ K such that

〈N(Sx,Bx)− w∗, η(y, x)〉+ b(x, y)− b(x, x) ≥ 0, ∀y ∈ K. (2.3)

The problem (2.3) is introduced and studied by Ding [3].

(II) If N(Sx,Bx) = Sx−Bx for all x ∈ K, then problem (2.3) reduces to the
following variational-like inequality problem: find x ∈ K such that

〈Sx−Bx− w∗, η(y, x)〉+ b(x, y)− b(x, x) ≥ 0, ∀y ∈ K. (2.4)

The problem (2.4) with w∗ = 0 is introduced and studied by Ding [2] in reflexive
Banach spaces.

Definition 2.1. Let K be a nonempty subset of a Banach space E with the
dual space E∗. Let Ψ : K ×K ×E∗ → R, α : E ×E → R be functionals and let
A : E∗ → E∗, T : K → 2E

∗
be mappings. Then

(1) T is called generalized α-monotone with respect to Ψ and A if for any
x, y ∈ K we have

Ψ(y, x;At)−Ψ(y, x;As) ≥ α(x, y)

for each s ∈ Tx and t ∈ Ty, where limt→0+
α(x,x+t(y−x))

t = 0.
(2) Ψ is b-coercive with respect to T and A if there exists y0 ∈ K such that

lim
‖x‖→∞

inf
s∈Tx

Ψ(x, y0;As)−Ψ(x, y0;At0) + b(x, x)− b(x, y0)

|Ψ(x, y0;At0)| = +∞

for some t0 ∈ Ty0.

Remark 2.2. If Ψ(x, y; z∗) = 〈z∗, η(x, y)〉 for each (x, y, z∗) ∈ K × K × E∗,
A = I is the identity mapping of E∗, T is single-valued and α(x, y) = β(y − x),
where β : K → R with β(λz) = λpβ(z) for λ > 0, p > 1, then the generalized
α-monotonicity of mapping T reduces to relaxed η-α monotonicity of mapping
T (see [6]).

Example 2.1. Let K = (−∞,+∞), Tx = {−x, x}, Ax = x, Ψ(y, x;At) =
〈−At, η(x, y)〉 and

η(x, y) =

{
−c(x− y) if x ≥ y,

c(x− y) if x < y

for every x, y, t ∈ K, where c > 0 is a constant. It is easy to check that T is
generalized α-monotone with respect to Ψ and A with α(x, y) = −c‖x− y‖2 for
all x, y ∈ K.

Lemma 2.1([11]). Let (E, ‖·‖) be a normed vector space and H be a Hausdorff
metric on CB(E), the family of all closed and bounded subsets of E. If A and
B are two members in CB(E), then for each ε > 0 and each x ∈ A, there exists
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y ∈ B such that

‖x− y‖ ≤ (1 + ε)H(A,B).

In particular, if A and B are any two compact subsets in E, then for each x ∈ A,
there exists y ∈ B such that

‖x− y‖ ≤ H(A,B).

Lemma 2.2([5]). Let K be a nonempty subset of a Hausdorff topological vector
space E and let F : K → 2E be a KKM mapping. If F (x) is closed in E for
every x in K and is compact for some x ∈ K, then ∩x∈KF (x) 6= φ.

3. Main results

In this section, we suppose always that E is a real reflexive Banach space with
the dual space E∗ and K is a nonempty closed convex subset of E.

Theorem 3.1. Let T : K → 2E
∗
be a nonempty compact-valued mapping such

that for any x, y ∈ K

H(T (x+ λ(y − x)), Tx) → 0 as λ → 0+,

where H is the Hausdorff metric defined on CB(E∗). Assume that:
(i) A : E∗ → E∗ is a continuous mapping;
(ii) b : K ×K → (−∞,+∞) satisfies conditions (2a), (2b) and (2c);
(iii) Ψ(x, ·; ·) : K × E∗ → (−∞,+∞) is continuous for each fixed x ∈ K;
(iv) Ψ(x, y; z∗) + Ψ(y, x; z∗) = 0 for each (x, y, z∗) ∈ K ×K × E∗;
(v) Ψ(·, y;At) is a convex functional on K for each y ∈ K and t ∈ Ty;
(vi) T is generalized α-monotone with respect to Ψ and A.

Then the following problems (3.1) and (3.2) are equivalent:
(1) Find x ∈ K such that for each y ∈ K, there exists s ∈ Tx satisfying

Ψ(y, x;As) + b(x, y)− b(x, x) ≥ 0. (3.1)

(2) Find x ∈ K such that

Ψ(y, x;At) + b(x, y)− b(x, x) ≥ α(x, y), ∀y ∈ K, t ∈ Tx. (3.2)

Proof. Let x0 ∈ K be a solution of problem (3.1), i.e., for any y ∈ K there is
s0 ∈ Tx0 satisfying

Ψ(y, x0;As0) + b(x0, y)− b(x0, x0) ≥ 0.

Since T is generalized α-monotone with respect to Ψ and A, we have

Ψ(y, x0;At) + b(x0, y)− b(x0, x0)

≤ Ψ(y, x0;As0) + α(x0, y) + b(x0, y)− b(x0, x0)

≤ α(x0, y).

Thus x0 ∈ K is a solution of problem (3.2).
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Conversely, let x0 ∈ K be a solution of problem (3.2), i.e.,

Ψ(y, x0;At) + b(x0, y)− b(x0, x0) ≥ α(x0, y), ∀y ∈ K, t ∈ Ty.

Let yλ = (1− λ)x0 + λy, t ∈ (0, 1). Then yλ ∈ K. Since x0 ∈ K is a solution of
problem (3.2), it follows that for all tλ ∈ Tyλ

Ψ(yλ, x0;Atλ) + b(x0, yλ)− b(x0, x0) ≥ α(x0, yλ). (3.3)

Conditions (ii) and (v) imply that

0 = Ψ(yλ, yλ;Atλ) + b(x0, yλ)− b(x0, yλ)

= Ψ((1− λ)x0 + λy, yλ;Atλ) + b(x0, (1− λ)x0 + λy)− b(x0, yλ)

≤ (1− λ)Ψ(x0, yλ;Atλ) + λΨ(y, yλ;Atλ) + (1− λ)b(x0, x0)

+ λb(x0, y)− b(x0, yλ)

= λΨ(y, yλ;Atλ) + λb(x0, y)− λb(x0, yλ) + (1− λ)Ψ(x0, yλ;Atλ)

+ (1− λ)b(x0, x0)− (1− λ)b(x0, yλ).

It follows from condition (iv) and (3.3) that

Ψ(y, yλ;Atλ) + b(x0, y)− b(x0, yλ)

≤ 1− λ

λ
[−Ψ(x0, yλ;Atλ) + b(x0, yλ)− b(x0, x0)]

=
1− λ

λ
[Ψ(yλ, x0;Atλ) + b(x0, yλ)− b(x0, x0)]

≥ 1− λ

λ
α(x0, yλ). (3.4)

By Lemma 2.1, for each tλ ∈ Tyλ we can find an sλ ∈ Tx0 such that

‖tλ − sλ‖ ≤ H(Tyλ, Tx0).

Since Tx0 is compact, without loss of generality, we may assume that

sλ → s0 ∈ Tx0 as λ → 0+.

Since H(Tyλ, Tx0) → 0 as λ → 0+, we obtain

‖tλ − s0‖ ≤ ‖tλ − sλ‖+ ‖sλ − s0‖
≤ H(Tyλ, Tx0) + ‖sλ − s0‖
→ 0 as λ → 0+.

So, tλ → s0. Since A : E∗ → E∗ is continuous and b : K ×K → R is continuous
in the second argument, Atλ → As0 and b(x0, yλ) → b(x0, x0) as λ → 0+. It
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follows from Definition 2.1 and (3.4) that

Ψ(y, x0;As0) + b(x0, y)− b(x0, x0)

= lim
λ→0+

[Ψ(y, yλ;Atλ) + b(x0, y)− b(x0, yλ)]

≥ lim
λ→0+

α(x0, yλ)

λ
(1− λ)

= 0.

Therefore x0 ∈ K is also a solution of problem (3.1). ¤

Corollary 3.1. Let T : K → 2E
∗
be a nonempty compact-valued mapping such

that for any x, y ∈ K

H(T (x+ λ(y − x)), Tx) → 0 as λ → 0+,

where H is the Hausdorff metric defined on CB(E∗). Assume that:
(i) A : E∗ → E∗ is a continuous mapping;
(ii) b : K ×K → (−∞,∞) satisfies conditions (2a), (2b) and (2c);
(iii) η(x, ·) : K → E is continuous for each fixed x ∈ K;
(iv) η(x, y) + η(y, x) = 0 for each (x, y) ∈ K ×K;
(v) 〈At, η(·, y)〉 : K → R is a convex functional on K for each y ∈ K and
t ∈ Ty;

(vi) T is generalized η-α-monotone with respect to A.
Then the following problems (3.5) and (3.6) are equivalent:

(1) Find x ∈ K such that for each y ∈ K there exists s ∈ Tx satisfying

〈As, η(y, x)〉+ b(x, y)− b(x, x) ≥ 0. (3.5)

(2) Find x ∈ K such that

〈At, η(y, x)〉+ b(x, y)− b(x, x) ≥ α(x, y), ∀y ∈ K, t ∈ Tx. (3.6)

Theorem 3.2. Let K be a nonempty bounded closed convex subset of a real
reflexive Banach space E and let T : K → 2E

∗
be a nonempty compact-valued

mapping such that for any x, y ∈ K

H(T (x+ λ(y − x)), Tx) → 0 as λ → 0+,

where H is the Hausdorff metric defined on CB(E∗). Assume that
(i) A : E∗ → E∗ is a continuous mapping;
(ii) b : K ×K → (−∞,+∞) satisfies conditions (2a), (2b) and (2c);
(iii) Ψ(x, ·, ·) : K × E∗ → (−∞,+∞) is continuous for each fixed x ∈ K;
(iv) Ψ(x, y, z∗) + Ψ(y, x; z∗) = 0 for each (x, y, z∗) ∈ K ×K × E∗;
(v) Ψ(·, y;At) is a convex and lower semicontinuous functional on K for each
fixed y ∈ K and t ∈ Ty;

(vi) T is generalized α-monotone with respect to Ψ and A;
(vii) α(·, y) is weakly lower semicontinuous for each fixed y ∈ K.

Then problem (3.1) has a solution.
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Proof. Define two set-valued mappings F,G : K → 2K as follows:

F (y) = {x ∈ K : there exists s ∈ Tx such that

Ψ(y, x;As) + b(x, y)− b(x, x) ≥ 0}, ∀y ∈ K,

G(y) = {x ∈ K : Ψ(y, x;At) + b(x, y)− b(x, x) ≥ α(x, y),∀t ∈ Ty}, ∀y ∈ K.

We claim first that F is a KKM mapping.
If F is not a KKM mapping, then there exist {y1, y2, · · · , yn} ⊂ K and λi > 0,

i = 1, 2, · · · , n with
∑n

i=1 λi = 1 such that y =
∑n

i=1 λiyi /∈ ∪n
i=1F (yi). By the

definition of F , we have

Ψ(yi, y;As) + b(y, yi)− b(y, y) < 0, ∀s ∈ Ty (3.7)

for each i = 1, 2, · · · , n. It follows from (ii), (v) and (3.7) that

0 = Ψ(y, y;As) + b(y, y)− b(y, y)

= Ψ

( n∑

i=1

λiyi, y;As

)
+ b

(
y,

n∑

i=1

λiyi

)
− b(y, y)

≤
n∑

i=1

λiΨ(yi, y;As) +

n∑

i=1

λib(y, yi)− b(y, y)

=

n∑

i=1

λi[Ψ(yi, y;As) + b(y, yi)− b(y, y)]

< 0,

which is contradiction. This implies that F is a KKM mapping.
Now we prove that F (y) ⊂ G(y) for all y in K.
For any given y in K, letting x ∈ F (y), then there exists s ∈ Tx such that

Ψ(y, x;As) + b(x, y)− b(x, x) ≥ 0.

Since T is generalized α-monotone with respect to Ψ and A, we have

Ψ(y, x;At) + b(x, y)− b(x, x)

≥ Ψ(y, x;As) + α(x, y) + b(x, y)− b(x, x)

≥ α(x, y).

It follows that x ∈ G(y) and so F (y) ⊂ G(y) for all y ∈ K. This implies that
G is also a KKM mapping. From the assumptions we know that G(y) is weakly
closed for all y in K.

In fact, since x 7→ Ψ(x, y,At) is lower semicontinuous for each fixed y ∈ K
and t ∈ Ty and b is continuous in the second argument, we known that they
are both weakly lower semicontinuous. From the definition of G and the weakly
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lower semicontinuity of α we obtain that for all y ∈ K

G(y) = {x ∈ K : Ψ(y, x;At) + b(x, y)− b(x, x) ≥ α(x, y),∀t ∈ Ty}
= {x ∈ K : Ψ(x, y;At) + b(x, x)− b(x, y) + α(x, y) ≤ 0, ∀t ∈ Ty}

is weakly closed. Since K is a bounded closed and convex subset of E, we know
from the reflexivity of E that K is weakly compact in K and so G(y) is weakly
compact in K for each y ∈ K. It follows from Lemma 2.2 and Theorem 3.1 that

∩y∈KF (y) = ∩y∈KG(y) 6= φ.

Hence there exists x ∈ K such that for any y ∈ K there is s ∈ Tx satisfying

Ψ(y, x;As) + b(x, y)− b(x, x) ≥ 0.

This completes the proof. ¤

Corollary 3.2. Let K be a nonempty bounded closed convex subset of a real
reflexive Banach space E and let T : K → 2E

∗
be a nonempty compact-valued

mapping such that for any x, y ∈ K

H(T (x+ λ(y − x)), Tx) → 0 as λ → 0+,

where H is a Hausdorff metric defined on CB(E∗). Assume that
(i) A : E∗ → E∗ is a continuous mapping;
(ii) b : K ×K → (−∞,+∞) satisfies conditions (2a), (2b) and (2c);
(iii) η(x, ·) : K → E is continuous for each fixed x ∈ K;
(iv) η(x, y) + η(y, x) = 0 for each (x, y) ∈ K ×K;
(v) 〈At, η(·, y)〉 : K → R is a convex and lower semicontinuous functional on
K for each fixed y ∈ K and t ∈ Ty;

(vi) T is generalized η-α-monotone with respect to A;
(vii) α(·, y) is weakly semicontinuous for each fixed y ∈ K.

Then problem (3.3) has a solution.

Now we consider the case of unbounded closed convex domains.

Theorem 3.3. Let K be a nonempty unbounded closed convex subset of a real
reflexive Banach space E and let T : K → 2E

∗
be a nonempty compact-valued

mapping such that for any x, y ∈ K

H(T (x+ λ(y − x)), Tx) → 0 as λ → 0+,

where H is a Hausdorff metric defined on CB(E∗). Assume that:
(i) A : E∗ → E∗ is a continuous mapping;
(ii) b : K ×K → (−∞,+∞) satisfies conditions (2a), (2b) and (2c);
(iii) Ψ(x, ·, ·) : K × E∗ → (−∞,+∞) is continuous for each fixed x ∈ K;
(iv) Ψ(x, y; z∗) + Ψ(y, x; z∗) = 0 for each (x, y, z∗) ∈ K ×K × E∗;
(v) Ψ(·, y;At) is a convex and lower semicontinuous functional on K for each
fixed y ∈ K and t ∈ Ty;

(vi) Ψ is b-coercive with respect to T and A;
(vii) T is generalized α-monotone with respect to Ψ and A;
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(viii) α(·, y) is weakly lower semicontinuous for each fixed y ∈ K.
Then problem (3.1) has a solution.

Proof. Let Br = {y ∈ E : ‖y‖ ≥ r}. Consider the following problem: Find
xr ∈ K ∩Br such that for any y ∈ K ∩Br there is sr ∈ Txr satisfying

Ψ(y, xr;Asr) + b(xr, y)− b(xr, xr) ≥ 0. (3.6)

By Theorem 3.2, we know that problem (3.6) has a solution xr ∈ K∩Br. Choose
r > ‖y0‖, where y0 is given by the b-coercivity condition of Ψ with respect to T
and A. Then we have from (3.6) that

Ψ(y0, xr;Asr) + b(xr, y0)− b(xr, xr) ≥ 0 (3.7)

for some sr ∈ Txr. Moreover, by condition (iv), we have

Ψ(y0, xr;Asr) + b(xr, y0)− b(xr, xr)

= −Ψ(xr, y0;Asr) + b(xr, y0)− b(xr, xr)

= −[Ψ(xr, y0;Asr)−Ψ(xr, y0;At0) + b(xr, xr)− b(xr, y0)]

+ Ψ(y0, xr;At0)

≤ −[Ψ(xr, y0;Asr)−Ψ(xr, y0;At0) + b(xr, xr)− b(xr, y0)]

+ |Ψ(xr, y0;At0)|

= −|Ψ(xr, y0;At0)|
[
Ψ(xr, y0;Asr)−Ψ(xr, y0;At0) + b(xr, xr)− b(xr, y0)

|Ψ(xr, y0;At0)| − 1

]

≤ −|Ψ(xr, y0;At0)|
[

inf
s∈Txr

Ψ(xr, y0;As)−Ψ(xr, y0;At0) + b(xr, xr)− b(xr, y0)

|Ψ(xr, y0;At0)| − 1

]

(3.8)

for some t0 ∈ Ty0. Now, if ‖xr‖ = r for all r, we may choose r large enough so
that (3.8) and the b-coercivity of Ψ with respect to T and A imply that

Ψ(y0, xr;Asr) + b(xr, y0)− b(xr, xr) < 0,

which contracts (3.7). Hence there exists r such that ‖xr‖ < r. For any y ∈ K
we can choose ε ∈ (0, 1) small enough such that

xr + ε(y − xr) ∈ K ∩Br.

It follows from (3.8), (ii) and (v) that

0 ≤ Ψ(xr + ε(y − xr), xr;Asr) + b(xr, xr + ε(y − xr))− b(xr, xr)

≤ εΨ(y, xr, Asr) + (1− ε)Ψ(xr, xr;Asr) + εb(xr, y)

+ (1− ε)b(xr, xr)− b(xr, xr)

= ε[Ψ(y, xr, Asr) + b(xr, y)− b(xr, xr)].

This implies that

Ψ(y, xr;Asr) + b(xr, y)− b(xr, xr) ≥ 0

for all y ∈ K. So, xr ∈ K is a solution of problem (3.1). ¤
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Remark 3.1. (i) It is not necessary that b is linear in the first argument in
Theorem 3.1, Theorem 3.2 and Theorem 3.3.

(ii) Theorem 3.2 improves and generalizes Theorem 3.1 of Ding [2] and the
corresponding results of [3,12-14].
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