Browse > Article
http://dx.doi.org/10.4134/BKMS.b210054

POSITIVE EXPANSIVITY, CHAIN TRANSITIVITY, RIGIDITY, AND SPECIFICATION ON GENERAL TOPOLOGICAL SPACES  

Devi, Thiyam Thadoi (Department of Mathematics Manipur University)
Mangang, Khundrakpam Binod (Department of Mathematics Manipur University)
Publication Information
Bulletin of the Korean Mathematical Society / v.59, no.2, 2022 , pp. 319-343 More about this Journal
Abstract
We discuss the notions of positive expansivity, chain transitivity, uniform rigidity, chain mixing, weak specification, and pseudo orbital specification in terms of finite open covers for Hausdorff topological spaces and entourages for uniform spaces. We show that the two definitions for each notion are equivalent in compact Hausdorff spaces and further they are equivalent to their standard definitions in compact metric spaces. We show that a homeomorphism on a Hausdorff uniform space has uniform h-shadowing if and only if it has uniform shadowing and its inverse is uniformly equicontinuous. We also show that a Hausdorff positively expansive system with a Hausdorff shadowing property has Hausdorff h-shadowing.
Keywords
Hausdorff pseudo orbital specification; Hausdorff positive expansive; Hausdorff uniformly rigid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Das, K. Lee, D. Richeson, and J. Wiseman, Spectral decomposition for topologically Anosov homeomorphisms on noncompact and non-metrizable spaces, Topology Appl. 160 (2013), no. 1, 149-158. https://doi.org/10.1016/j.topol.2012.10.010   DOI
2 E. Glasner and B. Weiss, Sensitive dependence on initial conditions, Nonlinearity 6 (1993), no. 6, 1067-1075. http://stacks.iop.org/0951-7715/6/1067   DOI
3 D. Alcaraz and M. Sanchis, A note on extensions of dynamical systems from uniform spaces, Topology Appl. 137 (2004), no. 1-3, 3-12. https://doi.org/10.1016/S0166-8641(03)00194-9   DOI
4 J. Auslander, G. Greschonig, and A. Nagar, Reflections on equicontinuity, Proc. Amer. Math. Soc. 142 (2014), no. 9, 3129-3137. https://doi.org/10.1090/S0002-9939-2014-12034-X   DOI
5 W. Brian, Abstract ω-limit sets, J. Symb. Log. 83 (2018), no. 2, 477-495. https://doi.org/10.1017/jsl.2018.11   DOI
6 J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly 99 (1992), no. 4, 332-334. https://doi.org/10.2307/2324899   DOI
7 A. D. Barwell, C. Good, and P. Oprocha, Shadowing and expansivity in subspaces, Fund. Math. 219 (2012), no. 3, 223-243. https://doi.org/10.4064/fm219-3-2   DOI
8 R. Bowen, ω-limit sets for axiom A diffeomorphisms, J. Differential Equations 18 (1975), no. 2, 333-339. https://doi.org/10.1016/0022-0396(75)90065-0   DOI
9 P. Das and T. Das, Various types of shadowing and specification on uniform spaces, J. Dyn. Control Syst. 24 (2018), no. 2, 253-267. https://doi.org/10.1007/s10883-017-9388-1   DOI
10 A. Fakhari and F. H. Ghane, On shadowing: ordinary and ergodic, J. Math. Anal. Appl. 364 (2010), no. 1, 151-155. https://doi.org/10.1016/j.jmaa.2009.11.004   DOI
11 C. Good and S. Macias, What is topological about topological dynamics?, Discrete Contin. Dyn. Syst. 38 (2018), no. 3, 1007-1031. https://doi.org/10.3934/dcds.2018043   DOI
12 P. Kurka, Topological and symbolic dynamics, Cours Specialises, 11, Societe Mathematique de France, Paris, 2003.
13 K. B. Mangang, Equicontinuity and sensitivity of sequence dynamical systems, Glob. J. Pure Appl. Math. 13 (2017), 4223-4228.
14 S. Silverman, On maps with dense orbits and the definition of chaos, Rocky Mountain J. Math. 22 (1992), no. 1, 353-375. https://doi.org/10.1216/rmjm/1181072815   DOI
15 T. Ceccherini-Silberstein and M. Coornaert, Sensitivity and Devaney's chaos in uniform spaces, J. Dyn. Control Syst. 19 (2013), no. 3, 349-357. https://doi.org/10.1007/s10883-013-9182-7   DOI
16 D. Richeson and J. Wiseman, Positively expansive dynamical systems, Topology Appl. 154 (2007), no. 3, 604-613. https://doi.org/10.1016/j.topol.2006.08.009   DOI
17 S. Shah, R. Das, and T. Das, Specification property for topological spaces, J. Dyn. Control Syst. 22 (2016), no. 4, 615-622. https://doi.org/10.1007/s10883-015-9275-6   DOI
18 H. Wang, Equicontinuity, shadowing and distality in general topological spaces, Czechoslovak Math. J. 70(145) (2020), no. 3, 711-726. https://doi.org/10.21136/CMJ.2020.0488-18   DOI
19 A. Weil, Sur les espaces a structure uniforme et sur la topologie generale, Herman & Cie, Paris, 1938.
20 X. Wu, X. Ma, Z. Zhu, and T. Lu, Topological ergodic shadowing and chaos on uniform spaces, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 28 (2018), no. 3, 1850043, 9 pp. https://doi.org/10.1142/S0218127418500438   DOI
21 D. V. Anosov, On a class of invariant sets of smooth dynamical systems, Proceedings of 5th International Conference on Nonlinear Oscillations 2, Kiev, (1970), 39-45.
22 R. Engelking, General topology, translated from the Polish by the author, second edition, Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989.
23 S. A. Ahmadi, X. Wu, Z. Feng, X. Ma, and T. Lu, On the entropy points and shadowing in uniform spaces, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 28 (2018), no. 12, 1850155, 10 pp. https://doi.org/10.1142/S0218127418501559   DOI
24 S. A. Ahmadi, Shadowing, ergodic shadowing and uniform spaces, Filomat 31 (2017), no. 16, 5117-5124. https://doi.org/10.2298/fil1716117a   DOI
25 S. A. Ahmadi, X. Wu, and G. Chen, Topological chain and shadowing properties of dynamical systems on uniform spaces, Topology Appl. 275 (2020), 107153, 11 pp. https://doi.org/10.1016/j.topol.2020.107153   DOI
26 D. Ruelle, Statistical mechanics on a compact set with Zv action satisfying expansiveness and specification, Trans. Amer. Math. Soc. 187 (1973), 237-251. https://doi.org/10.2307/1996437   DOI
27 K. B. Mangang, Minimality and equicontinuity of a sequence of maps in iterative way, Intern. J. Math. Stat. Invent. 2 (2014), 4-6.
28 K. B. Mangang, Equicontinuity of the limit function of a sequence of equicontinuous functions, J. Indian Math. Soc. (N.S.) 81 (2014), no. 1-2, 115-121.
29 X. Wu, Y. Luo, X. Ma, and T. Lu, Rigidity and sensitivity on uniform spaces, Topology Appl. 252 (2019), 145-157. https://doi.org/10.1016/j.topol.2018.11.014   DOI