• Title/Summary/Keyword: Harmonic function

Search Result 548, Processing Time 0.028 seconds

LOG-SINE AND LOG-COSINE INTEGRALS

  • Choi, Junesang
    • Honam Mathematical Journal
    • /
    • v.35 no.2
    • /
    • pp.137-146
    • /
    • 2013
  • Motivated essentially by their potential for applications in a wide range of mathematical and physical problems, the log-sine and log-cosine integrals have been evaluated, in the existing literature on the subject, in many different ways. The main object of this paper is to present explicit evaluations of some families of log-sine and log-cosine integrals by making use of the familiar Beta function.

THE ZETA-DETERMINANTS OF HARMONIC OSCILLATORS ON R2

  • Kim, Kyounghwa
    • Korean Journal of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.129-147
    • /
    • 2011
  • In this paper we discuss the zeta-determinants of harmonic oscillators having general quadratic potentials defined on $\mathbb{R}^2$. By using change of variables we reduce the harmonic oscillators having general quadratic potentials to the standard harmonic oscillators and compute their spectra and eigenfunctions. We then discuss their zeta functions and zeta-determinants. In some special cases we compute the zeta-determinants of harmonic oscillators concretely by using the Riemann zeta function, Hurwitz zeta function and Gamma function.

LIPSCHITZ REGULARITY OF M-HARMONIC FUNCTIONS

  • Youssfi, E.H.
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.959-971
    • /
    • 1997
  • In the paper we introduce Hausdorff measures which are suitable or the study of Lipschitz regularity of M-harmonic function in the unit ball B in $C^n$. For an M-harmonic function h which satisfies certain integrability conditions, we show that there is an open set $\Omega$, whose Hausdorff content is arbitrarily small, such that h is Lipschitz smooth on $B \backslash \Omega$.

  • PDF

UNIQUENESS OF SOLUTIONS OF A CERTAIN NONLINEAR ELLIPTIC EQUATION ON RIEMANNIAN MANIFOLDS

  • Lee, Yong Hah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1577-1586
    • /
    • 2018
  • In this paper, we prove that if every bounded ${\mathcal{A}}$-harmonic function on a complete Riemannian manifold M is asymptotically constant at infinity of p-nonparabolic ends of M, then each bounded ${\mathcal{A}}$-harmonic function is uniquely determined by the values at infinity of p-nonparabolic ends of M, where ${\mathcal{A}}$ is a nonlinear elliptic operator of type p on M. Furthermore, in this case, every bounded ${\mathcal{A}}$-harmonic function on M has finite energy.

CONSTANTS FOR HARMONIC MAPPINGS

  • Jun, Sook Heui
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.163-167
    • /
    • 2004
  • In this paper, we obtain some coefficient estimates of harmonic, orientation-preserving, univalent mappings defined on ${\Delta}$ = {z : |z| > 1}.

  • PDF

L2 HARMONIC FORMS ON GRADIENT SHRINKING RICCI SOLITONS

  • Yun, Gabjin
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1189-1208
    • /
    • 2017
  • In this paper, we study vanishing properties for $L^2$ harmonic 1-forms on a gradient shrinking Ricci soliton. We prove that if (M, g, f) is a complete oriented noncompact gradient shrinking Ricci soliton with potential function f, then there are no non-trivial $L^2$ harmonic 1-forms which are orthogonal to df. Second, we show that if the scalar curvature of the metric g is greater than or equal to (n - 2)/2, then there are no non-trivial $L^2$ harmonic 1-forms on (M, g). We also show that any multiplication of the total differential df by a function cannot be an $L^2$ harmonic 1-form unless it is trivial. Finally, we derive various integral properties involving the potential function f and $L^2$ harmonic 1-forms, and handle their applications.

ASYMPTOTIC BEHAVIOR OF A-HARMONIC FUNCTIONS AND p-EXTREMAL LENGTH

  • Kim, Seok-Woo;Lee, Sang-Moon;Lee, Yong-Hah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.423-432
    • /
    • 2010
  • We describe the asymptotic behavior of functions of the Royden p-algebra in terms of p-extremal length. We also prove that each bounded $\cal{A}$-harmonic function with finite energy on a complete Riemannian manifold is uniquely determined by the behavior of the function along p-almost every curve.

THE BERGMAN KERNEL FUNCTION AND THE SZEGO KERNEL FUNCTION

  • CHUNG YOUNG-BOK
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.199-213
    • /
    • 2006
  • We compute the holomorphic derivative of the harmonic measure associated to a $C^\infty$bounded domain in the plane and show that the exact Bergman kernel function associated to a $C^\infty$ bounded domain in the plane relates the derivatives of the Ahlfors map and the Szego kernel in an explicit way. We find several formulas for the exact Bergman kernel and the Szego kernel and the harmonic measure. Finally we survey some other properties of the holomorphic derivative of the harmonic measure.