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On compact convex subsets of fuzzy number space
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ABSTRACT

By Mazur's theorem, the convex hull of a relatively compact subset a Banach space
is also relatively compact. But this is not true any more in the space of fuzzy numbers
endowed with the Hausdorff-Skorohod metric.

In this paper, we establish a necessary and sufficient condition for which the
convex hull of K is also relatively compact when K is a relatively compact subset of

the space F(R*) of fuzzy numbers of R* endowed with the Hausdorff-Skorohod metric.

Fuzzy numbers, Convex hulls, Relatively compact subsets,
the Hausdorff-Skorohod metric
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1. Introduction

Let F(R®) be the space of fuzzy numbers
in the Euclidean space R* 1.e., the family of
all normal, fuzzy convex, upper-semicontinuous
and compactly supported fuzzy sets in R*.

Even though the addition and scalar

multiplication on F(R®) are defined as usual,
F (Rk) is not a vector space since the additive
does not exist. Nevertheless, we can define the
concept of convexity on  F(R®) as in the
case of a vector space. That is, ACF(RY is
Aut+(1—-Av e A

said to be convex if

whenever u,v €A and 0<A<L].
Also, co(A) of
ACF(R" is defined to be the intersection of

all convex subsets of F(R*) that contains A.
Then as in the case of a vector space, we can

the closed convex hull

easily show that co(A) is equal to the family
of consisting of all fuzzy numbers in the form

A+ - - - +Au, where wuy...,u, are
any elements of A, A, ..., 4, are
non-negative real numbers satisfying

121/11:1 and n=2.3,....

Using this concept, Kim [7] obtained a
co(K)

criteria for which 1s also relatively
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compact when K is a relatively compact

F(R" endowed the Hausdorff-
Skorohod metric. The purpose of this paper is
to establish another criteria as a continuation
of Kim [7].

subset of

2. Preliminaries

Let P(R®) be the family of all non-empty
compact and convex subsets of R*. Then

P(R" is metrizable by the Hausdorff metric
h defined by

(A, B) = max {sup ,eainf j=pgla— 8,

Sup e pinf ,eala— 8},

where |+ | is the usual norm in R”.

It is well known that the metric (P(R"), %)
is complete and separable (See Debreu {4]).
The addition and scalar multiplication
P(R" are defined as usual;

A+B={a+b| acA,b=sB},
AA={la | a= A}.

in

Let F(R® denote the
numbers, i.e., the family of all normal, fuzzy
convex and upper-semicontinuous fuzzy sets

# in R* such that
supp u c (xeR* 1 w(x) > 0}

is compact. For a fuzzy set u in Rk,

space of fuzzy

we
define the a- level set of u by

[u]a — [{x u(x) = d}, 0(031,
supp u, a=0.

Then it follows that « € F(R®) if and
only if [«]® € P(R*) for each a € [0,1].

Lemma 2.1. For # € F(R"), let us define
fu :10,11 = ((P(R"), k) by fla) =l[u]".
Then (1) f, is non-increasing; ie, @ < f
implies f,(a) D f.8.
(2) f, is left-continuous on (0, 1].
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(3) f, has right-limits on [0,1) and

is right-continuous at 0.

it g:[0,1] — ((P(R",h)
is a function satisfying the above
conditions (1)-(3), then there exists a

unique v € F(R" such that
glay=[v]* for all « = [0,1].

Conversely,

Proof: See Kim [7].

If we denote the right-limit of f, at
a = [0,1) by L, u, then
L, u=cl{xeR*: u(x))a)}.
Thus, if we define j,(a) = h(L , u,L ,u),
then the function f, is continuous at e if and

only if j,(a) = 0.

The addition and scalar multiplication in

F(R" are defined as usual;
(u+ v)(x)= sup ,4 .= ,min (2(y), v(2)),
u(x/A), if A+0

(%), if A=0

where I () is the indicator function of {0}.

(Au)(x)=[

Lemma 2.2. For each
e > 0, there exists a
0=a,<ay<...<a,=1 of [0,1]
WL, wL,u < gforal i=1,2,...,7

u € F(R") and
partition
such that

Proof. See Joo and Kim [6].

that
each

The above lemma

J.(&) {aljfa)> e}

usF(R®) and &)>0. Now,
metric de on F(R" by
do(u,v) = supg<es; A(Lu]®, [0]%).

Also, the norm of ueF(R*) is defined as
Tull =doo(u, I o) =sup rer. | x 1.

implies

is finite for

we define the
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Then it is well-known that (F(R*),d.) is
complete, but is not separable. (See Klement
et al. [8))

Recently, Joo and Kim [56] introduced a
F(R* which makes it a
separable metric space as follows:

new metric on

Definition 2.3. Let 7T be the class of

strictly increasing continuous mappings of
[0,1] onto itself. For wu,v €F(R", we
define

d{u,v) = inf {e>0:there exists a teT
such that sup g<q<ilf(@) ~d < ¢
do(u, v)) < €},

where {v) denotes the composition of v and .

and

It follows immediately that d, is a metric
F(R" dlu,v) < dofu,v).
The metric d, will be called the Hausdorff-

Skorohod metric.

on and

3. Main Results

Through this section, we assume that the
space F(RY the Hausdorff-
Skorohod metric topology. Let us denote by
C(F(RY) the
compact subsets K for which co(K) is also

relatively compact. then the result established
by Kim [7] is as follows;

is  endowed

collection of all relatively

Theorem 3.1. Let K be
compact subset of F(R*). Then
Ke C(F(R") if and only if
S(K)={e=(0,1) | sup yex 7.(a) > &}

is finite for every &>0.

a relatively

We start with some results which can be
obtained as an application of theorem 3.1. For

ACF(R" and >0, let
A.={ucA| sup e 7.{a)> e}
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Lemma 3.2. If A, is finite, then S.(A) is

finite.

Theorem 3.3. If K is a relatively compact
subset of F(R® and K, is finite for every
>0, then

Ke C(F(R").

Theorem 34. Let K be

compact and convex subset of Fl (R).

a relatively

If

{u,} is a sequence of K, then for some
uOEF(Rk),

lim dfu,.uy) = 0 if and only if

itngodw(un Luy) = 0.

Corollary 35. If Ke C(F(RY), then K
is relatively compact in the dw—metric
topology.

Now we show that a characterization of

relatively compact sets in F(Rk) obtained by
Joo and Kim [6] can be sharpened
considerably if we restrict our attention to

C(F(R*). The following two lemmas are
needed in the proof.

Lemma 36. Let {u,} be a sequence in

F(R®) such that lingods(u,,.uo) = 0 for

uyF(RY). I {a,} {8,} are

sequences in [0,1] such that

some and

limea,= lim8,=q,
n—o00 7—>00
and h(L ,u,, L gu,)>e>0 for sufficiently

large n, then j,(ep)=e.

Lemma 37. Let Ke C(F(R") and {«,} be
a sequence in F(R® such that

lirr;d;(u,,.uo) = 0 for some wuy=F(R").

Then j,(a)>e implies aeeS(K).



Theorem 38. Let K be a subset of

F(R". Then Ke C(F(RY) if and only if
the following two conditions hold;

[1].

(2].

[31.

(4.

[5].

[6].

[71.

(8.

(1) sup{ll «ll:ueK} <.

(2) For each &>0, there exists a partition
0=a,{ay<...La,=1 of [0,1] such
that

SUp yex WL, u, L, u) < ¢

for all i=1,2,...,7.
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