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Abstract

Intervals can be used in the representation of uncertainty. In this regard, we consider monotone
interval-valued set functions and the Choquet integral. This paper investigates characterizations
of monotone interval-valued set functions and provides applications of the Choquet integral
with respect to monotone interval-valued set functions, on the space of measurable functions
with the Hausdorff metric.
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1. Introduction

Axiomatic characterizations of the Choquet integral have been introduced by Choquet [1],
Murofushi et al [2, 3], Wang [4] and Campos-Bolanos [5] as an interesting extension of the
Lebesgue integral. Other researchers have studied various convergence problems on monotone
set functions and, on sequences of measurable functions, as well as applications. For example,
the convergence in the (C) mean [6], on decision-making problems [7,8], on the Choquet weak
convergence [9], on the monotone expectation [10], and on the aggregation approach [11].

In the past decade, it has been suggested to use intervals in order to represent uncertainty,
for example, for economic uncertainty [12], for fuzzy random variables [13], in interval-
probability [14], for martingales of multi-valued functions [15], in the integrals of set-valued
functions [16], in the Choquet integrals of interval-valued (or closed set-valued) functions
[17–22], and for interval-valued capacity functions [23]. Couso-Montes-Gil [24] studied
applications under the sufficient and necessary conditions on monotone set functions, i.e., the
subadditivity of the Choquet integral with respect to monotone set functions.

Intervals are useful in the representation of uncertainty. We shall consider monotone interval-
valued set functions and the Choquet integral with respect to a monotone interval-valued set
function of measurable functions. Based on the results of Couso-Motes-Gil [24], we shall
provide characterizations of monotone interval-valued set functions as well as applications
of the Choquet integral regarding a monotone interval-valued set function in the space of
measurable functions with the Hausdorff metric.

In Section 2, we list definitions and basic properties for the monotone set functions, the
Choquet integrals and for the various convergence notions in the space of measurable functions.

In Section 3, we define a monotone interval-valued set function and the Choquet integral with
respect to a monotone interval-valued set function of measurable functions, and we discuss
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their properties. We also investigate various convergences in the
Hausdorff metric on the space of intervals as well as the charac-
terizations of the Choquet integral with respect to a monotone
interval-valued set function of measurable functions.

In Section 4, we give a brief summary of our results and
conclusions.

2. Preliminaries and Definitions

In this section, we consider monotone set functions, also called
fuzzy measures, and the Choquet integral defined by Cho-
quet [1]. The Choquet integral [1] generalizes the Lebesgue
integral to the case of monotone set functions. Let X be a
non-empty set, and let A denote a σ-algebra of subsets of
X . Let R = (−∞,∞), R = [−∞,∞], R+ = [0,∞) and
R+

= [0,∞]. First we define, monotone set functions, the
Choquet integral, the different types of convergences, and the
uniform integrability of measurable functions as follows:

Definition 2..1. [2, 3, 5, 24] (1) A mapping µ : A −→ R+
is

said to be a set function if µ(∅) = 0.

(2) A set function µ is said to be monotone if

µ(A) ≤ µ(B) whenever A,B ∈ A and A ⊂ B. (1)

(3) A set function µ is said to be continuous from below (or
lower semi-continuous) if for any sequence {An} ⊂ A and
A ∈ A such that

An ↑ A, then lim
n→∞

µ(An) = µ(A). (2)

(4) A set function µ is said to be continuous from above (or
upper semi-continuous) if for any sequence {An} ⊂ A and
A ∈ A such that

µ(A1) <∞ and An ↓ A, then lim
n→∞

µ(An) = µ(A). (3)

(5) A set function µ is said to be continuous if it is continuous
from above and continuous from below.

(6) A set function µ is said to be subadditive if A,B ∈ A
and A ∩B = ∅, then

µ(A ∪B) ≤ µ(A) + µ(B). (4)

(7) A set function µ is said to be submodular if A,B ∈ A,

then

µ(A ∩B) + µ(A ∪B) ≤ µ(A) + µ(B). (5)

(8) A set function µ is said to be null-additive if

µ(E ∪ F ) = µ(E) for any E ∈ A whenever µ(F ) = 0. (6)

Definition 2..2. [2, 3, 5, 24] Let µ be a monotone set function
on A. (1) If f : X −→ R+ is a non-negative measurable
function, then the Choquet integral of f with respect to µ is
defined by

(C)

∫
f dµ =

∫ ∞
0

µf (α) dα (7)

where

µf (α) = µ ({x ∈ X|f(x) > α}) (8)

for all α ∈ R+ and the integral on the right-hand side is the
Lebesgue integral of µf .

(2) If f : X −→ R is a real-valued measurable function,
then the Choquet integral of f with respect to µ is defined by

(C)

∫
f dµ = (C)

∫
f+ dµ− (C)

∫
f− dµ∗ (9)

where f+ = max{f, 0}, f− = max{−f, 0}, Ac is the com-
plementary set of A, and µ∗ is the conjugate of µ, that is,

µ∗(A) = µ(X)− µ(Ac) for all A ∈ A. (10)

(3) A measurable function f is said to be µ-integrable if the
Choquet integral of f on X exists.

We note that

µf (α) = µ ({x ∈ X|f(x) > α})
= µ

(
{x ∈ X|f+(x) > α}

)
= µf+(α), (11)

for all α ∈ R+ and

µ∗f (α) = µ(X)− µ ({x ∈ X|f(x) > α}c)
= µ(X)− µ ({x ∈ X|f(x) ≤ α})
= µ(X)− µ

(
{x ∈ X|f−(x) ≤ α}

)
= µ∗f−(α), (12)
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for all α ∈ R− = (−∞, 0). Thus, we have

(C)

∫
f dµ

= (C)

∫
f+ dµ− (C)

∫
f− dµ∗

=

∫ ∞
0

µf (α) dα−
∫ 0

−∞
µ∗f (α) dα

=

∫ ∞
0

µf (α) dα−
∫ 0

−∞
µ∗f (α)

=

∫ ∞
0

µf (α) dα+

∫ 0

−∞

(
−µ∗f (α)

)
dα

=

∫ ∞
0

µf (α) dα+

∫ 0

−∞
(µf (α)− µ(X))dα. (13)

We introduce almost everywhere convergence, convergence
in µ-mean, and uniform µ-integrability as follows:

Definition 2..3. Let µ be a monotone set function on a measur-
able space (X,A), {fn} a sequence of measurable functions
from X to R, and f a measurable function from X to R.

(1) A sequence {fn} almost everywhere converges to f if
there exists a measurable and null subset N ∈ A, µ(N) = 0

such that

f(x) = lim
n→∞

fn(x), for all x ∈ N c. (14)

(2) A sequence {fn} converges in µ-mean to f if

lim
n→∞

(C)

∫
| fn − f | dµ = 0, (15)

where | · | is the absolute value on R.

Definition 2..4. [24] Let µ be a monotone set function on A
and I ⊂ N an index set. A class of real-valued measurable
functions {fn}n∈I is said to be uniform µ-integrable if

(i) sup
n∈I

(C)

∫
|fn|dµ <∞, (16)

(ii) ∀ε > 0,∃δ(ε) > 0 such that sup
n∈I

(C)

∫
A

|fn|dµ < ε

if A ∈ A and µ(A) < δ(ε). (17)

Now, we recall from [24] the subadditivity of the Choquet
integral, the equivalence between the convergence in mean and
the uniform integrability of a sequence of measurable functions.

Theorem 2..5. (Subadditivity for the Choquet integral) Let
(X,A) be a measurable space. If a monotone set function

µ : A −→ R+ is submodular and f, g : X −→ R are real-
valued measurable functions, then we have

(C)

∫
(|f |+ |g|) dµ ≤ (C)

∫
|f | dµ+ (C)

∫
|g| dµ. (18)

Theorem 2..6. Let (X,A) be a measurable space. If a mono-
tone set function µ : A −→ R+ is subadditive and f, g :

X −→ R are measurable functions with disjoint support, that
is, {x ∈ X | f(x) > 0} ∩ {x ∈ X | g(x) > 0} = ∅, then we
have

(C)

∫
(f + g) dµ ≤ (C)

∫
f dµ+ (C)

∫
gdµ. (19)

3. Main Results

In this section, we consider intervals, interval-valued functions,
and the Aumann integral of measurable interval-valued func-
tions. Let I(R) be the class of all bounded and closed intervals
(intervals, for short) in R as follows:

I(R) = {[al, ar] | al, ar ∈ R and al ≤ ar}. (20)

For any a ∈ R, we define a = [a, a]. Obviously, a ∈ I(R)

[18–21].
Recall that if (R,M,m) is the Lebesgue measure space and

C(R) is the set of all closed subsets of R, then the Aumann
integral of a closed set-valued function F : R −→ C(R) is
defined by

(A)

∫
Fdm = {

∫
g dm|g ∈ S(F )}, (21)

where S(F ) is the set of all integrable selections of F , that is,

S(F ) = {g : R −→ R|
∫
| g | dm <∞

and g(α) ∈ F (α) m− a.e.}, (22)

where m − a.e. means almost everywhere in the Lebesgue
measurem, and |g| is the absolute value of g [15,16]. In [13,23],
we can see that (A)

∫
Fdm is a nonempty bounded and closed

interval in R whenever F is an interval-valued function as in
the following theorem.

Theorem 3..1. If an interval-valued function F = [gl, gr] :

R −→ I(R) is measurable and integrably bounded, then gl, gr ∈
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S(F ) and

(A)

∫
Fdm =

[∫
gldm,

∫
grdm

]
, (23)

where the two integrals on the right-hand side are the Lebesgue
integral with respect to m.

Note that we write
∫
g dm =

∫∞
−∞ g(α) dα for all bounded

continuous function g. Let C(R) be the class of all closed
subsets of R. We recall that the Hausdorff metric dH : C(R)×
C(R) −→ R+ is defined by

dH(A,B) = max

{
sup
x∈A

inf
y∈B
|x− y|, sup

y∈B
inf
x∈A
|x− y|

}
, (24)

for all A,B ∈ C(R). It is well-known that for all ā = [al, ar],
b̄ = [bl, br] ∈ I(R),

dH(ā, b̄) = max {|al − bl|, |ar − br|} . (25)

Next, we shall define monotone interval-valued set functions
and discuss their characterization.

Definition 3..2. (1) A mapping µ̄ : A −→ I(R̄+) is said to be
an interval-valued set function if µ̄(∅) = 0.

(2) An interval-valued set function µ̄ is said to be monotone
if

µ̄(A) ≤ µ̄(B) whenever A,B ∈ A and A ⊂ B. (26)

(3) An interval-valued set function µ̄ is said to be continuous
from below if for any sequence {An} ⊂ A and A ∈ A such
that An ↑ A, then

dH − lim
n→∞

µ̄(An) = µ̄(A), (27)

that is,

lim
n→∞

dH(µ̄(An), µ̄(A)) = 0.

(4) An interval-valued set function µ̄ is said to be continuous
from above if for any sequence {An} ⊂ A and A ∈ A such
that µ̄(A1) is a bounded interval and An ↓ A, then

dH − lim
n→∞

µ̄(An) = µ̄(A). (28)

(5) An interval-valued set function µ̄ is said to be continuous
if it is both continuous from above and continuous from below.

(6) An interval-valued set function µ̄ is said to be subadditive

if A,B ∈ A, then

µ̄(A ∪B) ≤ µ̄(A) + µ̄(B). (29)

(7) An interval-valued set function µ̄ is said to be submodular
if A,B ∈ A, then

µ̄(A ∪B) + µ̄(A ∩B) ≤ µ̄(A) + µ̄(B). (30)

(8) An interval-valued set function µ̄ is said to be null-
additive if

µ̄(E ∪ F ) = µ̄(E) for any E whenever µ̄(F ) = 0. (31)

From Definition 3.2 and Eq. (25), we can directly derive the
following theorem [23, 25].

Theorem 3..3. (1) A mapping µ̄ = [µl, µr] is an interval-
valued set function if only only if µl and µr are set functions,
and µl ≤ µr.

(2) An interval-valued set function µ̄ = [µl, µr] is monotone
if only only if the set functions µl and µr are monotone.

(3) An interval-valued set function µ̄ = [µl, µr] is continuous
from below if only only if the set functions µl and µr are
continuous from below, and µl ≤ µr.

(4) An interval-valued set function µ̄ = [µl, µr] is continuous
from above if only only if the set functions µl and µr are
continuous from above, and µl ≤ µr.

(5) An interval-valued set function µ̄ is subadditive if and
only if the set functions µl and µr are subadditive, and µl ≤ µr.

(6) An interval-valued set function µ̄ is submodular if and
only if the set functions µl and µr are submodular, and µl ≤ µr.

(7) An interval-valued set function µ̄ is null-additive if and
only if the set functions µl and µr are null-additive, and µl ≤
µr.

By using Definition 2.2 and Theorem 3.3, we define the
Choquet integral of a non-negative measurable function with
respect to a continuous from below and monotone interval-
valued set function as follows:

Definition 3..4. (1) The Choquet integral of a non-negative
measurable function f : X −→ R+, with respect to a monotone
interval-valued set function µ̄, is defined by

(C)

∫
f dµ̄ = (A)

∫
µ̄f dm (32)

where m is the Lebesgue measure on R and the integral on the
right-hand side is the Aumann integral with respect to m of µ̄f .
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(2) The Choquet integral of a real-valued measurable function
f : X −→ R, with respect to a monotone interval-valued set
function µ̄, is defined by

(C)

∫
f dµ̄ = (C)

∫
f+ dµ̄− (C)

∫
f− dµ̄∗, (33)

where f+ = max{f, 0} and f− = max{−f, 0}, and µ̄∗ is the
conjugate of µ̄, that is,

µ̄∗(A) = µ̄(X)− µ̄(Ac) for all A ∈ A. (34)

(3) A measurable function f is said to be µ̄-integrable if
(C)

∫
f dµ̄ ∈ I(R)\{∅}.

We note that Eq. (36) implies

(A)

∫
µ̄f dm =

∫ ∞
0

µ̄f (α) dα,

where µ̄f (α) = µ̄ ({x ∈ X|f(x) > α}) for all α ∈ R+. By
the definition of µ̄∗, we easily get the following theorem.

Theorem 3..5. (1) A monotone interval-valued set function µ̄
is continuous from below (resp. from above) if and only if µ̄∗

is continuous from above (resp. from below).

(2) If µ̄ = [µl, µr] is a monotone interval-valued set function
and µl(X) = µr(X), then µ̄∗ = [µ∗r , µ

∗
l ], where µ∗r(A) =

µr(X)−µr(Ac) and µ∗l (A) = µl(X)−µl(A
c) for all A ∈ A.

In [21], we can find the theorem below. This gives a useful
and interesting tool for the application of the Choquet integral
of a non-negative measurable function f , with respect to a
monotone interval-valued set function µ̄.

Theorem 3..6. ([23, Lemma 2.5 (i) and (v)]) Let f be a non-
negative measurable function and µ̄ = [µl, µr] a monotone
interval-valued function. If µ̄ is continuous from above and we
take F (α) = µ̄({x ∈ X|f(x) > α}) for all α ∈ R+, then we
have

(1) F is continuous from above, and

(2)

(A)

∫
R
F dm =

[∫ ∞
0

µlf (α) dα,

∫ ∞
0

µrf (α) dα

]
, (35)

where m is the Lebesgue measure and µlf (α) = µl({x ∈
X|f(x) > α}) and µrf (α) = µr({x ∈ X|f(x) > α}).

Note that Theorem 3.6(2) implies the following equation (36)

under the same condition of f and µ̄;

(C)

∫
f dµ̄ = (A)

∫
R+

F (α) dm(α)

=

[∫ ∞
0

µlf (α) dα,

∫ ∞
0

µrf (α) dα

]
=

[
(C)

∫
f dµl, (C)

∫
f dµr

]
. (36)

By using Theorem 3.5 and Eq. (36), we can obtain the following
theorem, which is a useful formula for the Choquet integral of a
measurable function f : X → R, with respect to a continuous
monotone interval-valued set function.

Theorem 3..7. Let f be a measurable function and µ = [µl, µr]

a monotone interval-valued set function. If µ is continuous and
µl(X) = µr(X), then we have

(C)

∫
f dµ =

[
(C)

∫
f dµl, (C)

∫
f dµr

]
. (37)

Proof. Let f+ = max{f, 0} and f− = max{−f, 0}. Since
µ is continuous from above, by (40), we have

(C)

∫
f+ dµ =

[
(C)

∫
f+ dµl, (C)

∫
f+ dµr

]
. (38)

Since µ is continuous from below and µl(X) = µr(X), by
Theorem 3.5(2), µ∗ = [µ∗r , µ

∗
l ] is continuous from above. Thus,

by (36), we have

(C)

∫
f− dµ∗ =

[
(C)

∫
f− dµ∗r , (C)

∫
f− dµ∗l

]
. (39)

By Definition 3.4(2), Eq. (38), and Eq. (39), we have the result.
Next, we present the following theorems which give charac-

terizations of the Choquet integral with respect to a monotone
interval-valued set function.

Theorem 3..8. Let µ = [µl, µr] be a monotone interval-valued
set function and let A ∈ A. If µ is continuous from above, then
we have

(C)

∫
A

a dµ =

{
aµ(A) if a ≥ 0

aµ∗(A) if a < 0.
(40)

Proof. If a ≥ 0, then by Eq. (36), we have

(C)

∫
A

a dµ =

∫ ∞
0

µa(α) dα

=

[
(C)

∫
A

a dµl, (C)

∫
A

a dµr

]
= [aµl(A), aµr(A)]
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= a [µl(A), µr(A)]

= aµ(A).

If a < 0, then by Eq. (36), we have

(C)

∫
A

a dµ = −(C)

∫
A

(−a) dµ∗

= −
∫ ∞
0

µ∗−a(α) dα

= −
[
(C)

∫
A

(−a) dµ∗r , (C)

∫
A

(−a) dµ∗l

]
= − [−aµ∗r(A),−aµ∗l (A)]

= [aµ∗l (A), aµ∗r(A)]

= a [µ∗r(A), µl(A)]

= aµ∗(A).

Theorem 3..9. Let a monotone interval-valued set function µ =

[µl, µr] be continuous from above and let f a non-negative µ-
integrable function. If µ is continuous from above and A,B ∈
A with A ⊂ B, then we have

(C)

∫
A

f dµ ≤ (C)

∫
B

f dµ. (41)

Proof. Since µ = [µl, µr] is a monotone interval-valued set
function, by Theorem 3.3 (1) and (2), µl and µr are monotone
interval-valued set functions. Thus,

(C)

∫
A

f dµl ≤ (C)

∫
B

f dµl and

(C)

∫
A

f dµr ≤ (C)

∫
B

f dµr. (42)

By Eq. (36) and Eq. (42), we have the result.

We remark that if we take a µ-integrable function f which is
f+ = 0 and f− > 0, then (C)

∫
f dµ is not monotone, that is,

for each pair A,B ∈ A with A ⊂ B,

(C)

∫
A

f dµ = −(C)

∫
A

f− dµ∗

≥ −(C)

∫
B

f− dµ∗ = (C)

∫
B

f dµ. (43)

Theorem 3..10. Let µ = [µl, µr] be a monotone interval-
valued set function which is continuous from above, and let
A ∈ A. If f and g are non-negative µ-integrable functions with
f ≤ g, then we have

(C)

∫
A

f dµ ≤ (C)

∫
A

g dµ. (44)

Proof. The proof is similar to the proof of Theorem 3.10.

Theorem 3..11. Let µ1 = [µ1l, µ1r] and µ2 = [µ2l, µ2r] be
monotone interval-valued set functions, f a non-negative µ1-
integrable and µ2-integrable function, and A ∈ A.

(1) If µ1 ≤ µ2, then we have

(C)

∫
A

f dµ1 ≤ (C)

∫
A

f dµ2. (45)

(2) If µ1 ⊂ µ2, then we have

(C)

∫
A

f dµ1 ⊂ (C)

∫
A

f dµ2. (46)

Proof. (1) Note that µ1 ≤ µ2 if and only if µ1l ≤ µ2l and
µ1r ≤ µ2r. Thus, we have

(C)

∫
A

f dµ1l ≤ (C)

∫
A

f dµ2l and

(C)

∫
A

f dµ1r ≤ (C)

∫
A

f dµ2r. (47)

By (36) and (47), we have the result.
(2) Note that µ1 ⊂ µ2 if and only if µ2l ≤ µ1l and µ1r ≤ µ2r.

Thus, we have

(C)

∫
A

f dµ2l ≤ (C)

∫
A

f dµ1l and

(C)

∫
A

f dµ1r ≤ (C)

∫
A

f dµ2r. (48)

By Eq. (36) and eq. (48), we have the result.
Finally, we investigate the subadditivity of the Choquet in-

tegral under some conditions for the monotone interval-valued
set functions.

Theorem 3..12. Let (X,A) be a measurable space. If a con-
tinuous monotone interval-valued set function µ = [µl, µr] :

A → I(R̄+), with µl(X) = µr(X), is submodular and f, g :

X → R̄ are measurable functions, then we have

(C)

∫
(|f |+ |g|)dµ ≤ (C)

∫
|f |dµ+ (C)

∫
|g|dµ. (49)

Proof. Since µ is a submodular monotone interval-valued
set function, by Theorem 3.3(6), µl and µr are submodular
monotone set functions.

By Theorem 2.5, we have

(C)

∫
(|f |+ |g|)dµl ≤ (C)

∫
|f |dµl + (C)

∫
|g|dµl, (50)

and

(C)

∫
(|f |+ |g|)dµr ≤ (C)

∫
|f |dµr + (C)

∫
|g|dµr. (51)
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By Eq. (36), eq. (50), and eq. (51), we have the result.

Theorem 3..13. Let (X,A) be a measurable space. If a con-
tinuous monotone interval-valued set function µ = [µl, µr] :

A → I(R+
), with µl(X) = µr(X), is subadditive, and f, g :

X → R+
are measurable functions with disjoint support, then

(C)

∫
(f + g) dµ ≤ (C)

∫
f dµ+ (C)

∫
gdµ. (52)

Proof. Since µ is a subadditive monotone interval-valued
set function, by Theorem 3.3(5), µl and µr are subadditive
monotone set functions. By Theorem 2.6, we have

(C)

∫
(f + g)dµl ≤ (C)

∫
fdµl + (C)

∫
gdµl, (53)

and

(C)

∫
(f + g)dµr ≤ (C)

∫
fdµr + (C)

∫
gdµr. (54)

By Eq. (36), Eq. (53), and Eq. (54), we have the result.

4. Conclusions

In this paper, we introduced the concept of a monotone interval-
valued set function and, the Aumann integral of a measurable
function, with respect to the Lebesgue measure. By using the
two concepts, we define the Choquet integral with a monotone
interval-valued set function of measurable functions.

From Theorem 3.2, Definition 3.3(3), and the condition that
µl(X) = µr(X) of a continuous monotone set function, we can
deal with the new concept of the Choquet integral of a mono-
tone interval-valued set function µ = [µl, µr] of measurable
functions f : X −→ R. Theorems 3.3, 3.5, 3.6, 3.7, 3.8, 3.9,
and 3.10 are important characterizations of the Choquet integral
with respect to a monotone interval-valued set function on the
space of non-negative µ-integrable functions. Theorem 3.12
and Theorem 3.13 are both, useful and interesting tools, in the
application of the Choquet integral with respect to a continuous
monotone interval- valued set function.

In the future, by using the results in this paper, we shall inves-
tigate various problems and models, for representing monotone
uncertain set functions, and for the application of the bi-Choquet
integral with respect to a monotone interval-valued set function.
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