가측인 퍼지 사상의 특성

A note on measurable fuzzy mappings

김윤경 동신대학교 전산수학과

Yun-Kyong Kim
Dept.of Computational Mathematics, Dongshin University
E-mail: ykkim@blue.dsu.ac.kr

ABSTRACT

In this paper, we characterize the Borel σ -field generated by the Hausdorff-Skorokhod metric on the space of normal and upper-semicontinuous fuzzy sets with compact support in the Ecleadean space R^n . As a result, we give a characterization of measurable fuzzy mappings.

Keyword: The Hausdorff-Skorokhod metric, Measurable fuzzy mappings

1. Introduction

Let (Ω, Σ) be a measurable space. A multi-valued function $X: \Omega \hookrightarrow \mathbb{R}^n$ is called measurable if for each closed subset C of \mathbb{R}^n ,

 $X^{-1}(B) = \{\omega \in \Omega: X(\omega) \cap C \neq \emptyset\} \in \Sigma$. It is known that if F is compact-valued, the measurability of a multi-valued function F is equivalent to the measurability of a function $X:\Omega \to (K(R^n),h)$, where $(K(R^n),h)$ is the metric space of all non-empty compact subsets of R^n endowed with the Hausdorff metric h.(See Castaing and Valadier [2], Klein and Thompson [9])

A fuzzy mapping $\widetilde{X}: \Omega \hookrightarrow \mathbb{R}^n$ is called

measurable if for each closed subset C of R^n , the function $\widetilde{X}^{-1}(B): \Omega \to [0,1]$ defined by $\widetilde{X}^{-1}(C)(\omega) = \sup_{x \in C} \widetilde{X}(\omega)(x)$ Σ -measurable. This definition measurability for a fuzzy mapping was introduced by Butnariu [1]. Another concept of measurability for a fuzzy mapping can be introduced as suggested in Puri and Ralescu [10]. It turned out that alternative of measurability for a fuzzy mapping equivalent. But it has been remained an open problem if. under what conditions. the measurability for a fuzzy mapping equivalent to the measurability of a function $\widetilde{X}: \Omega \to (F(R^n), d)$, where $(F(R^n), d)$ is an appropriate metric subspace of the space

consisting of all normal fuzzy subsets of R^n .

In this paper, we show that if $F(R^n)$ is the space of all normal and uppersemicontinuous fuzzy sets in R^n with compact support, and X is a $F(R^n)$ -valued fuzzy mapping, then the measurability of X is equivalent to the measurability of a function $X: \mathcal{Q} \to (F(R^n), d_s)$, where d_s is the Hausdorff-Skorokhod metric on $F(R^n)$.

2. Preliminaries

Let $K(R^n)$ be the family of all non-empty compact subsets of R^n . Then $K(R^n)$ is metrizable by the Hausdorff metric h defined by

$$h(A, B) = \max \{ \sup_{a \in A} \inf_{b \in B} |a - b|,$$

$$\sup_{b \in B} \inf_{a \in A} |a - b| \}$$

where $|\cdot|$ is the usual norm in \mathbb{R}^n . It is well known that the metric space $(K(\mathbb{R}^n), h)$ is complete and separable. (See Debreu [3])

Let $F(R^n)$ denote the space of all normal and upper-semicontinuous fuzzy sets u in R^n such that $supp\ u = cl\ \{x \in R^n : u(x) > 0\}$ is compact. For a fuzzy set u in R^n , we define the α - level set of u by

$$[u]^{\alpha} = \begin{cases} \{x : u(x) \geq \alpha\}, & 0 \leq \alpha \leq 1, \\ \sup u, & \alpha = 0. \end{cases}$$

Then it follows that $u \in F(\mathbb{R}^n)$ if and only if $[u]^{\alpha} \in K(\mathbb{R}^p)$ for each $\alpha \in [0,1]$.

Lemma 2.1. For $u \in F(R^n)$, let us define $f_u:[0,1] \to ((K(R^n),h) \text{ by } f_u(a) = [u]^a$.

Then (1) f_u is non-increasing; i.e., $\alpha \leq \beta$ implies $f_u(\alpha) \supset f_u(\beta)$.

(2) f_u is left-continuous on (0,1].

(3) f_u has right-limits on [0,1) and is right-continuous at 0.

Conversely, if $g:[0,1] \to ((K(R^n),h))$ is a function satisfying the above conditions (1)-(3), then there exists a unique $v \in F(R^n)$ such that $g(\alpha) = [v]^{\alpha}$ for all $\alpha \in [0,1]$.

Proof: See Kim [7].

If we denote the right-limit of f_u at $\alpha \in [0,1)$ by $f_u(\alpha^+)$, then

$$f_{n}(\alpha^{+}) = cl\{x \in \mathbb{R}^{n} : u(x) > \alpha\}.$$

Now for $I \subset [0,1]$, if we define

$$w_{u}(I) = \sup_{\alpha_{1}, \alpha_{2} \in I} h(f_{u}(\alpha_{1}), f_{u}(\alpha_{2})),$$

then it follows that for $0 \le \alpha < \beta \le 1$,

$$w_u(\alpha, \beta) = w_u(\alpha, \beta] = h(f_u(\alpha^+), f_u(\beta)),$$

$$w_u[\alpha,\beta) = w_u[\alpha,\beta] = h(f_u(\alpha),f_u(\beta)).$$

Also, if we define $j_u(\alpha) = h(f_u(\alpha), f_u(\alpha^+))$, then the function f_u is continuous at α if and only if $j_u(\alpha) = 0$.

Lemma 2.2. For each $u \in F(R^n)$ and $\varepsilon > 0$, there exists a partition $0 = \alpha_1 < \alpha_2 < \ldots < \alpha_r = 1$ of [0,1] such that $w_u(\alpha_{i-1}, \alpha_i] < \varepsilon$ for all $i = 1, 2, \ldots, r$.

Proof. See Joo and Kim [5].

The above lemma implies that $J(u) = \{\alpha : j_u(\alpha) > 0\}$ is denumerable for each $u \in F(\mathbb{R}^n)$.

3. Main Results

In this section, we show that if X is a $F(R^n)$ -valued fuzzy mapping, then the measurability of X is equivalent to the measurability of a function $X: \Omega \to (F(R^n), d_s)$, where d_s is the Hausdorff-Skorokhod metric on $F(R^n)$.

First, in order to generalize the Hausdorff metric h on $K(R^n)$ to $F(R^n)$, we define the metric d_{∞} on $F(R^n)$ by

$$d_{\infty}(u,v) = \sup_{0 \le a \le 1} h([u]^a,[v]^a).$$

Then it is well-known that $(F(R^n), d_{\infty})$ is complete, but is not separable. (See Klement et al. [8]) Recently, Joo and Kim [4, 5] introduced a new metric on $F(R^n)$ as follows:

Definition 3.1. Let T be the class of strictly increasing continuous mappings of [0,1] onto itself. For $u,v \in F(\mathbb{R}^n)$, we define

$$d_s(u,v)=\inf \{\varepsilon >0: ext{ there exists a } t \in T$$
 s.t. $\sup_{0 \leq a \leq 1} |t(a)-a| \leq \varepsilon$ and $d_\infty(u,t(v)) \leq \varepsilon \},$

where t(v) denotes the composition of v and t.

It follows immediately that d_s is a metric on $F(R^n)$ and $d_s(u,v) \leq d_\infty(u,v)$. The metric d_s will be called the Hausdorff-Skorokhod metric. It is known that the metric space $(F(R^n), d_s)$ is separable and topological complete.

Lemma 3.2. Let us define

$$L_a: F(R^n) \to K(R^n)$$
 by $L_a(u) = [u]^a$.
Then (1) L_0 and L_1 are continuous.

(2) If $0 < \alpha < 1$, then L_{α} is continuous at α if and only if $\alpha \notin J(\alpha)$, i.e., the

function f_u defined in Lemma 2.1 is continuous at α .

Theorem 3.3. Let B_s be the Borel σ -field of $F(R^n)$ w.r.t. the Hausdorff-Skorokhod metric d_s . Then B_s coincides with the smallest σ -field of subsets of $F(R^n)$ for which the maps L_{α} are measurable for all $\alpha \in [0,1]$.

Corollary 3. 4. Let $X: \Omega \hookrightarrow R^n$ be a $F(R^n)$ -valued fuzzy mapping. Then X is measurable if and only if it is measurable when considered a function from Ω to the metric space $(F(R^n), d_s)$.

Corollary 3. 5. Let $F_C(R^n) = \{u \in F(R^n) : f_u \text{ is continuous on } [0,1]\}$. If $\widetilde{X}: \mathcal{Q} \hookrightarrow R^n$ is a $F_C(R^n)$ -valued fuzzy mapping, then \widetilde{X} is measurable if and only if it is measurable when considered a function from \mathcal{Q} to the metric space $(F_C(R^n), d_\infty)$.

Remark. Kaleva [6] suggested that if X is a measurable fuzzy mapping, then it is measurable when considered a function from \mathcal{Q} to the metric space $(F(R^n), d_{\infty})$. But he proved only that the inverse image of each d_{∞} -open ball is measurable. Thus, his proof is incomplete, since the metric space $(F(R^n), d_{\infty})$ is not separable. In fact, every d_{∞} -open ball is B_s -measurable because

$$\{u: d_{\infty}(u,v) < \delta\} =$$

$$\bigcup_{0 \le \epsilon \le \delta} \bigcap_{n} \{ u : h([u]^{\alpha_n}, [v]^{\alpha_n}) \},$$

where ϵ denotes rational numbers and $\{\alpha_n\}$ is an enumeration of all rational points in

[0,1].

Let B_{∞} be the Borel σ -field of $F(R^n)$ w.r.t. the metric d_{∞} . Since $d_s(u,v) \leq d_{\infty}(u,v)$, it is clear that $B_s \subset B_{\infty}$. Now we show that $B_s \neq B_{\infty}$ and that there exists a $F(R^n)$ -valued fuzzy mapping \widetilde{X} such that \widetilde{X} is B_s -measurable but is not B_{∞} -measurable. For $0 \leq \lambda \leq 1$, we let

$$u_{\lambda}(x) = \begin{cases} 1 & \text{if } x = 0, \\ \lambda & \text{if } 0 < |x| \le 1. \\ 0 & \text{elsewhere.} \end{cases}$$

T h e
$$[u_{\lambda}]^{\alpha} = \begin{cases} \{0\} & \text{if } \lambda < \alpha \leq 1, \\ \{x : |x| \leq 1\} & \text{if } 0 \leq \alpha \leq \lambda. \end{cases}$$

Thus, $d_{\infty}(u_{\lambda}, u_{\delta}) = 1$ for $\lambda \neq \delta$. On the other hand, by rigorous process, we can obtain $d_{s}(u_{\lambda}, u_{\delta}) = |\lambda - \delta|$.

Let $F_0(R^n) = \{u_\lambda : 0 < \lambda < 1\}$. Then $(F_0(R^n), d_\infty)$ is a discrete space and so $B^0_\infty = \{A \cap F_0(R^n): A \in B_\infty\}$ consists of all subsets of $F_0(R^n)$. Since $(F_0(R^n), d_s)$ can be identified with (0,1) endowed with the usual metric, there exists a subset D of $F_0(R^n)$ such that

 $D
otin B_s^0 = \{A \cap F_0(R^n): A \in B_s\},$ which implies $B_s \neq B_{\infty}$. Now if we let $\Omega = (0,1)$ and Σ be the the usual Borel σ -field of (0,1), then the function $X: \Omega \to F_0(R^n)$ defined by $X(\omega) = u_{\omega}$ is B_s -measurable but is not B_{∞} -measurable because $X^{-1}(D) = \{\lambda: u_{\lambda} \in D\}$ is not Borel set in (0,1).

4. 참고문헌

- [1]. D. Butnariu, Measurability concepts for fuzzy mappings, Fuzzy Sets and Systems 31 (1989), 77-82.
- [2]. C. Castaing and V. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag. Berlin, New York, 1977.
- [3]. G. Debreu, Integration of correspondences, Proc. Fifth Berkley Symp. on Math. Statist. Prob. Vol. 2 (1966), 251-372.
- [4]. S. Y. Joo and Y. K. Kim, The Skorokhod topology on space of fuzzy sets, Fuzzy Sets and Systems 111 (2000), 497-501.
- [5]. S. Y. Joo and Y. K. Kim, Topological properties on the space of fuzzy sets, J. Math. Anal. Appl. 246 (2000), 576-590.
- [6], O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems 24 (1987), 301-317.
- [7]. Y. K. Kim, Compactness and convexity on the space of fuzzy sets, J. Math. Anal. Appl. 264 (2001), 122-132.
- [8]. E. P. Klement, M. L. Puri and D. A. Ralescu, Limit theorems for fuzzy random variables, Proc. Roy. Soc. London Ser. A 407 (1986), 171-182.
- [9]. E. Klein and A. C. Thompson, Theory of Correspondences, Wiley, New York, 1984.
- [10]. M. L. Puri and D. A. Ralescu, Fuzzy random variables, J. Math. Anal. Appl. 114 (1986), 409-422.

n