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POSITIVE EXPANSIVITY, CHAIN TRANSITIVITY,

RIGIDITY, AND SPECIFICATION ON GENERAL

TOPOLOGICAL SPACES

Thiyam Thadoi Devi and Khundrakpam Binod Mangang

Abstract. We discuss the notions of positive expansivity, chain tran-
sitivity, uniform rigidity, chain mixing, weak specification, and pseudo

orbital specification in terms of finite open covers for Hausdorff topolog-

ical spaces and entourages for uniform spaces. We show that the two
definitions for each notion are equivalent in compact Hausdorff spaces

and further they are equivalent to their standard definitions in compact
metric spaces. We show that a homeomorphism on a Hausdorff uniform

space has uniform h-shadowing if and only if it has uniform shadowing

and its inverse is uniformly equicontinuous. We also show that a Haus-
dorff positively expansive system with a Hausdorff shadowing property

has Hausdorff h-shadowing.

1. Introduction

Generally, a topological dynamical system consists of a pair (X, f), where X
is a compact metric space and f is a self continuous map on X. It is well known
that the notions such as sensitivity and expansiveness are defined in terms of
metric. In case of compact metric space, when one take an equivalent metric the
expansiveness and sensitivity of the system (X, f) remain unchanged although
their constants are altered. In case when we take a non compact metric space
X, these properties may hold on a particular equivalent metric of X but may
not hold for another equivalent metric (see [13, Example 6]). Several notions of
a dynamical system are defined in purely topological terms such as transitivity,
minimality, mixing, etc. while many others are defined in terms of the metric
such as equicontinuity, sensitivity, chain transitivity, shadowing, specification,
etc. When a notion is defined in topological term, it is independent of the
equivalent metric of the compact or non compact metric space X. Interestingly,
transitivity and periodicity which are defined purely in topological terms are
related to sensitivity which is defined in terms of metric. Banks et al. [7] and
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other authors (see [16, 25]) show that sensitivity follows from transitivity and
dense periodic points.

Recently, dynamical systems are being studied in spaces that are not neces-
sarily compact or metric spaces. One of the natural candidates to replace the
metric oriented definitions is uniformity because it mimics the existing metric
proofs. In doing so, we are studying dynamical systems on the class of com-
pletely regular topological spaces or Tychonof spaces. In uniform space also,
the inconsistency of the definitions of various notions arises with respect to the
compatible uniformities of the uniform topology [12]. These inconsistencies
cease once we take compact uniform space where the uniformity is unique.

The uniform approach has been considered in many cases. In [4], D. Alcaraz
and M. Sanchis first extended the study of dynamical systems on the com-
pletion of totally bounded uniform spaces. In [24], Sejal et al. have provided
sufficient conditions for a map to have the specification property. Further,
they have proved that if a self homeomorphism on a totally bounded uniform
space is mixing, expansive, and has a shadowing property, then it has the
specification property. In [12], Das et al. have defined the topological pseudo
orbital specification, topological weak specification, topological ergodic shad-
owing, topological d -shadowing for a continuous map on a uniform space and
it has been shown that they are equivalent for a uniformly continuous map with
a topological shadowing property on a totally bounded uniform space. Xinxing
et al. [28] introduced the concepts of weak uniformity, uniform rigidity, and
multi-sensitivity for uniform (not necessarily compact or metric) spaces and
obtain some equivalent characterizations of uniform rigidity. For more results
on dynamical systems in uniform spaces, see [2, 3, 11,28,29].

Many dynamical notions could be defined naturally on Hausdorff (but not
necessarily compact or metric) spaces. When we study dynamical systems on
the class of Hausdorff topological spaces, indeed we are extending the dynami-
cal notions of compact metric spaces to a bigger class of Hausdorff topological
spaces. The Hausdorff definition or open cover definition of the various notions
has been introduced in [10,17]. In [10], Brian explicitly defined chain transitiv-
ity in terms of open covers. Good and Maćıas [17] have considered sensitivity
and shadowing in terms of open covers. In [26], Wang has studied the notion
of equicontinuity and sensitive point in terms of open covers. In both [17] and
[26], the authors have shown that the Hausdorff and uniform versions coincide
in compact Hausdorff spaces and are equivalent to their metric definitions in
compact metric spaces. Inspired by the results mentioned above, we discuss
the notions of chain transitivity, uniform rigidity, chain mixing, weak specifi-
cation, pseudo orbital specification and positive expansivity in terms of finite
open covers for Hausdorff topological spaces, and in terms of entourages for
uniform spaces. We show that the Hausdorff and the uniform definitions of
the respective dynamical notions are equivalent in compact Hausdorff spaces
and further they are equivalent to their standard definitions in compact metric
spaces.
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In Section 2, we give some preliminaries of a dynamical system and uniform
space which are used in this paper. In Section 3, we give definitions of various
dynamical notions, in terms of open cover for Hausdorff topological spaces and
in terms of entourages for uniform spaces. We find results establishing the
equivalence of the Hausdorff definitions and uniform definitions on compact
Hausdorff spaces. We give examples to support our claims. In Theorem 3.1,
we prove that Hausdorff positive expansivity and uniform positive expansivity
are equivalent on compact Hausdorff spaces and further they are equivalent to
standard positive expansivity on compact metric spaces. In Example 3.2, we
give an example where the dynamical system is positively expansive but not
Hausdorff positively expansive on a non-compact space. In Example 3.3, we
verify that positive expansivity, uniform positive expansivity, and Hausdorff
positive expansivity are equivalent on a compact metric space. It has been
proved in Theorem 3.4 that a Hausdorff positively expansive dynamical sys-
tem on a Hausdorff space with Hausdorff shadowing property has Hausdorff
h-shadowing property. We show in Theorem 3.5 that a homeomorphism f on a
compact Hausdorff uniform space has uniform h-shadowing if and only if f has
uniform shadowing and f−1 is uniformly equicontinuous. In Theorem 3.6 we
show that Hausdorff shadowing is preserved by a topological conjugacy. Similar
results of the invariance of topological conjugacy for various other dynamical
notions are given in Appendix (Section 4). In Examples 3.7 and 3.9, we verify
that Hausdorff shadowing is preserved by a topological conjugacy whereas uni-
form shadowing and standard shadowing are not. In Theorem 3.10, we prove
that Hausdorff chain transitivity and uniform chain transitivity are equivalent
on compact Hausdorff spaces and further they are equivalent to standard chain
transitivity on compact metric spaces. Following in Theorem 3.12, we prove
that uniform chain transitivity is invariant under a topological conjugacy. In
Theorem 3.14, we show that Hausdorff uniformly rigid is equivalent to Uniform
uniformly rigid on compact Hausdorff spaces and further they are equivalent
to uniformly rigid on compact spaces. In Theorem 3.15, we show that a point
transitive, uniformly equicontinuous system on a Hausdorff uniform space is
Uniform uniformly rigid. We know that uniform chain transitivity depends on
the compatible uniformity, however it has been proved in Theorem 3.16 that if
the system is topologically transitive, then uniform chain transitivity is inde-
pendent of the compatible uniformity. In Theorem 3.17, we show that if (X, f)
is a topologically transitive, uniformly equicontinuous on a Hausdorff uniform
space (X,U ), then f is a homeomorphism. We show in Theorem 3.19 that
Hausdorff pseudo orbital specification and uniform pseudo orbital specification
are equivalent on compact Hausdorff spaces and further they are equivalent to
the standard pseudo orbital specification on compact metric spaces. Similar
result for weak specification has been proved in Theorem 3.20. Lastly, we prove
in Theorem 3.21 that a mixing dynamical system on a Hausdorff uniform space
with at least two points is uniformly sensitive.
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2. Preliminaries

In 1937, Andre Weil [27] introduced the concept of uniform space. A uniform
space is a pair (X,U ), where X is a non-empty set and U is a uniformity on
X which is a non-empty family of subsets of X × X satisfying the following
conditions:

a) Each member E of U contains the diagonal ∆, where ∆ = {(x, x) ∈
X ×X : x ∈ X}.

b) E−1 ∈ U if E ∈ U , where E−1 = {(y, x) ∈ X ×X : (x, y) ∈ E}.
c) For any E ∈ U , there exists some D ∈ U such that D ◦ D ⊂ E,

where D ◦ D = {(x, y) : there exists z ∈ X such that (x, z) ∈ D and
(z, y) ∈ D}.

d) For any D,E ∈ U , D ∩ E ∈ U .
e) For any D ∈ U and D ⊂ E ⊂ X ×X, then E ∈ U .

The members of U are called entourages. E ⊂ X×X is said to be symmetric
if E = E−1. For any entourage E ∈ U , we can find a symmetric entourage
D ∈ U such that D ◦ D ⊂ E. The uniform topology T is defined by T =
{T ⊂ X : for each x ∈ T there exists E ∈ U with E[x] ⊂ T}, where E[x] =
{y ∈ X : (x, y) ∈ E} is called the cross section of E at x. We say that
a topological space X is uniformizable if there exists a uniformity on X such
that the associated uniform topology is the given topology. A topological space
is uniformizable if and only if it is completely regular. Let (X,U ) and (Y,V ) be
two uniform spaces. A function f : X → Y is said to be uniformly continuous if
for each E ∈ V , there exists some D ∈ U such that (f(x), f(y)) ∈ E whenever
(x, y) ∈ D. Throughout this paper, we consider X to be a Hausdorff space
unless otherwise stated and we use the notation Dn to denote

D ◦D ◦ · · · ◦D︸ ︷︷ ︸
n-times

,

where n is a positive integer.
For a dynamical system (X, f), the set O(x, f) = {fn(x) : n ∈ Z+} is called

the orbit of a point x ∈ X under the dynamical system (X, f), where Z+

denotes the set of non-negative integers. Thus, a sequence {yi}i∈Z+
in X is an

orbit if f(yi) = yi+1, ∀ i ≥ 0. A point x ∈ X is said to be a periodic point of
f if fp(x) = x for some p > 0 and fm(x) 6= x for all m ∈ {1, 2, . . . , p − 1}. A
point x ∈ X is said to be a transitive point if its orbit O(x, f) is dense in X.
A dynamical system (X, f) is said to be point transitive if it has a transitive
point. A dynamical system (X, f) is said to be topologically transitive if for
every pair of non-empty open sets U, V ⊂ X, there is some n ≥ 0 such that
fn(U) ∩ V 6= φ and it is said to be topologically mixing if for every pair of
non-empty open sets U, V ⊂ X, there is N > 0 such that fn(U) ∩ V 6= φ, ∀
n ≥ N .

The notion of shadowing in a compact metric space X with metric d was
introduced independently by Anosov [5] and Bowen [9] in 1970s. It is motivated
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by computer simulations of orbits and plays a crucial role in the general qualita-
tive theory of dynamical systems. In systems with shadowing property, the ac-
tual orbits follow the pseudo orbits. A finite sequence {x0 = x, x1, . . . , xn = y}
is said to be a δ-chain from x to y of length n if d(f(xi), xi+1) < δ for any
i ∈ {0, 1, 2, . . . , n − 1}. A δ-pseudo orbit is an infinite δ-chain. We say that a
δ-pseudo orbit {xi}i∈Z+

is ε-shadowed by a point y ∈ X if d(f i(y), xi) < ε for
all i ∈ Z+. A dynamical system (X, f) on a metric space is said have shadowing
property if for every ε > 0, there exists δ > 0 such that every δ-pseudo orbit is
ε-shadowed by some point in X.

The open cover or Hausdorff approach of shadowing on Hausdorff topological
space has been introduced by Good and Maćıas in [17]. They have also given
the Hausdorff and uniform version of h-shadowing. It has been proved that
these versions coincide in compact Hausdorff space and are equivalent to the
metric definitions in compact metric spaces. The Hausdorff and uniform version
of shadowing and h-shadowing are given below.

Definition ([17]). Let (X, f) be a dynamical system on a Hausdorff space X.
Let x, y ∈ X be two points and let {x0 = x, x1, . . . , xn = y} be a finite sequence
in X.

i) If A is a finite open cover of X, then {x0, x1, . . . , xn} is said to be an
A -chain from x to y of length n if for each i ∈ {0, 1, . . . , n − 1}, we
have {f(xi), xi+1} ⊂ Aj for some Aj ∈ A . An A -pseudo orbit is an
infinite A -chain.

ii) Let A , B be finite open covers of X, we say that a B-pseudo orbit
{xi}i∈Z+

in X is A -shadowed by a point y ∈ X if for each i ∈ Z+, we

have {f i(y), xi} ⊂ Aj for some Aj ∈ A .

Definition ([17]). A dynamical system (X, f) on a Hausdorff space X is said
to have

a) Hausdorff shadowing property if for every finite open cover A of X,
there exists a finite open cover B of X such that every B-pseudo orbit
is A -shadowed by some point in X.

b) Hausdorff h-shadowing property if for every finite open cover A of X,
there exists a finite open cover B of X such that for every B-chain
{x0, x1, . . . , xm} there exists a point y ∈ X such that {f i(y), xi} ⊂ Aj
for each i ∈ {0, 1, 2, . . . ,m− 1}, for some Aj ∈ A and fm(y) = xm.

Definition ([17]). Let (X, f) be a dynamical system on a uniform space
(X,U ). Let x, y ∈ X be two points and let {x0 = x, x1, . . . , xn = y} be a
finite sequence in X.

i) If D ∈ U is an entourage, then {x0, x1, . . . , xn} is said to be a D-chain
from x to y of length n if (f(xi), xi+1) ∈ D for any i ∈ {0, 1, 2, . . .,
n− 1}. A D-pseudo orbit is an infinite D-chain.
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ii) Let D,E ∈ U be entourages of X. We say that a D-pseudo orbit
{xi}i∈Z+

is E-shadowed by a point y ∈ X if (f i(y), xi) ∈ E for all
i ∈ Z+.

Definition ([17]). A dynamical system (X, f) on a Hausdorff uniform space
(X,U ) is said to have

a) uniform shadowing property if for every entourage E ∈ U , there exists
an entourage D ∈ U such that every D-pseudo orbit is E-shadowed
by some point in X.

b) uniform h-shadowing property if for every entourage E ∈ U , there ex-
ists an entourage D ∈ U such that for every D-chain {x0, x1, . . . , xm}
there exists a point y ∈ X such that (f i(y), xi) ∈ E for each i ∈
{0, 1, 2, . . . ,m− 1} and fm(y) = xm.

The notion of equicontinuity has been studied in various approaches (see
[6, 19–21]). In [26], Wang introduced the notions of Hausdorff equicontinuity
and uniform equicontinuity which are given below:

Definition ([26]). Let (X, f) be a dynamical system.

a) (X, f) is said to be Haudorff equicontinuous if for every finite open
cover A of X, there exists a finite open cover B of X such that
whenever {x, y} ⊂ B for some B ∈ B and for each n ≥ 0 we have
{fn(x), fn(y)} ⊂ A for some A ∈ A .

b) Suppose X is a uniform space. Then, (X, f) is said to be uniformly
equicontinuous if for every symmetric entourage E ∈ U , there exists
a symmetric entourage D ∈ U such that (fn(x), fn(y)) ∈ E for all
n ≥ 0 whenever (x, y) ∈ D.

Wang [26] has shown that these definitions coincide in compact Hausdorff
spaces and are equivalent to the standard definition in compact metric spaces.
Also, we use the concept of Lebesgue number in the proofs of various results
and Example 3.7. Suppose X is a metric space and A is an open cover of X.
A number δ > 0 is said to be a Lebesgue number of A if every subset of X
with diameter less than δ is a subset of some member of A .

3. Theorems

The notion of positive expansivity was extended to uniform spaces by Das
et al. in [12]. It has been extended to Hausdorff topological spaces by Good
and Maćıas in [17]. In Theorem 3.1, we show that these two approaches are
equivalent in compact Hausdorff spaces and further they are equivalent to the
standard definition in compact metric spaces.

Definition. Let (X, f) be a dynamical system.

(1) (X, f) is said to be Hausdorff positively expansive if there exists a finite
cover A such that for any pair of distinct points x, y ∈ X, there is n ≥ 0
such that {fn(x), fn(y)} * A for any A ∈ A . Such an open cover A
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is called a Hausdorff positive expansivity cover for f . Equivalently, if
for all n ≥ 0, we have {fn(x), fn(y)} ⊆ A for any A ∈ A , then x = y.

(2) Suppose X is a uniform space. (X, f) is said to be uniform positively
expansive if there exists an entourage E ∈ U such that for any pair of
distinct points x, y ∈ X, there is n ≥ 0 such that (fn(x), fn(y)) /∈ E.
Such an entourage E is called a uniform positive expansivity entourage
for f . Equivalently, if for all n ≥ 0, we have (fn(x), fn(y)) ∈ E for any
E ∈ U , then x = y.

(3) Suppose X is a metric space. (X, f) is said to be positively expansive
if there exists a constant ε > 0 such that for any pair of distinct points
x, y ∈ X, there is n ≥ 0 such that d(fn(x), fn(y)) > ε. Such a constant
ε is called a positive expansivity constant for f . Equivalently, if for all
n ≥ 0 and for any ε > 0, we have d(fn(x), fn(y)) ≤ ε, then x = y.

Theorem 3.1. Let (X, f) be a dynamical system, where X is a compact Haus-
dorff space. Then the following statements are equivalent:

(i) (X, f) is Hausdorff positively expansive.
(ii) (X, f) is uniform positively expansive.

If X is metric, then (i) and (ii) are equivalent to
(iii) (X, f) is positively expansive.

Proof. (i) =⇒ (ii). Assume that (i) holds. Let A be a Hausdorff positive
expansivity cover for f . Since X is compact, we have

⋃
A∈A A × A = E ∈ U

(by [17, Lemma 2.6]). From (i), for any pair of distinct points x, y ∈ X, there
exists n ≥ 0 such that {fn(x), fn(y)} * A for any A ∈ A which implies
that (fn(x), fn(y)) /∈ A × A for any A ∈ A . It follows that (fn(x), fn(y)) /∈⋃
A∈A A×A = E. This proves (ii).
(ii) =⇒ (i). Assume that (ii) holds. Let E ∈ U be a uniform positive

expansivity entourage for f . Then, for any pair of distinct points x, y ∈ X,
there is n ≥ 0 such that (fn(x), fn(y)) /∈ E. Let D ∈ U be a symmet-
ric entourage such that D2 ⊂ E. {intXD[z] : z ∈ X} is an open cover
of X. Since X is compact, there exist z1, z2, . . . , zm in X such that A =
{intXD[z1], intXD[z2], . . . , intXD[zm]} is a finite open cover of X. If pos-
sible, assume that {fn(x), fn(y)} ⊂ intXD[zj ] for some j ∈ {1, 2, . . . ,m}.
Then, {fn(x), fn(y)} ⊂ D[zj ] which implies that (fn(x), fn(y)) ∈ D2 ⊂ E.
This is a contradiction. Therefore, {fn(x), fn(y)} * intXD[zj ] for any j ∈
{1, 2, . . . ,m}. Thus, (i) holds.

For the rest of the proof, let us assume that X is a metric space.
(i) =⇒ (iii). Suppose (i) holds. Let A be a Hausdorff positive expansivity

cover for f . Then, for any pair of distinct points x, y ∈ X, there exists n ≥ 0
such that {fn(x), fn(y)} * A for any A ∈ A . Let ε > 0 be a Lebesgue number
for A . Then, fn(x) /∈ B(fn(y), ε). It follows that d(fn(x), fn(y)) > ε. Thus,
(iii) holds.

(iii) =⇒ (i). Suppose (iii) holds. Let ε > 0 be the positive expansiv-
ity constant for f . Now, for any pair of distinct points x, y ∈ X, there
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is n ≥ 0 such that d(fn(x), fn(y)) > ε. {B(z, ε2 ) : z ∈ X} is an open
cover of X. Since X is compact, there exist z1, z2, . . . , zm such that A =
{B(z1,

ε
2 ), B(z2,

ε
2 ), . . . , B(zm,

ε
2 )} is a finite open cover of X. Suppose, if pos-

sible {fn(x), fn(y)} ⊂ B(zj ,
ε
2 ) for some j ∈ {1, 2, . . . ,m}. It follows that

d(fn(x), fn(y)) < ε. This is a contradiction. Therefore, {fn(x), fn(y)} *
B(zj ,

ε
2 ) for j ∈ {1, 2, . . . ,m}. This proves (i). �

In Example 3.2, we consider a system which is positively expansive but
not Hausdorff positively expansive on a non-compact space. We also verify
that positive expansivity, uniform positive expansivity and Hausdorff positive
expansivity are equivalent on compact spaces in Example 3.3.

Example 3.2. Let X = R with the usual metric topology. Let f : X → X be
defined by f(x) = 2x. Then, f is positively expansive and but not Hausdorff
positively expansive.

Proof. f is positively expansive (see [22, Example 7]). Now, we show that f
is not Hausdorff positively expansive. For any finite open cover A of R, we
can find some M > 0 such that (M,∞) ∈ A . Let x, y ∈ X be two distinct
points. Suppose both x and y are positive, then limn→∞ fn(x) = ∞ and
limn→∞ fn(y) =∞. So, there exists n ≥ 0 such that {fn(x), fn(y)} ⊂ (M,∞).
Therefore, f is not Hausdorff positively expansive. �

Example 3.3. Let X = [0, 1]/{1 ∼ 0} with distance d, where d(x, y) =
min{|x− y|, 1− |x− y|}. Let f : X → X be the doubling map defined by

f(x) =

{
2x, if 0 ≤ x < 1

2 ,

2x− 1, if 1
2 ≤ x < 1.

Then, f is positively expansive, uniform positively expansive and Hausdorff
positively expansive.

Proof. It is clear that f is positively expansive. Next, we show that f is uniform
positively expansive. From the definition, d(f(x), f(y)) = 2d(x, y) if d(x, y) <
1
4 . Let E = {(x, y) ∈ X × X : d(x, y) < 1

4}. Then, E is an entourage of X.
Let x, y ∈ X be a pair of distinct points. If (x, y) /∈ E, then we are done. If
not, then d(f(x), f(y)) = 2d(x, y). If (f(x), f(y)) /∈ E, then we are done. If
not, then d(f2(x), f2(y)) = 22d(x, y). Continuing, we can find some n > 0
such that (fn(x), fn(y)) /∈ E. Hence, f is uniform positively expansive with
uniform positive expansivity entourage E.

Lastly, we show that f is Hausdorff positively expansive. We have, A =
{[0, 18 )∪ ( 7

8 , 1], ( 1
10 ,

7
20 ), ( 3

10 ,
11
20 ), ( 1

2 ,
3
4 ), ( 7

10 ,
19
20 )} is a finite open cover of X. Let

x, y ∈ X be a pair of distinct points.
Case (i): Let x, y ∈ A be a pair of distinct points, where A ∈ A . Then,

d(x, y) < 1
4 . This implies that d(fn(x), fn(y)) > 1

4 for some n > 0 as d(x, y) 6=
0. Thus, for some n > 0, we have {fn(x), fn(y)} * A for any A ∈ A .

Case (ii): Let x ∈ Ap, y ∈ Aq for some Ap, Aq ∈ A .
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(a) If x, y /∈ Ap ∩Aq, then {x, y} * A for any A ∈ A .
(b) If x, y ∈ Ap ∩ Aq, then d(x, y) < 1

4 . By (i) for some n > 0, we have
{fn(x), fn(y)} * A for any A ∈ A . Thus, for any pair of distinct points
x, y ∈ X, there exists some n ≥ 0 such that {fn(x), fn(y)} * A for any
A ∈ A . Hence, f is Hausdorff positively expansive with Hausdorff positive
expansivity cover A . �

In [12, Proposition 3.5], it is proved that a topologically positive expansive
dynamical system (X, f) on a uniform space X with a uniform shadowing
property has uniform h-shadowing. We extend this result on a Hausdorff space.

Theorem 3.4. Let (X, f) be a Hausdorff positively expansive dynamical sys-
tem. If (X, f) has a Hausdorff shadowing property, then (X, f) has Hausdorff
h-shadowing.

Proof. Let A be a Hausdorff positive expansivity cover for f . Since (X, f)
has a Hausdorff shadowing property, there exists a finite open cover B of
X such that any B-pseudo orbit is A -shadowed by some point in X. Let
{x0, x1, . . . , xn} be a B-chain. Then, it can be extended to a B-pseudo orbit
{x0, x1, . . . , xn, f(xn), f2(xn), . . .}. If z ∈ X A -shadows this B-pseudo orbit,
then for each i, we have {f i(z), xi} ⊂ A for some A ∈ A . In particular, for
each j ≥ 0 , we have {f j(fn(z)), f j(xn)} ⊂ A for some A ∈ A . Since A is a
Hausdorff positive expansivity cover for f , we have fn(z) = xn. Hence, (X, f)
has Hausdorff h-shadowing. �

In [8, Theorem 6.1], it has been proved that if (X, d) is a compact metric
space and f : X → X is a homeomorphism, then f has h-shadowing if and
only if f has shadowing and f−1 is equicontinuous. In the following, we extend
this result in compact Hausdorff uniform spaces.

Theorem 3.5. Let (X,U ) be a compact Hausdorff uniform space and f : X →
X a homeomorphism. Then f has uniform h-shadowing if and only if f has
uniform shadowing and f−1 is uniformly equicontinuous.

Proof. First, suppose f has uniform h-shadowing. Then, f has uniform shad-
owing. Let E ∈ U be a symmetric entourage and let D ∈ U be an entourage
which satisfies the definition of h-shadowing with respect to E. Without loss
of generality, we assume that D ⊂ E. Since D ∈ U , there exists a symmet-
ric entourage V ∈ U such that V 2 ⊂ D. Let x, y be two points such that
(x, y) ∈ V . For n > 0, {f−n(x), f−n+1(x), . . . , f−1(x), y} is a V -chain. It
follows that {f−n(x), f−n+1(x), . . . , f−1(x), y} is a D-chain. By h-shadowing,
there is z ∈ X such that (f i(z), f−n+i(x)) ∈ E for i ∈ {0, 1, 2, . . . , n − 1} and
fn(z) = y. It follows that (f−n(y), f−n(x)) ∈ E for all n ≥ 0. Thus, f−1 is
equicontinuous.

Conversely, let us assume that f has uniform shadowing and f−1 is uniformly
equicontinuous. Let E be an entourage and D a symmetric entourage such
that D2 ⊂ E. Let V be a symmetric entourage which satisfies the definition of
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equicontinuity with respect to D. Without loss of generality, we assume that
V ⊂ D. By shadowing, there exists an entourage U such that every U -pseudo
orbit is V -shadowed by some point in X. Let {x0, x1, . . . , xn} be a U -chain in
X. Then, it can be extended to a U -pseudo orbit {x0, x1, . . . , xn, f(xn), f2(xn),
· · · }. If z ∈ X V -shadows this U -pseudo orbit, then (f i(z), xi) ∈ V for all i ≥ 0.
By equicontinuity of f−1, (f−i(xn), f−i(fn(z))) ∈ D for all i ≥ 0. Put y =
f−n(xn), then for i < n, (f i(y), f i(z)) = (f−(n−i)(xn), f−(n−i)(fn(z))) ∈ D.
It follows that (f i(y), xi) ∈ D2 ⊂ E for i < n and fn(y) = xn. Hence f has
uniform h-shadowing. �

The following result shows that Hausdorff shadowing property is indepen-
dent of the equivalent metric and the compatible uniformity, i.e., it is preserved
by the topological conjugacy. Similar proofs for other dynamical notions are
given in Appendix (Section 4).

Theorem 3.6. Let (X, f) and (Y, g) be two topologically conjugated dynamical
systems. Then f has Hausdorff shadowing property if and only if g does.

Proof. Let h : X → Y be a conjugacy. First suppose f has Hausdorff shadowing
property. Let A be a finite open cover of Y . h−1(A ) = {h−1(A) : A ∈ A }
is a finite open cover of X. Therefore, there exists a finite open cover B of
X such that every B-pseudo orbit is h−1(A )-shadowed by some point in X.
h(B) = {h(B) : B ∈ B} is a finite open cover of Y . Let {y0, y1, y2, . . .} be a
h(B)-pseudo orbit. Then, for all i ≥ 0, {g(yi), yi+1} ⊂ h(B) for some h(B) ∈
h(B). It follows that g(yi) ∈ h(B) and h−1(g(yi)) ∈ B. Now f(h−1(yi)) ∈ B
and h−1(yi+1) ∈ B, therefore {f(h−1(yi)), h

−1(yi+1)} ⊂ B. Put xi = h−1(yi)
for all i ≥ 0, then, {x0, x1, x2, . . .} is a B-pseudo orbit. Therefore, there exists
a point x ∈ X such that for all i ≥ 0, we have {f i(x), xi} ⊂ h−1(A) for some
h−1(A) ∈ h−1(A ). It follows that h(f i(x)) ∈ A and gi(h(x)) ∈ A. Also
h(xi) ∈ A, so for all i ≥ 0, we have {gi(h(x)), yi} ⊂ A for some A ∈ A . Thus,
g has Hausdorff shadowing property. Similarly, we can prove the converse part.
Hence, f has Hausdorff shadowing property if and only if g does. �

We know that different metrics give rise to different uniformities. In Exam-
ples 3.7 and 3.9, we give examples of dynamical systems verifying that Haus-
dorff shadowing is independent of the equivalent metric whereas uniform shad-
owing and standard shadowing are dependent on the uniformity and metric,
respectively.

Example 3.7. Let X = (0, a), a > 0 with the usual metric. Let f : X → X be
defined by f(x) = kx, 0 < k < 1

2 . Then f has shadowing, uniform shadowing
and Hausdorff shadowing property.

To prove this example we need the following result.

Proposition 3.8. Every finite cover of an interval of R has a Lebesgue number.
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Proof. Let X be an interval of R and let a, b ∈ R.
Case (I). Let X = [a, b]. Then we are done.
Case (II). Let X = (a, b). Let A be a finite open cover of X. Let A ′ =

{A1, A2, . . . , An} be a finite subcover of least cardinality n in their natural
order. Let B = {Ap ∩ Aq : Ap ∩ Aq 6= φ where Ap, Aq ∈ A ′}. Let λ(B) =
{z ∈ λ(B) : B ∈ B}, where λ(B) denotes the boundary of B. Let ε =
min{d(x, y) : x, y ∈ B} and let δ = ε

4 . Now, we show that δ is a Lebesgue
number of A . We have, X is a totally bounded subset of R, therefore, there
exist points x1, x2, . . . , xm such that X ⊆

⋃m
i=1B(xi, δ). Let E ⊂ X be such

that diam(E) < δ. Let p ∈ E be a fixed point. Then p ∈ B(xi, δ) for some
i ∈ {1, 2, . . . ,m}. Let q ∈ E be any point. Then, d(xi, q) ≤ d(xi, p) + d(p, q) <
2δ < ε

2 . This implies that

(1) E ⊂ B
(
xi,

ε

2

)
.

Now, we claim that for any x ∈ X, there exists some 1 ≤ j ≤ n such
that B(x, ε2 ) ⊆ Aj . To prove this claim, we consider two cases x ∈ λ(B)
and x ∈ X − λ(B). For the first case, as x ∈ λ(B), x ∈ λ(Ap) for some
1 ≤ p ≤ n. This implies that either x ∈ Ap−1 or x ∈ Ap+1. Let y, y′ ∈ Ap be
such that y ∈ λ(Ap+1) and y′ ∈ λ(Ap−1). If x ∈ Ap+1, then d(x, y) > ε

2 , so
B(x, ε2 ) ⊆ Ap+1. Similarly, B(x, ε2 ) ⊆ Ap−1 if x ∈ Ap−1. For the second case,
three subcases arises.

Subcase (a). x ∈ Ap ∩ Ap+1, p = 1, 2, . . . , n − 1. Let y ∈ λ(Ap) and y′ ∈
λ(Ap+1) be such that y, y′ ∈ λ(Ap ∩ Ap+1). If d(x, y) < ε

2 , then d(x, y′) > ε
2 .

So, B(x, ε2 ) ⊆ Ap+1. If not, d(x, y) > ε
2 , therefore, B(x, ε2 ) ⊆ Ap.

Subcase (b). x ∈ (Ap−Ap+1)∩(Ap−Ap−1), p = 2, . . . , n−1. Then, x ∈ Ap.
Let y ∈ λ(Ap). Then, obviously, d(x, y) > ε

2 . Therefore, B(x, ε2 ) ⊆ Ap.
Subcase (c). x ∈ A1 − A2 or x ∈ An − An−1. By similar reasoning as in

Subcase (b), we have B(x, ε2 ) ⊆ A1 or B(x, ε2 ) ⊆ An. Thus, for any x ∈ X,
there exists some j ∈ {1, 2, . . . , n} such that B(x, ε2 ) ⊆ Aj . From (1) we have,
E ⊂ B(xi,

ε
2 ) ⊆ Aj for some j ∈ {1, 2, . . . , n}. Thus, δ is a Lebesgue number

of A with respect to X.
Case (III). Let X = (a,∞). Let A be a finite open cover of X. There

exists N ∈ R such that (N,∞) ∈ A . Let M ∈ R be the greatest real number
such that (M,∞) ∈ A . Let A ′ = {A1, A2, . . . , An} be a finite subcover of
least cardinality n in their natural order such that An = (M,∞). There exists
(b, c) = A ∈ A ′ such that b < M < c. Also, A is a finite open cover of (a, c).
By Case (II), there exists a Lebesgue number of A with respect to (a, c), say
δ. We claim that δ is a Lebesgue number of A with respect to (a,∞). Let
E ⊂ X be such that diam(E) < δ. If E ⊂ (a, c), then there exists some A ∈ A
such that E ⊂ A. If not, E ⊂ (M,∞). Thus, δ is a Lebesgue number of A
with respect to X.

Case (IV). Let X = (−∞, a). If A is any finite open cover of X, then by
proceeding as in Case (III), we can find a Lebesgue number of A . �
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One can easily deduce that every finite open cover of R has a Lebesgue
number. Now, we give the proof of Example 3.7.

Proof. Let ε > 0 and δ = kε. Let {x0, x1, x2, . . .} be a δ-pseudo orbit. By
induction, we show that x = x0 ε-shadows this δ-pseudo orbit. For i = 0,
it is done. Let us assume that d(f i(x), xi) < ε. Then, d(f i+1(x), xi+1) =
|ki+1x − xi+1| ≤ |ki+1x − kxi| + |kxi − xi+1| < kε + δ < ε. Thus, f has
shadowing property.

Now, we show that f has uniform shadowing property. Let Uε = {(x, y) :
|x− y| < ε} be an entourage of X, where ε > 0. Let δ = kε, then Uδ = {(x, y) :
|x−y| < δ} is an entourage of X. Let {x0, x1, x2, . . .} be a Uδ-pseudo orbit. By
induction, we show that x = x0 Uε-shadows this Uδ-pseudo orbit. For i = 0, it
is obvious. Let us assume that (f i(x), xi) ∈ Uε. Then, |ki+1x−xi+1| ≤ |ki+1x−
kxi|+ |kxi + xi+1| < kε+ δ < ε. Therefore, (f i+1(x), xi+1) ∈ Uε. Thus, f has
uniform shadowing property. Lastly, we show that f has Hausdorff shadowing
property. Let A be a finite open cover of X, and let ε > 0 be a Lebesgue
number of A . Since f has shadowing property, there exists δ > 0 such that any
δ-pseudo orbit {x0, x1, . . .} is ε-shadowed by x = x0. Now, X = (0, a) =

(
0, δ2
)
∪[

δ
2 , a−

δ
2

]
∪
(
a− δ

2 , a
)
. We have,

{
B(y, δ2 ) : y ∈ [ δ2 , a−

δ
2 ]
}

is an open cover of[
δ
2 , a−

δ
2

]
. Since it is compact, there exist finite number of points y1, y2, . . . , ym

in
[
δ
2 , a−

δ
2

]
such that

{
B(y1,

δ
2 ), B(y2,

δ
2 ), . . . , B(ym,

δ
2 )
}

is a finite open cover

of
[
δ
2 , a−

δ
2

]
. Then, B =

{
(0, δ2 ), B(y1,

δ
2 ), B(y2,

δ
2 ), . . . , B(ym,

δ
2 ), (a− δ

2 , a)
}

is a finite open cover of X. Let {x0, x1, . . .} be a B-pseudo orbit. Then,
for all i ≥ 0, we have {f(xi), xi+1} ⊂ B for some B ∈ B. It follows that
|f(xi)− xi+1| < δ and |f i(x)− xi| < ε, therefore {f i(x), xi} ⊂ A for all i ≥ 0,
for some A ∈ A . Hence, f has Hausdorff shadowing property. �

Example 3.9. Let X = (0, a), a > 0 with the inverse metric d defined as
d(x, y) = | 1x −

1
y |. Let f : X → X be defined by f(x) = kx, 0 < k < 1

2 . Then,

f doesn’t have shadowing and uniform shadowing property.

Proof. First, we show that f doesn’t have shadowing property. Let ε > 0.
Suppose if possible, let δ > 0 be such that every δ-pseudo orbit is ε-shadowed by
some point x in X. Let {x0, x1, x2, . . .} be a δ-pseudo orbit. By our assumption,
d(f i(x), xi) < ε ∀i ≥ 0. But, as i → ∞, f i(x) = kix → 0. So, d(f i(x), xi) =
| 1
fi(x) −

1
xi
| → ∞ as i→∞ which is a contradiction. Therefore, f doesn’t have

shadowing property.
Now, we show that f doesn’t have uniform shadowing property. Let Uε =

{(x, y) : | 1x −
1
y | < ε} be an entourage of X where ε > 0. Suppose if possible,

there exists an entourageD ofX such that everyD-pseudo orbit is Uε-shadowed
by some point x in X. Let {x0, x1, x2, . . .} be a D-pseudo orbit. By our
assumption, (f i(x), xi) ∈ Uε ∀i ≥ 0. But as i → ∞, | 1

fi(x) −
1
xi
| → ∞.

Therefore, (f i(x), xi) /∈ Uε as i→∞. Thus, f doesn’t have uniform shadowing
property. We know that the identity function id : X → X from the usual
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metric onto the inverse metric is a conjugacy between (X, f) (X with usual
metric) and (X, f) (X with inverse metric). Moreover every finite open cover
of X with respect to usual metric is a finite open cover with respect to inverse
metric and vice versa. Therefore (X, f) (X with inverse metric) has Hausdorff
shadowing. �

In [10], Brian has explicitly defined the notion of chain transitivity in terms of
open covers. Also, Ahmadi introduced the concept of uniform chain transitivity
in [1]. Here, we show that these definitions coincide in compact Hausdorff
spaces and are equivalent to the standard definition in compact metric spaces.
We also show that uniform chain transitivity is invariant under a topological
conjugacy.

Definition. Let (X, f) be a dynamical system. Let x, y ∈ X be two points.

(1) f is said to be Hausdorff chain transitive if for any finite open cover A
of X, there exists an A -chain from x to y.

(2) Suppose X is a uniform space, then f is said to be uniformly chain
transitive if for any entourage D ∈ U , there exists a D-chain from x
to y.

(3) Suppose X is a metric space, then f is said to be chain transitive if for
any δ > 0, there exists a δ-chain from x to y.

Definition. Let (X, f) be a dynamical system. Let x, y ∈ X be two points.

(1) f is said to be Hausdorff chain mixing if for any finite open cover A
of X, there exists a positive integer N such that for all n > N , there
exists an A -chain from x to y of length exactly n.

(2) Suppose X is a uniform space, then f is said to be uniformly chain
mixing if for any entourage D ∈ U , there exists a positive integer N
such that for all n > N , there exists a D-chain from x to y of length
exactly n.

(3) Suppose X is a metric space, then f is said to be chain mixing if for
any δ > 0, there exists a positive integer N such that for all n > N ,
there exists a δ-chain from x to y of length exactly n.

Theorem 3.10. Let (X, f) be a dynamical system, where X is a compact
Hausdorff space. Then the following statements are equivalent:

(i) f is Hausdorff chain transitive.
(ii) f is uniformly chain transitive.

If X is metric, then (i) and (ii) are equivalent to
(iii) f is chain transitive.

Proof. (i) =⇒ (ii). Let E ∈ U be an entourage and x, y ∈ X be two points. Let
D ∈ U be a symmetric entourage such thatD2 ⊂ E. Then, {intXD[z] : z ∈ X}
is an open cover of X. Since X is compact, there are finite points z1, z2, . . . , zm
such that {intXD[z1], intXD[z2], . . . , intXD[zm]} is a finite cover of X. By (i),
there exists a finite sequence {x0 = x, x1, . . . , xn = y} such that for each i ∈
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{0, 1, . . . , n−1}, we have {f(xi), xi+1} ⊂ intXD[zj ] for some j ∈ {1, 2, . . . ,m}.
It follows that (f(xi), xi+1) ∈ D2 ⊂ E for each i ∈ {0, 1, . . . , n− 1}. Hence (ii)
holds true.

(ii) =⇒ (i). Let A = {A1, A2, . . . , At} be a finite cover of X and let x, y ∈ X
be two points. Then,

⋃t
q=1Aq × Aq = E ∈ U (by [17, Lemma 2.6]). By (ii),

there exists a finite sequence {x0 = x, x1, . . . , xn = y} such that (f(xi), xi+1) ∈
E for each i ∈ {0, 1, . . . , n− 1}. This implies that for each i ∈ {0, 1, . . . , n− 1},
there exists some q ∈ {1, 2, . . . , t} such that (f(xi), xi+1) ∈ Aq ×Aq. It follows
that {f(xi), xi+1} ⊂ Aq. Hence (i) holds true.

For the rest of the proof, let us assume that X is a metric space.
(i) =⇒ (iii). Let ε > 0. Let x, y ∈ X be two points. The collection {B(z, ε2 ) :

z ∈ X} is an open cover of X. Since X is compact, there exists a finite set
{z1, z2, . . . , zm} such that A = {B(z1,

ε
2 ), B(z2,

ε
2 ), . . . , B(zm,

ε
2 )} is a finite

open cover of X. By (i), there exists a finite sequence {x0 = x, x1, . . . , xn = y}
such that for each i ∈ {0, 1, . . . , n − 1}, we have {f(xi), xi+1} ⊂ B(zj ,

ε
2 ) for

some j ∈ {1, 2, . . . ,m} . It follows that d(f(xi), xi+1) < ε. Hence (iii) holds
true.

(iii) =⇒ (i). Let A be a finite open cover of X. Let x, y ∈ X be two
points. Let ε > 0 be a Lebesgue number for A . By (iii), there exists a
finite sequence {x0 = x, x1, . . . , xn = y} such that d(f(xi), xi+1) < ε for each
i ∈ {0, 1, . . . , n− 1}. It follows that f(xi) ∈ B(xi+1, ε) ⊂ Aj for some Aj ∈ A .
Hence (i) holds true. �

Corollary 3.11. Let (X, f) be a dynamical system, where X is a compact
Hausdorff space. Then the followings are equivalent:

(i) f is Hausdorff chain mixing.
(ii) f is uniformly chain mixing.

If X is metric, then (i) and (ii) are equivalent to
(iii) f is chain mixing.

Theorem 3.12. Let (X, f) and (Y, g) be two conjugated dynamical systems,
where (X,U ) and (Y,V ) are compact Hausdorff uniform spaces. Then f is
uniformly chain transitive if and only if g does.

Proof. Let h : X → Y be a topological conjugacy. First, suppose f is uniformly
chain transitive. Let E ∈ V be an entourage. Let x, y be two points in Y . Since
h is uniformly continuous, there exists an entourage D ∈ U such that for any
u, v ∈ X,

(2) (u, v) ∈ D =⇒ (h(u), h(v)) ∈ E.

Let {x0 = h−1(x), x1, . . . , xn−1, xn = h−1(y)} be a D-chain from h−1(x) to
h−1(y) for f . Then, (f(xi), xi+1) ∈ D for all i ∈ {0, 1, 2, . . . , n − 1}. By (2),
(h(f(xi)), h(xi+1)) ∈ E which implies that (g(h(xi)), h(xi+1)) ∈ E for all i ∈
{0, 1, 2, . . . , n − 1}. It follows that (g(x), h(x1)) ∈ E and (g(h(xn−1)), y) ∈ E.
Put yi = h(xi) for i = 0, 1, 2, . . . , n. It follows that {y0 = x, y1, . . . , yn = y} is
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an E-chain from x to y for g. Hence g is uniformly chain transitive. Similarly,
we can prove the converse part. �

Corollary 3.13. Let (X, f) and (Y, g) be two conjugated dynamical systems,
where (X,U ) and (Y,V ) are compact Hausdorff uniform spaces. Then f is
uniformly chain mixing if and only if g does.

The notion of uniform rigidity is defined in terms metric but there are def-
initions of uniform rigidity in terms of open cover and uniformity. Here, we
give the definitions of uniform rigidity in terms of open cover for Hausdorff
topological spaces and in terms of entourages for uniform spaces. In Theorem
3.14, we show that these two approaches are equivalent in compact Hausdorff
spaces while both are equivalent to the standard definition in compact metric
spaces.

Definition. Let (X, f) be a dynamical system.

(1) The system (X, f) is said to be Hausdorff uniformly rigid, if for any
finite open cover A , there exists a positive integer n such that for each
x ∈ X, there exists A ∈ A such that {x, fn(x)} ⊆ A.

(2) Suppose X is a uniform space. The system (X, f) is said to be Uniform
uniformly rigid if for each entourage E ∈ U , there exists n ≥ 1 such
that (x, fn(x)) ∈ E, ∀ x ∈ X.

(3) Suppose X is a metric space. The system (X, f) is uniformly rigid if
for each ε > 0, there exists n > 0 such that d(x, fn(x)) < ε, ∀ x ∈ X.

Theorem 3.14. Let (X, f) be a dynamical system, where X is a compact
Hausdorff space. Then the following statements are equivalent:

(i) (X, f) is Hausdorff uniformly rigid.
(ii) (X, f) is Uniform uniformly rigid.

If X is metric, then (i) and (ii) are equivalent to
(iii) (X, f) is uniformly rigid.

Proof. (i) =⇒ (ii). Let (X, f) be a Hausdorff uniformly rigid dynamical system.
Let E ∈ U be an entourage. Let D be a symmetric entourage such that D2 ⊂
E. Then {intXD[z] : z ∈ X} is an open cover for X. Since X is compact, there
are finite points z1, z2, . . . , zm such that {intXD[z1], intXD[z2], . . . , intXD[zm]}
is a finite open cover ofX. Since (X, f) is Hausdorff uniformly rigid, there exists
a positive integer n such that for each x ∈ X, we have {x, fn(x)} ⊂ intXD[zi]
for some i ∈ {0, 1, . . . ,m}. It follows that (x, fn(x)) ∈ E for all x ∈ X. Hence
(ii) holds true.

(ii) =⇒ (i). Suppose (X, f) is Uniform uniformly rigid. Let A = {A1, A2,

. . . , At} be a finite open cover of X. Now
⋃t
q=1(Aq × Aq) = E ∈ U (by [17,

Lemma 2.6]). Since (X, f) is Uniform uniformly rigid, there exists a positive
integer n such that (x, fn(x)) ∈ E , ∀ x ∈ X. It follows that for each x ∈ X,
there exists some q such that {x, fn(x)} ⊂ Aq. Hence (i) holds true.

For the rest of the proof, let us assume that X is a metric space.
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(i) =⇒ (iii). Suppose (X, f) is Hausdorff uniformly rigid. Let ε > 0.
Consider the open cover {B(x, ε2 ) : x ∈ X}. Since X is compact, there ex-
ists a finite set {z1, z2, . . . , zm} such that

⋃m
i=1B(zi, ε) = X. Then, A =

{B(z1,
ε
2 ), . . . , B(zm,

ε
2 )} is a finite open cover of X. By (i) there exists a pos-

itive integer n such that for each x ∈ X, we have {x, fn(x)} ⊆ B(zi,
ε
2 ) for

some i ∈ {0, 1, . . . ,m}. It follows that d(x, fn(x)) < ε for all x ∈ X. Hence
(iii) holds true.

(iii) =⇒ (i). Assume that (X, f) is uniformly rigid. Let A be a finite open
cover of X. There exists ε > 0 such that for each x ∈ X, we have B(x, ε2 ) ⊂ A
for some A ∈ A . By (iii), there exists n ≥ 0 such that fn(x) ∈ B(x, ε2 ) for
all x ∈ X. It follows that for each x ∈ X, there exists some A ∈ A such that
{x, fn(x)} ⊆ A. Hence (i) holds true. �

In [18, Theorem 2.33], it is shown that a point transitive, uniformly equicon-
tinuous system on a compact metric space is uniformly rigid. In the following
Theorem 3.15, we are extending the result on compact Hausdorff uniform space.

Theorem 3.15. Let (X, f) be a point transitive, uniformly equicontinuous
system on a compact Hausdorff space X. Then (X, f) is Uniform uniformly
rigid.

Proof. Let x ∈ X be a transitive point and U ∈ U be any entourage, where
U is the unique uniformity in X whose uniform topology is the topology of
X. Let V ∈ U be a symmetric entourage such that V 3 ⊂ U . Let W ⊂ V be
a symmetric entourage which satisfies the definition of uniform equicontinuity
with respect to V . Since x is a transitive point, fn(x) ∈W [x] for some n ≥ 1.
By the definition of uniform equicontinuity

(3) (fn+m(x), fm(x)) ∈ V, ∀ m ∈ N.
We know that fn is uniformly continuous. Let D ∈ U be a symmetric en-
tourage such that D2 ⊂W and (fn × fn)(D) ⊂W .

Let y ∈ X be any point. Since x is a transitive point, there exists some
m > 0 such that fm(x) ∈ D[y]. Then,

(4) (fn+m(x), fn(y)) ∈W.
Combining equations (3) and (4) we get

(5) (fm(x), fn(y)) ∈ V ◦W.
Now,

(6) (y, fm(x)) ∈ D.
From equations (5) and (6), we get (y, fn(y)) ∈ D ◦ V ◦W ⊂ V 3 ⊂ U . Hence,
(X, f) is Uniform uniformly rigid. �

The notion of topological transitivity by its very name is a topological notion
and therefore it is independent of the compatible uniformity of the uniform
topology. Whereas, the notion of uniform chain transitivity is not a topological
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notion. It depends on the particular compatible uniformity of the uniform
topology. However the following theorem shows that topologically transitive
system on a uniform space is uniformly chain transitive with respect to any
compatible uniformity of the uniform topology.

Theorem 3.16. Let (X, f) be a topologically transitive system on a uniform
space (X,U ). Then (X, f) is uniformly chain transitive.

Proof. Let x, y be two points in X. Let E ∈ U be an entourage. Since
E ∈ U , there exists a symmetric entourage D ∈ U such that D2 ⊂ E. It
is obvious that D = ∆ ◦ D ⊂ D2 ⊂ E. Now, intXD[f(x)] and intXD[y]
are two non-empty open subsets of X. By topological transitivity, there ex-
ists n > 0 such that fn(intXD[f(x)]) ∩ intXD[y] 6= φ. There exists z ∈
intXD[f(x)] such that fn(z) ∈ intXD[y] which implies that z ∈ D[f(x)] and
fn(z) ∈ D[y]. It follows that (f(x), z) ∈ D and (fn(z), y) ∈ D. Therefore
{x, z, f(z), f2(z), . . . , fn−1(z), y} is an E-chain from x to y. Hence, (X, f) is
uniformly chain transitive. �

Here, in Theorem 3.17, we show that if (X, f) is a topologically transitive,
uniformly equicontinuous system on a Hausdorff uniform space (X,U ), then f
is a homeomorphism.

Theorem 3.17. Let (X, f) be a topologically transitive, uniformly equicon-
tinuous system on a compact Hausdorff uniform space (X,U ). Then f is a
homeomorphism.

Proof. Let f(x) = f(y). Let E ∈ U be an entourage. Let D ∈ U be a
symmetric entourage such that D3 ⊂ E. By Theorem 3.15, (X, f) is uniformly
rigid. Therefore, there exists n ≥ 1 such that (x, fn(x)) ∈ D and (y, fn(y)) ∈
D. Now, fn(x) = fn(y), it follows that (x, y) ∈ D ◦∆ ◦D ⊂ E. This implies
that (x, y) ∈ E for any E ∈ U , therefore, x = y. This shows that f is injective.
Suppose f is not surjective, then X − f(X) 6= φ. By Theorem 3.16, (X, f) is
chain transitive. Let x be a point in X − f(X) and E ∈ U an entourage such
that E[x] ⊂ X − f(X). It follows that there is no E-chain from x to itself.
This is a contradiction, therefore f is surjective. Since X is compact, f−1 is
continuous. Hence, f is a homeomorphism. �

Ruelle introduced the concept of the weak specification in [23]. The pseudo
orbital specification was introduced by Fakhari et al. in [15]. Das et al. [12]
introduced the uniform approach of weak specification and pseudo orbital speci-
fication. Here, we define the weak specification and pseudo orbital specification
in terms of open covers for Hausdorff topological spaces. We show that the open
cover approach and uniform approach are equivalent in a compact Hausdorff
space while both are equivalent to the usual definition in a compact metric
space.
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Theorem 3.18 ([14, 8.3.G]). Let X be a compact Hausdorff space and let U
be the unique uniformity of X that induces its topology. Then for every open
cover A of X, there exists V ∈ U such that C(V ) refines A .

Definition. Let (X, f) be a dynamical system.

(1) (X, f) is said to have Hausdorff pseudo orbital specification if for every
finite open cover A of X, there exist a finite open cover B of X and a
positive integer M such that for any non-negative integers a1 < b1 <
a2 < b2 < · · · < an < bn with aj+1−bj > M for j ∈ {1, 2, . . . , n−1} and
B-chains ξ1, ξ2, . . . , ξn, where ξj = {x(i,j)}aj≤i≤bj for j ∈ {1, 2, . . . , n},
there is y ∈ X such that for integers i ∈ [aj , bj ] and j ∈ {1, 2, . . . , n},
we have {f i(y), x(i,j)} ⊂ Aq for some Aq ∈ A .

(2) Suppose X is a uniform space. (X, f) is said to have uniform pseudo
orbital specification if for every entourage E ∈ A , there exist an en-
tourage D ∈ U and a positive integer M such that for any non-negative
integers a1 < b1 < a2 < b2 < · · · < an < bn with aj+1− bj > M for j ∈
{1, 2, . . . , n− 1} and D-chains ξ1, ξ2, . . . , ξn, where ξj = {x(i,j)}aj≤i≤bj
for j ∈ {1, 2, . . . , n}, there is y ∈ X such that for integers i ∈ [aj , bj ]
and j ∈ {1, 2, . . . , n}, we have (f i(y), x(i,j)) ∈ E.

(3) Suppose X is a metric space. Then, (X, f) is said to have pseudo
orbital specification if for every ε > 0, there are δ > 0 and a positive
integer M such that for any non-negative integers a1 < b1 < a2 < b2 <
· · · < an < bn with aj+1− bj > M for j ∈ {1, 2, . . . , n−1} and δ-chains
ξ1, ξ2, . . . , ξn, where ξj = {x(i,j)}aj≤i≤bj for j ∈ {1, 2, . . . , n}, there is
y ∈ X such that for integers i ∈ [aj , bj ] and j ∈ {1, 2, . . . , n}, we have
d(f i(y), x(i,j)) < ε.

Theorem 3.19. Let (X, f) be a dynamical system, where X is a compact
Hausdorff space. Then the following statements are equivalent:

(i) (X, f) has Hausdorff pseudo orbital specification.
(ii) (X, f) has uniform pseudo orbital specification.

If X is metric, then (i) and (ii) are equivalent to
(iii) (X, f) has pseudo orbital specification.

Proof. (i) =⇒ (ii). Suppose (X, f) has Hausdorff pseudo orbital specification.
Let E ∈ U be an entourage. Let D ∈ U be a symmetric entourage such that
D2 ⊂ E. Then, {intXD[z] : z ∈ X} is an open cover of X. Since X is com-
pact, there exist z1, z2, . . . , zm in X such that A = {intXD[z1], intXD[z2], . . .,
intXD[zm]} is a finite open cover of X. By (i), there exist a finite open cover
B of X and a positive integer M which satisfies the conditions of Hausdorff
pseudo orbital specification with respect to A . By Theorem 3.18, there exists
V ∈ U such that C(V ) refines B. Let a1, . . . , an, b1, . . . , bn be any non-negative
integers such that a1 < b1 < a2 < b2 < · · · < an < bn with aj+1 − bj > M for
j ∈ {1, 2, . . . , n− 1}. Let ξ1, ξ2, . . . , ξn be V -chains, where ξj = {x(i,j)}aj≤i≤bj
for j ∈ {1, 2, . . . , n}. Then, for integers i ∈ [aj , bj ] and j ∈ {1, 2, . . . , n}
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we have (f(x(i,j)), x(i+1,j)) ∈ V . Since C(V ) refines B, there exists some
Bq ∈ B such that for integers i ∈ [aj , bj ] and j ∈ {1, 2, . . . , n} we have
{f(x(i,j)), x(i+1,j)} ⊂ Bq. Therefore, ξ1, ξ2, . . . , ξn are B-chains. By (i), there
exists a point y in X such that for integers i ∈ [aj , bj ] and j ∈ {1, 2, . . . , n},
we have {f i(y), x(i,j)} ⊂ intXD[zp] for some p ∈ {1, 2, . . . ,m}. It follows that

(f i(y), x(i,j)) ∈ E. Hence (ii) holds true.
(ii) =⇒ (i). Suppose (X, f) has uniform pseudo orbital specification. Let

A = {A1, A2, . . . , At} be a finite open cover of X. Since X is compact,⋃t
q=1Aq ×Aq = E ∈ U (by [17, Lemma 2.6]). By (ii), there exist an en-

tourage D ∈ U and a positive integer M which satisfies the conditions of
uniform pseudo orbital specification with respect to E. Let V ∈ U be a
symmetric entourage such that V 2 ⊂ D. Then, {intXV [z] : z ∈ X} is an
open cover of X. Since X is compact, there exist z1, z2, . . . , zm in X such
that B = {intXV [z1], intXV [z2], . . . , intXV [zm]} is a finite open cover of X.
Let a1, . . . , an, b1, . . . , bn be any non-negative integers such that a1 < b1 <
a2 < b2 < · · · < an < bn with aj+1 − bj > M for j ∈ {1, 2, . . . , n − 1}.
Let ξ1, ξ2, . . . , ξn be B-chains where ξj = {x(i,j)}aj≤i≤bj for j ∈ {1, 2, . . . , n}.
Then, for integers i ∈ [aj , bj ] and j ∈ {1, 2, . . . , n}, we have {f(x(i,j)), x(i+1,j)}
⊂ intXV [zp] for some p ∈ {1, 2, . . . ,m} which implies that {f(x(i,j)), x(i+1,j)} ⊂
V [zp]. It follows that (f(x(i,j)), x(i+1,j)) ∈ V 2 ⊂ D. Thus, ξ1, ξ2, . . . , ξn are
D-chains. Therefore, by (ii), there exists a point y in X such that for integers
i ∈ [aj , bj ] and j ∈ {1, 2, . . . , n}, we have (f i(y), x(i,j)) ∈ E. It follows that

{f i(y), x(i,j)} ⊂ Aq for some q ∈ {1, 2, . . . , t}. Hence (i) holds true.
For the rest of the proof, let us assume that X is a metric space.
(i) =⇒ (iii). Assume that (X, f) has Hausdorff pseudo orbital specification.

Let ε > 0. Then, {B(z, ε2 ) : z ∈ X} is an open cover of X. Since X is compact,
there exist z1, z2, . . . , zm inX such that A = {B(z1,

ε
2 ), B(z2,

ε
2 ), . . . , B(zm,

ε
2 )}

is a finite open cover of X. By (i), there exist a finite open cover B and a
positive integer M which satisfies the condition of Hausdorff pseudo orbital
specification. Let δ > 0 be a Lebesgue number for B. Let a1, . . . , an, b1, . . . , bn
be non-negative integers such that a1 < b1 < a2 < b2 < · · · < an < bn with
aj+1− bj > M for j ∈ {1, 2, . . . , n− 1} and let ξ1, ξ2, . . . , ξn be δ-chains, where
ξj = {x(i,j)}aj≤i≤bj for j ∈ {1, 2, . . . , n}. Then, for integers i ∈ [aj , bj ] and
j ∈ {1, 2, . . . , n}, we have d(f(x(i,j)), x(i+1,j)) < δ. Again, as δ is a Lesbesgue
number for B, there exists p ∈ {1, 2, . . . ,m} such that {f(x(i,j)), x(i+1,j)} ⊂
B(zp,

ε
2 )}. Thus, ξ1, ξ2, . . . , ξn are B-chains. Therefore, by (i), there exists

a point y in X such that for integers i ∈ [aj , bj ] and j ∈ {1, 2, . . . , n}, we
have {f i(y), x(i,j)} ⊂ B(zp,

ε
2 ) for some p ∈ {1, 2, . . . ,m}. This implies that

d(f i(y), x(i,j)) < ε. Hence (iii) holds true.
(iii) =⇒ (i). Assume that (X, f) has pseudo orbital specification. Let A

be a finite open cover of X. Let ε > 0 be a Lebesgue number for A . By
(iii), there exist δ > 0 and a positive integer M which satisfies the conditions
of pseudo orbital specification with respect to ε. Now, {B(z, δ2 ) : z ∈ X}
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is an open cover of X. Since X is compact, there exist z1, z2, . . . , zm in X
such that B = {B(z1,

δ
2 ), B(z2,

δ
2 ), . . . , B(zm,

δ
2 )} is a finite open cover of X.

Let a1, . . . , an, b1, . . . , bn be any non-negative integers such that a1 < b1 <
a2 < b2 < · · · < an < bn with aj+1 − bj > M for j ∈ {1, 2, . . . , n − 1} and
let ξ1, ξ2, . . . , ξn be B-chains, where ξj = {x(i,j)}aj≤i≤bj for j ∈ {1, 2, . . . , n}.
Then, for integers i ∈ [aj , bj ] and j ∈ {1, 2, . . . , n}, we have {f(x(i,j)), x(i+1,j)}
⊂ B(zp,

δ
2 ) for some p ∈ {1, 2, . . . ,m}. It follows that d(f(x(i,j)), x(i+1,j)) < δ.

Thus, ξ1, ξ2, . . . , ξn are δ-chains. Therefore, by (iii), there exists a point y in X
such that for integers i ∈ [aj , bj ] and j ∈ {1, 2, . . . , n}, we have d(f i(y), x(i,j)) <

ε. It implies that f i(y) ∈ B(x(i,j), ε) ⊂ Aq for some Aq ∈ A . It follows that

{f i(y), x(i,j)} ⊂ Aq for some Aq ∈ A . Hence (i) holds true. �

Definition. Let (X, f) be a dynamical system.

(1) (X, f) is said to have Hausdorff weak specification if for every finite
open cover A of X, there exists a positive integer M such that for
any finite sequence of points x1, x2, . . . , xn in X and any non-negative
integers a1 ≤ b1 < a2 ≤ b2 < · · · < an ≤ bn with aj+1 − bj > M for
j ∈ {1, 2, . . . , n − 1}, there is y ∈ X such that for integers i ∈ [aj , bj ]
and for j ∈ {1, 2, . . . , n}, {f i(y), f i(xj)} ⊂ Aq for some Aq ∈ A .

(2) Suppose X is a uniform space, then (X, f) is said to have uniform
weak specification if for every entourage E ∈ A , there exists a positive
integer M such that for any finite sequence of points x1, x2, . . . , xn in
X and any non-negative integers a1 ≤ b1 < a2 ≤ b2 < · · · < an ≤ bn
with aj+1 − bj > M for j ∈ {1, 2, . . . , n− 1}, there is y ∈ X such that
(f i(y), f i(xj)) ∈ E for integers i ∈ [aj , bj ] and for j ∈ {1, 2, . . . , n}.

(3) Suppose X is a metric space, then, (X, f) is said to have weak speci-
fication if for every ε > 0, there is a positive integer M such that for
any finite sequence of points x1, x2, . . . , xn in X and any non-negative
integers a1 ≤ b1 < a2 ≤ b2 < · · · < an ≤ bn with aj+1 − bj > M for
j ∈ {1, 2, . . . , n− 1}, there is y ∈ X such that d(f i(y), f i(xj)) < ε, for
integers i ∈ [aj , bj ] and for j ∈ {1, 2, . . . , n}.

Theorem 3.20. Let (X, f) be a dynamical system where X is a compact Haus-
dorff space, then the following statements are equivalent:

(i) (X, f) has Hausdorff weak specification.
(ii) (X, f) has uniform weak specification.

If X is metric, then (i) and (ii) are equivalent to
(iii) (X, f) has weak specification.

Proof. (i) =⇒ (ii). Suppose (X, f) has Hausdorff weak specification. Let E ∈
U be an entourage. Then, there exists a symmetric entourage D ∈ U such that
D2 ⊂ E. Now, {intXD[z] : z ∈ X} is an open cover for X. Since X is compact,
there exist z1, z2, . . . , zm such that A ={intXD[z1], intXD[z2], . . . , intXD[zm]}
is a finite open cover of X. By (i), there exists a positive integer M such that for
any finite sequence of points x1, x2, . . . , xn in X and any non-negative integers
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a1 ≤ b1 < a2 ≤ b2 < · · · < an ≤ bn with aj+1−bj > M for j ∈ {1, 2, . . . , n−1},
there is y ∈ X such that for integers i ∈ [aj , bj ] and j ∈ {1, 2, . . . , n}, we
have {f i(y), f i(xj)} ⊂ intXD[zp] for some p ∈ {1, 2, . . . ,m}. This implies that
(f i(y), f i(xj)) ∈ D2 ⊂ E for integers i ∈ [aj , bj ] and j ∈ {1, 2, . . . , n}. Hence
(X, f) has uniform weak specification.

(ii) =⇒ (i). Suppose (X, f) has uniform weak specification. Let A =

{A1, A2, . . . , At} be a finite open cover of X. Now
⋃t
q=1Aq × Aq = E ∈ U

(by [17, Lemma 2.6]). By (ii), there exists a positive integer M such that for
any finite sequence of points x1, x2, . . . , xn in X and any non-negative integers
a1 ≤ b1 < a2 ≤ b2 < · · · < an ≤ bn with aj+1−bj > M for j ∈ {1, 2, . . . , n−1},
there is y ∈ X such that for integers i ∈ [aj , bj ] and j ∈ {1, 2, . . . , n}, we have
(f i(y), f i(xj)) ∈ E. It follows that for integers i ∈ [aj , bj ] and j ∈ {1, 2, . . . , n},
we have {f i(y), f i(xj)} ⊂ Aq for some q ∈ {1, 2, . . . , t}. Hence (X, f) has
Hausdorff weak specification.

For the rest of the proof, let us assume that X is a metric space.
(i) =⇒ (iii). Suppose (X, f) has Hausdorff weak specification. Let ε > 0.

Then, {B(z, ε2 ) : z ∈ X} is an open cover of X. Since X is compact, there
exist z1, z2, . . . , zm in X such that A = {B(z1,

ε
2 ), B(z2,

ε
2 ), . . . , B(zm,

ε
2 )} is a

finite open cover of X. By (i), there exists a positive integer M such that for
any finite sequence of points x1, x2, . . . , xn in X and any non-negative integers
a1 ≤ b1 < a2 ≤ b2 < · · · < an ≤ bn with aj+1−bj > M for j ∈ {1, 2, . . . , n−1},
there is y ∈ X such that for integers i ∈ [aj , bj ] and j ∈ {1, 2, . . . , n}, we
have {f i(y), f i(xj)} ⊂ B(zp,

ε
2 ) for some p ∈ {1, 2, . . . ,m}. It follows that for

integers i ∈ [aj , bj ] and j ∈ {1, 2, . . . , n}, we have d(f i(y), f i(xj)) < ε. Hence
(X, f) has weak specification.

(iii) =⇒ (i). Suppose (X, f) has Hausdorff weak specification. Let A be a
finite open cover of X. Let ε > 0 be a Lebesgue number for A . By (iii), there
is a positive integer M such that for any finite sequence of points x1, x2, . . . , xn
in X and any non-negative integers a1 ≤ b1 < a2 ≤ b2 < · · · < an ≤ bn with
aj+1 − bj > M for j ∈ {1, 2, . . . , n − 1}, there is y ∈ X such that for integers
i ∈ [aj , bj ] and j ∈ {1, 2, . . . , n}, we have d(f i(y), f i(xj)) < ε. Therefore, for
integers i ∈ [aj , bj ] and j ∈ {1, 2, . . . , n}, we have {f i(y), f i(xj)} ⊂ Aq for some
Aq ∈ A . Hence (X, f) has Hausdorff weak specification. �

The uniform approach of sensitivity has been introduced in [17]. A dynami-
cal system (X, f) on a Hausdorff uniform space (X,U ) is said to be uniformly
sensitive if there is a symmetric entourage D ∈ U such that for any non-empty
open subset U of X there are x, y ∈ U and n > 0 with (fn(x), fn(y)) /∈ D.
Here, we extend [18, Proposition 2.38] to Hausdorff uniform spaces.

Theorem 3.21. Let (X, f) be a mixing dynamical system on a Hausdorff uni-
form space (X,U ) with at least two points. Then (X, f) is uniformly sensitive.

Proof. Let u, v be any two distinct points in X and E ∈ U be any entourage
such that (u, v) /∈ E. Let D ∈ U be a symmetric entourage such that D3 ⊂ E.
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Then, intXD[u] and intXD[v] are non-empty open subsets of X. Let U be
any non-empty open subset of X. Since (X, f) is topologically mixing, there
exists N > 0 such that for all n ≥ N , we have fn(U) ∩ intXD[x] 6= φ and
fn(U) ∩ intXD[y] 6= φ. Therefore, there exist x, y ∈ U such that fn(x) ∈
intXD[u] and fn(y) ∈ intXD[v]. It implies that fn(x) ∈ D[u] and fn(y) ∈
D[v] which follows that (u, fn(x)) ∈ D and (fn(y), v) ∈ D. If possible, let
(fn(x), fn(y)) ∈ D. Then (u, v) ∈ E, which is a contradiction. Hence, (X, f)
is uniformly sensitive. �

4. Appendix

In this section, we are going to show that the Hausdorff definitions of various
notions of dynamical system are independent of the equivalent metrics and
compatible uniformities, i.e., they are invariant under a topological conjugacy.

Theorem 4.1. Let (X, f) and (Y, g) be two topologically conjugated dynamical
systems, where X and Y are Hausdorff spaces. Then f is Hausdorff chain
transitive if and only if g does.

Proof. Let h : X → Y be a topological conjugacy. Suppose that f is Haus-
dorff chain transitive. Let x, y ∈ Y be two points and let A be a finite
open cover of Y . h−1(A ) = {h−1(A) : A ∈ A } is a finite open cover
of X and h−1(x), h−1(y) ∈ X. Therefore, there exists a h−1(A )-chain say
{x0 = h−1(x), x1, . . . , xn = h−1(y)} from h−1(x) to h−1(y). It follows that for
each i ∈ {0, 1, 2, . . . , n−1} we have {f(xi), xi+1)} ⊂ h−1(A) for some h−1(A) ∈
h−1(A ). Take yi = h(xi), then it follows that for each i ∈ {0, 1, 2, . . . , n − 1}
we have {g(yi), yi+1} ⊂ A for some A ∈ A . Therefore {y0, y1, . . . , yn} is an
A -chain from x to y. Thus, g is Hausdorff chain transitive. Similarly, we can
prove the converse part. Hence, f is Hausdorff chain transitive if and only if g
does. �

Corollary 4.2. Let (X, f) and (Y, g) be two topologically conjugated dynamical
systems. Then f is Hausdorff chain mixing if and only if g does.

Theorem 4.3. Let (X, f) and (Y, g) be two topologically conjugated dynamical
systems. Then (X, f) is Hausdorff uniformly rigid if and only if (Y, g) does.

Proof. Let h : X → Y be a topological conjugacy. Suppose (X, f) is Hausdorff
uniformly rigid. Let A be a finite open cover of Y . Then, h−1(A ) = {h−1(A) :
A ∈ A } is a finite open cover of X. Therefore, there exists n > 0 such that for
all x ∈ X, there exists h−1(A) ∈ h−1(A ) such that {x, fn(x)} ⊂ h−1(A). This
implies that {h(x), gn(h(x))} ⊂ A for some A ∈ A . Thus (Y, g) is Hausdorff
uniformly rigid. Similarly, we can prove the converse part. Hence, (X, f) is
Hausdorff uniformly rigid if and only if (Y, g) does. �

Theorem 4.4. Let (X, f) and (Y, g) be two topologically conjugated dynamical
systems. Then (X, f) has Hausdorff pseudo orbital specification if and only if
(Y, g) does.
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Proof. Let h : X → Y be a topological conjugacy. Suppose (X, f) has Haus-
dorff pseudo orbital specification. Let A be a finite open cover of Y . Then,
h−1(A ) = {h−1(A) : A ∈ A } is a finite open cover of X. There exist a finite
open cover B of X and a positive integer M which satisfies the definition of
Hausdorff pseudo orbital specification with respect to A . h(B) is a finite open
cover of Y . Let a1 ≤ b1 < a2 ≤ b2 < · · · < an ≤ bn be non-negative integers
with aj+1 − bj > M for j ∈ {1, 2, . . . , n − 1} and let {ξ1, ξ2, . . . , ξn} be h(B)-
chains, where ξj = {x(i,j)} for integers i ∈ [aj , bj ] and for j ∈ {1, 2, . . . , n}. For
j ∈ {1, 2, . . . , n} and integers i ∈ [aj , bj ], we have {g(x(i,j)), x(i+1,j)} ⊂ h(B)

for some h(B) ∈ h(B). This implies that {f(h−1(x(i,j))), h
−1(x(i+1,j))} ⊂ B

for some B ∈ B. Take ηj = {h−1(x(i,j))} for integers i ∈ [aj , bj ] and for
j ∈ {1, 2, . . . , n}. Then, {η1, η2, . . . , ηn} are B-chains in X. Therefore, there
exists x ∈ X such that for integers i ∈ [aj , bj ] and for j ∈ {1, 2, . . . , n}, we
have {f i(x), h−1(x(i,j))} ⊂ h−1(A) for some h−1(A) ∈ h−1(A ). It follows that

for integers i ∈ [aj , bj ] and for j ∈ {1, 2, . . . , n}, we have {gi(h(x)), x(i,j)} ⊂ A
for some A ∈ A . Thus, (Y, g) has Hausdorff pseudo orbital specification. Sim-
ilarly, we can prove the converse part. Hence, (X, f) has Hausdorff pseudo
orbital specification if and only if (Y, g) does. �

Corollary 4.5. Let (X, f) and (Y, g) be two topologically conjugated dynamical
systems. Then (X, f) has Hausdorff weak specification if and only if (Y, g) does.

Theorem 4.6. Let (X, f) and (Y, g) be two topologically conjugated dynamical
systems. Then (X, f) is Hausdorff positively expansive if and only if (Y, g)
does.

Proof. Let h : X → Y be a topological conjugacy. Suppose (X, f) is Hausdorff
positively expansive. Let x, y ∈ Y be a pair of distinct points and let A be
a finite open cover of Y . h−1(A ) = {h−1(A) : A ∈ A } is a finite open cover
of X and h−1(x), h−1(y) is a pair of distinct points in X. Therefore, there
exists n ≥ 0 such that {fn(h−1(x)), fn(h−1(y))} * h−1(A) for any h−1(A) ∈
h−1(A ). This implies that {gn(x), gn(y)} * A for any A ∈ A . Thus, (Y, g)
is Hausdorff positively expansive. Similarly, we can prove the converse part.
Hence, (X, f) is Hausdorff positively expansive if and only if (Y, g) does. �

Theorem 4.7. Let (X, f) and (Y, g) be two topologically conjugated dynamical
systems. Then (X, f) is Hausdorff equicontinuous if and only if (Y, g) does.

Proof. Let h : X → Y be a topological conjugacy. Suppose (X, f) is Hausdorff
equicontinuous. Let A be a finite open cover of Y . h−1(A ) = {h−1(A) : A ∈
A } is a finite open cover of X. Therefore, there exists a finite open cover
B which satisfies the definition of Hausdorff equicontinuity with respect to
A . h(B) is a finite open cover of Y . Let x, y ∈ h(B) be two points, where
h(B) ∈ h(B), B ∈ B. Now, {h−1(x), h−1(y)} ⊂ B, therefore, for all n ≥ 0,
we have {fn(h−1(x)), fn(h−1(y))} ⊂ h−1(A) for some h−1(A) ∈ h−1(A ). This
implies that {gn(x), gn(y)} ⊂ A for some A ∈ A . Therefore (Y, g) is Hausdorff
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equicontinuous. Similarly, we can prove the converse part. Hence, (X, f) is
Hausdorff equicontinuous if and only if (Y, g) does. �

Corollary 4.8. Let (X, f) and (Y, g) be two topologically conjugated dynamical
systems. Then (X, f) is Hausdorff sensitive if and only if (Y, g) does.
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