퍼지 수 공간의 컴팩트 볼록 집합에 관한 연구

On compact convex subsets of fuzzy number space

김윤경 동신대학교 정보통신공학과

Yun-Kyong Kim

Dept.of Information & Communication Engineering,

Dongshin University

E-mail: ykkim@dsu.ac.kr

ABSTRACT

By Mazur's theorem, the convex hull of a relatively compact subset a Banach space is also relatively compact. But this is not true any more in the space of fuzzy numbers endowed with the Hausdorff-Skorohod metric.

In this paper, we establish a necessary and sufficient condition for which the convex hull of K is also relatively compact when K is a relatively compact subset of the space $F(R^k)$ of fuzzy numbers of R^k endowed with the Hausdorff-Skorohod metric.

1. Introduction

Let $F(R^k)$ be the space of fuzzy numbers in the Euclidean space R^k i.e., the family of all normal, fuzzy convex, upper-semicontinuous and compactly supported fuzzy sets in R^k . Even though the addition and scalar multiplication on $F(R^k)$ are defined as usual, $F(R^k)$ is not a vector space since the additive does not exist. Nevertheless, we can define the concept of convexity on $F(R^k)$ as in the case of a vector space. That is, $A \subseteq F(R^k)$ is said to be convex if $\lambda u + (1 - \lambda)v \in A$

whenever $u, v \in A$ and $0 \le \lambda \le 1$.

Also, the closed convex hull co(A) of $A \subset F(R^k)$ is defined to be the intersection of all convex subsets of $F(R^k)$ that contains A. Then as in the case of a vector space, we can easily show that co(A) is equal to the family of consisting of all fuzzy numbers in the form $\lambda_1 u_1 + \cdots + \lambda_n u_n$, where u_1, \ldots, u_n are any elements of $A, \lambda_1, \ldots, \lambda_n$ are non-negative real numbers satisfying $\sum_{i=1}^n \lambda_i = 1$ and $n = 2.3, \ldots$

Using this concept, Kim [7] obtained a criteria for which co(K) is also relatively

Proceedings of KFIS Fall Conference, 2003. 5. 3

compact when K is a relatively compact subset of $F(R^k)$ endowed the Hausdorff-Skorohod metric. The purpose of this paper is to establish another criteria as a continuation of Kim [7].

2. Preliminaries

Let $P(R^k)$ be the family of all non-empty compact and convex subsets of R^k . Then $P(R^k)$ is metrizable by the Hausdorff metric h defined by

$$h(A, B) = \max \{ \sup_{a \in A} \inf_{b \in B} |a - b|,$$

$$\sup_{b \in B} \inf_{a \in A} |a - b| \},$$

where $|\cdot|$ is the usual norm in \mathbb{R}^n .

It is well known that the metric $(P(R^n), h)$ is complete and separable (See Debreu [4]). The addition and scalar multiplication in $P(R^k)$ are defined as usual;

$$A + B = \{a + b \mid a \in A, b \in B\},\$$
$$\lambda A = \{\lambda a \mid a \in A\}.$$

Let $F(R^k)$ denote the space of fuzzy numbers, i.e., the family of all normal, fuzzy convex and upper-semicontinuous fuzzy sets u in R^k such that

supp $u = cl \{x \in \mathbb{R}^k : u(x) > 0\}$ is compact. For a fuzzy set u in \mathbb{R}^k , we define the α - level set of u by

$$[u]^{\alpha} = \begin{cases} \{x : u(x) \geq \alpha\}, & 0 \leq \alpha \leq 1, \\ supp \ u, & \alpha = 0. \end{cases}$$

Then it follows that $u \in F(R^k)$ if and only if $[u]^a \in P(R^k)$ for each $a \in [0,1]$.

Lemma 2.1. For $u \in F(R^n)$, let us define $f_u : [0,1] \to ((P(R^k),h) \text{ by } f_u(\alpha) = [u]^{\alpha}$.

Then (1) f_u is non-increasing; i.e., $\alpha \leq \beta$ implies $f_u(\alpha) \supset f_u(\beta)$.

(2) f_u is left-continuous on (0,1].

(3) f_u has right-limits on [0,1) and is right-continuous at 0.

Conversely, if $g:[0,1] \to ((P(R^k),h))$ is a function satisfying the above conditions (1)-(3), then there exists a unique $v \in F(R^k)$ such that

$$g(\alpha) = [v]^{\alpha}$$
 for all $\alpha \in [0,1]$.

Proof: See Kim [7].

If we denote the right-limit of f_u at $\alpha \in [0,1)$ by $L_\alpha u$, then

$$L_{\alpha} u = cl\{x \in R^k : u(x) > \alpha\}.$$

Thus, if we define $j_u(\alpha) = h(L_\alpha u, L_{\alpha'} u)$, then the function f_u is continuous at α if and only if $j_u(\alpha) = 0$.

The addition and scalar multiplication in $F(R^k)$ are defined as usual;

$$(u+v)(x) = \sup_{y+z=x} \min(u(y), v(z)),$$

$$(\lambda u)(x) = \begin{cases} u(x/\lambda), & \text{if } \lambda \neq 0 \\ I_{\{0\}}(x), & \text{if } \lambda = 0 \end{cases}$$

where $I_{\{0\}}$ is the indicator function of $\{0\}$.

Lemma 2.2. For each $u \in F(\mathbb{R}^k)$ and $\varepsilon > 0$, there exists a partition $0 = \alpha_1 < \alpha_2 < \ldots < \alpha_r = 1$ of [0,1] such that $h(L_{\alpha_{i-1}}u, L_{\alpha_i}u) < \varepsilon$ for all $i = 1, 2, \ldots, r$.

Proof. See Joo and Kim [6].

The above lemma implies that $J_u(\varepsilon) = \{\alpha \mid j_u(\alpha) > \varepsilon\}$ is finite for each $u \in F(R^k)$ and $\varepsilon > 0$. Now, we define the metric d_∞ on $F(R^k)$ by

$$d_{\infty}(u,v) = \sup_{0 \le a \le 1} h([u]^a,[v]^a).$$

Also, the norm of $u \in F(R^k)$ is defined as $||u|| = d_{\infty}(u, I_{\{0\}}) = \sup_{x \in L_{n}u} |x|$.

Then it is well-known that $(F(R^k), d_{\infty})$ is complete, but is not separable. (See Klement et al. [8])

Recently, Joo and Kim [5,6] introduced a new metric on $F(R^k)$ which makes it a separable metric space as follows:

Definition 2.3. Let T be the class of strictly increasing continuous mappings of [0,1] onto itself. For $u,v \in F(\mathbb{R}^k)$, we define

$$d_s(u,v) = \inf \{ \varepsilon > 0 : \text{there exists a } t \in T$$

such that $\sup_{0 \le a \le 1} |t(\alpha) - \alpha| \le \varepsilon$
and $d_{\infty}(u,t(v)) \le \varepsilon \},$

where t(v) denotes the composition of v and t.

It follows immediately that d_s is a metric on $F(R^k)$ and $d_s(u,v) \leq d_\infty(u,v)$. The metric d_s will be called the Hausdorff-Skorohod metric.

3. Main Results

Through this section, we assume that the space $F(R^k)$ is endowed the Hausdorff-Skorohod metric topology. Let us denote by $C(F(R^k))$ the collection of all relatively compact subsets K for which co(K) is also relatively compact. then the result established by Kim [7] is as follows;

Theorem 3.1. Let K be a relatively compact subset of $F(R^k)$. Then

$$K \in C(F(R^k))$$
 if and only if $S_{\varepsilon}(K) = \{\alpha \in (0,1) \mid \sup_{u \in K} j_u(\alpha) > \varepsilon\}$ is finite for every $\varepsilon > 0$.

We start with some results which can be obtained as an application of theorem 3.1. For $A \subset F(\mathbb{R}^k)$ and $\varepsilon > 0$, let

$$A_{\epsilon} = \{ u \in A \mid \sup_{\alpha \in (0,1)} j_u(\alpha) \rangle \epsilon \}.$$

Lemma 3.2. If A_{ε} is finite, then $S_{\varepsilon}(A)$ is finite.

Theorem 3.3. If K is a relatively compact subset of $F(R^k)$ and K_{ε} is finite for every $\varepsilon > 0$, then

$$K \in C(F(R^k)).$$

Theorem 3.4. Let K be a relatively compact and convex subset of $F(R^k)$. If $\{u_n\}$ is a sequence of K, then for some $u_0 \in F(R^k)$,

$$\lim_{n\to\infty} d_s(u_n, u_0) = 0 \text{ if and only if}$$

$$\lim_{n\to\infty} d_\infty(u_n, u_0) = 0.$$

Corollary 3.5. If $K \in C(F(R^k))$, then K is relatively compact in the d_{∞} -metric topology.

Now we show that a characterization of relatively compact sets in $F(R^k)$ obtained by Joo and Kim [6] can be sharpened considerably if we restrict our attention to $C(F(R^k))$. The following two lemmas are needed in the proof.

Lemma 3.6. Let $\{u_n\}$ be a sequence in $F(R^k)$ such that $\lim_{n\to\infty} d_s(u_n,u_0)=0$ for some $u_0{\in}F(R^k)$. If $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in [0,1] such that

$$\lim_{n\to\infty}\alpha_n=\lim_{n\to\infty}\beta_n=\alpha_0$$

and $h(L_{\alpha_n}u_n, L_{\beta_n}u_n) > \varepsilon > 0$ for sufficiently large n, then $j_{u_0}(\alpha_0) \ge \varepsilon$.

Lemma 3.7. Let $K \in C(F(R^k))$ and $\{u_n\}$ be a sequence in $F(R^k)$ such that

 $\lim_{n\to\infty} d_s(u_n,u_0) = 0 \text{ for some } u_0 \in F(\mathbb{R}^k).$ Then $j_{u_0}(\alpha) > \varepsilon$ implies $\alpha \in S_{\varepsilon}(K)$.

Theorem 3.8. Let K be a subset of $F(R^k)$. Then $K \in C(F(R^k))$ if and only if the following two conditions hold;

- (1) $\sup\{ \| u \| : u \in K \} \langle \infty .$
- (2) For each $\varepsilon > 0$, there exists a partition $0 = \alpha_1 < \alpha_2 < \dots < \alpha_r = 1$ of [0,1] such that

 $\sup_{u \in K} h(L_{\alpha_{i-1}}u, L_{\alpha_{i}}u) < \varepsilon$ for all i = 1, 2, ..., r.

4. 참고문헌

- [1]. W. Congxin and M. Ming, Embedding problem of fuzzy nymber space: part 5, Fuzzy Sets and Systems 55 (1993), 313-318.
- [2]. C. Castaing and V. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag. Berlin, New York, 1977.
- [3]. P. Z. Daffer, On compact convex subsets of D[0,1], Rocky Mountain J. Math. 11(1981), 501-511.
- [4]. G. Debreu, Integration of correspondences, Proc. Fifth Berkley Symp. on Math. Statist. Prob. Vol. 2 (1966), 251-372.
- [5]. S. Y. Joo and Y. K. Kim, The Skorokhod topology on space of fuzzy sets, Fuzzy Sets and Systems 111 (2000), 497-501.
- [6]. S. Y. Joo and Y. K. Kim, Topological properties on the space of fuzzy sets, J. Math. Anal. Appl. 246 (2000), 576–590.
- [7]. Y. K. Kim, Compactness and convexity on the space of fuzzy sets, J. Math. Anal. Appl. 264 (2001), 122–132.
- [8]. E. P. Klement, M. L. Puri and D. A. Ralescu, Limit theorems for fuzzy random variables, Proc. Roy. Soc. London Ser. A 407 (1986), 171-182.