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L
2 HARMONIC FORMS ON GRADIENT SHRINKING

RICCI SOLITONS

Gabjin Yun

Abstract. In this paper, we study vanishing properties for L2 harmonic
1-forms on a gradient shrinking Ricci soliton. We prove that if (M, g, f)
is a complete oriented noncompact gradient shrinking Ricci soliton with
potential function f , then there are no non-trivial L2 harmonic 1-forms
which are orthogonal to df . Second, we show that if the scalar curvature
of the metric g is greater than or equal to (n − 2)/2, then there are
no non-trivial L2 harmonic 1-forms on (M, g). We also show that any
multiplication of the total differential df by a function cannot be an L2

harmonic 1-form unless it is trivial. Finally, we derive various integral
properties involving the potential function f and L2 harmonic 1-forms,
and handle their applications.

1. Introduction

A differential form ω on a Riemannian manifold (M, g) is said to be harmonic

if it satisfies

∆ω = (dδ + δd)ω = 0

and ω is said to be in L2 if
∫

M

ω ∧ ∗ω =

∫

M

|ω|2 dvg <∞,

where ∗ denotes the Hodge star operator and dvg is the volume form of (M, g).
If ω is a harmonic 1-form, then its dual ω♯ is a harmonic vector field on M

in the following sense: if we choose a local frame e1, . . . , en such that Deiej = 0
at a point and if we denote ω♯ = ωiei, then Deiωj = Dejωi and Deiωi = 0 at
the point. Or, equivalently

ωi;j = ωj;i and
∑

i

ωi;i = 0.(1.1)
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It is well-known that if ω is an L2 harmonic 1-form on a Riemannian manifold
(M, g), then

dω = 0 and δω = 0.(1.2)

The theory of L2 harmonic differential forms can be used to study the ge-
ometry and topology of complete noncompact Riemannian manifolds.

In this paper, we study the structure of the space of L2 harmonic 1-forms
on a complete gradient shrinking Ricci soliton. A complete Riemannian metric
g on a smooth manifold Mn is called a Ricci soliton if there exist a constant ρ
and a smooth 1-form ω such that

2rg + Lω♯g = 2ρg,(1.3)

where rg is the Ricci tensor of the metric g, ω♯ is the vector field dual to ω,
and Lω♯ denotes the Lie derivative along ω♯. Since Lω♯g(X,Y ) = DXω(Y ) +
DY ω(X) for any vector fields X and Y , (1.3) is equivalent to

2rg(X,Y ) +DXω(Y ) +DY ω(X) = 2ρg(X,Y ).(1.4)

Moreover if there is a smooth function f on M such that ω = df , then g is
called a gradient Ricci soliton. The Ricci soliton is said to be shrinking, steady
and expanding according as ρ > 0, ρ = 0, ρ < 0. In case of gradient Ricci
soliton, (1.3) becomes

rg +Ddf = ρg.(1.5)

There are some books and expository articles on Ricci solitons and gradient
Ricci solitons (cf. [3], [5], [6] and references are therein).

In [12], O. Munteanu and N. Sesum proved that if (M, g) is a gradient shrink-
ing Kähler-Ricci soliton (see [12] for the definition of Kähler-Ricci soliton), or
a gradient steady Ricci soliton, then there are no nontrivial harmonic func-
tions with finite energy. Note that the total differential du of a nonconstant
harmonic function u defined on a noncompact complete Riemannian manifold
is a nontrivial harmonic 1-form. Furthermore, if u has finite energy, then the
total differential becomes a nontrivial L2 harmonic 1-form on M . Thus due
to O. Munteanu and N. Sesum’s result, there are no nontrivial L2 harmonic
1-forms on a gradient shrinking Kähler-Ricci soliton or a gradient steady Ricci
soliton. In case of shrinking Kähler-Ricci solitons (M, g, f), they proved that
if u is a harmonic function with finite energy, then 〈∇f,∇u〉 = 0.

Motivated by this property, we consider, in this paper, vanishing properties
of L2 harmonic 1-forms on a complete gradient shrinking Ricci soliton which
is orthogonal to the total differential of the potential function as above. We
prove a similar result as Munteanu and Sesum’s result mentioned above holds
in a complete gradient shrinking Ricci soliton.

Theorem A. Let (M, g, f) be a complete oriented gradient shrinking Ricci

soliton. Then there are no nontrivial L2 harmonic 1-forms ω on M such that

〈df, ω〉 = 0.
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When the scalar curvature sg of a complete gradient Ricci soliton (M, g, f)
satisfies (n−2)ρ ≤ sg, we can also show that there are no nontrivial L2 harmonic
1-forms on (M, g).

Theorem B. Let (M, g, f) be a complete noncompact oriented gradient shrink-

ing Ricci soliton satisfying (1.5) with (n−2)ρ ≤ sg. Then there are no nontrivial

L2 harmonic 1-forms on (M, g).

In this paper, we also study various properties on the space of L2 harmonic 1-
forms on a complete gradient shrinking Ricci soliton, and derive various useful
integral identities on L2 harmonic 1-forms. Among them, we would like to
mention the following property.

Theorem C. Let (M, g, f) be a complete oriented gradient shrinking Ricci

soliton satisfying (1.5), and let ω be an L2 harmonic 1-form on (M, g). Then

(1)
∫

M
e−f 〈df, ω〉2 = ρ

∫

M
e−f |ω|2 +

∫

M
e−f |Dω|2.

(2)
∫

M
e−f 〈Ddf,Dω〉 = 0 and

∫

M
e−f 〈df, ω〉 = 0.

Using (1) in Theorem C, we can recover the proof of Theorem A. And from
(2), we can see a weaker version of Theorem A does hold. In fact, we can show
that, on a complete oriented gradient Ricci soliton, there are no nontrivial L2

harmonic 1-forms ω on M such that either 〈df, ω〉 is nonnegative or constant.

2. Preliminaries and basic formulas

In this section, we shall state some basic well-known facts on Ricci solitons,
and derive some integral properties involving differential 1-forms. First of all,
taking the trace in (1.5), we have

∆f = nρ− sg, d∆f = −dsg, ∆sg = −∆2f.(2.1)

Note that the following identities on Riemannian manifolds hold without any
condition:

δDdf = −d∆f − rg(∇f, ·)(2.2)

and

δrg = −
1

2
dsg.(2.3)

So, taking the divergence of both sides in (1.5) and using these identities, we
obtain

−
1

2
dsg − d∆f − rg(∇f, ·) = 0,

which implies, from (2.1),

rg(∇f, ·) =
1

2
dsg(2.4)

and

δDdf =
1

2
dsg.(2.5)
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Next, it is well-known ([2], [9]) that, for any gradient Ricci soliton (M, g, f),

sg + |∇f |2 − 2ρf = C(constant).(2.6)

In fact, using the Ricci soliton equation (1.5) and (2.4), we can easily show
that

d
(

sg + |∇f |2 − 2ρf
)

= 0.

By (2.3) and (2.4)

1

2
δdsg = −

1

2
〈dsg, df〉 − 〈rg, Ddf〉.

In fact, choosing an orthonormal basis {ei} such that Deiej(p) = 0 for some
point p ∈M , we have, at the point p,

1

2
δdsg = −Dei(i∇f rg)(ei) = −Dei(i∇frg(ei)) = −Dei(rg(∇f, ei))

= −Deirg(∇f, ei)− rg(Dei∇f, ei)

= δrg(∇f)− 〈rg , Ddf〉

= −
1

2
〈dsg, df〉 − 〈rg, Ddf〉.

Thus, we obtain

∆sg = 〈dsg, df〉+ 2〈rg, Ddf〉.(2.7)

It follows from (1.5) that

〈rg, Ddf〉 = ρ∆f − |Ddf |2

and
〈rg, Ddf〉 = ρsg − |rg|

2.

Thus, we get

∆(2ρf − sg) + 〈dsg, df〉 = 2|Ddf |2.(2.8)

Note that the adjoint operator δ∗ of the divergence operator δ on the space
of symmetric 2-tensors is the composition of covariant derivative with sym-
metrization (cf. [1]). Thus on the space of 1-forms Ω1(M), we have

δ∗α(X,Y ) =
1

2
{DXα(Y ) +DY α(X)}

=
1

2
Lα♯g(X,Y ).

Convention. When we are going to integrate some quantity on a gradient
Ricci soliton (M, g, f), we omit the volume form dvg. Thus

∫

M
e−f |rg|

2 just

means
∫

M
e−f |rg |

2 dvg.

Lemma 2.1. Let (M, g, f) be a compact gradient Ricci soliton satisfying (1.5).
Then for any 1-form η,

2ρ

∫

M

e−f〈df, η〉 =

∫

M

e−f〈Ddf,Lη♯g〉.
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Proof. Since δ∗η = 1
2Lη♯g, it follows from (1.5) that

〈rg, δ
∗η〉 =

ρ

2
〈g,Lη♯g〉 −

1

2
〈Ddf,Lη♯g〉.

From definition, we have

〈g,Lη♯g〉 = trgLη♯g = −2δη.

Thus

〈rg, δ
∗η〉 = −ρδη −

1

2
〈Ddf,Lη♯g〉.

Since δ(e−frg) = 0 for gradient Ricci solitons, we have

0 =

∫

M

〈δ(e−frg), η〉 =

∫

M

e−f〈rg , δ
∗η〉

= −ρ

∫

M

e−fδη −
1

2

∫

M

e−f 〈Ddf,Lη♯g〉

= ρ

∫

M

e−f 〈df, η〉 −
1

2

∫

M

e−f 〈Ddf,Lη♯g〉.
�

When η = du for a function u :M → R, then

ρ

∫

M

e−f〈df, du〉 =

∫

M

e−f 〈Ddf,Ddu〉.

In particular, we have

ρ

∫

M

e−f |df |2 =

∫

M

e−f |Ddf |2.(2.9)

Using (2.9), we can prove a well-known rigidity result which says that any
compact gradient steady or expanding Ricci soliton is Einstein.

From now, assume that (M, g, f) be a complete noncompact gradient Ricci
soliton.

Lemma 2.2. Let (M, g, f) be a complete noncompact gradient Ricci soliton

satisfying (1.5). Then for any 1-form η on M and any C1 function ψ with

compact support,

2ρ

∫

M

ψe−f 〈df, η〉 =

∫

M

ψe−f 〈Ddf,Lη♯g〉+ 2

∫

M

e−f〈Ddf, dψ ⊙ η〉,

where

dψ ⊙ η(X,Y ) =
1

2
{dψ(X)η(Y ) + dψ(Y )η(X)}.

Proof. Applying Lemma 2.1 to the 1-form α := ψη which has compact support,
we have

2ρ

∫

M

ψe−f 〈df, η〉 =

∫

M

e−f〈Ddf,Lα♯g〉.(2.10)

Note that

L(ψη)♯g = ψLη♯g + 2dψ ⊙ η.(2.11)
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Therefore,

2ρ

∫

M

ψe−f 〈df, η〉 =

∫

M

ψe−f 〈Ddf,Lη♯g〉+ 2

∫

M

e−f〈Ddf, dψ ⊙ η〉.
�

If η = du for a function u :M → R, then

ρ

∫

M

ψe−f 〈df, du〉 =

∫

M

ψe−f 〈Ddf,Ddu〉+

∫

M

e−fDdf(∇u,∇ψ).

In particular,

(2.12) ρ

∫

M

ψe−f |df |2 =

∫

M

ψe−f |Ddf |2 +

∫

M

e−fDdf(∇f,∇ψ).

Notation. From now, for convenience we will use some confused notations for
vector fields and 1-forms if there is no ambiguity. For example, we use ω for
both 1-form ω and vector field ω♯ which is dual to ω, and df for both vector
field ∇f and the total differential df as a 1-form. This means that

rg(ω, ω) = rg(ω
♯, ω♯), rg(df, df) = rg(∇f,∇f)

and
Ddf(ω, ω) = Ddf(ω♯, ω♯), Ddf(df, ω) = Ddf(∇f, ω♯)

etc. And, by a definition, a cut-off function ϕ means that

0 ≤ ϕ ≤ 1, |∇ϕ| ≤
2

r
, ϕ = 1 on B

( r

2

)

and
supp(ϕ) ⊂ B(r)

for a geodesic ball B(r) at a point in M .

3. Vanishing property of L2 harmonic 1-forms

In this section, we are going to show vanishing properties of L2 harmonic
1-forms on a complete oriented gradient shrinking Ricci soliton (M, g, f) by
using Bochner formula for f -Hodge Laplancian. Let

δf = δ + ι∇f ,

where ι∇f is the interior product with the vector field ∇f . The f -Hodge
Laplacian is defined by

∆f = − (dδf + δfd) .

Then it is well-known that, for a 1-form ω on a smooth metric measure space
(M, g, e−fdvg),

1

2
∆f |ω|

2 = |Dω|2 + 〈∆fω, ω〉+Ricf (ω, ω),(3.1)

where Ricf = rg +Ddf (cf. [11] or [16]).

Theorem 3.1. Let (M, g, f) be a complete noncompact oriented gradient

shrinking Ricci soliton satisfying (1.5). Then there are no nontrivial L2 har-

monic 1-forms ω on M such that 〈df, ω〉 = 0.
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Proof. Let ω be an L2 harmonic 1-forms ω on (M, g, f) such that 〈df, ω〉 = 0.
First of all, in case of gradient Ricci soliton, we have

Ricf (ω, ω) = ρ|ω|2.

Since dω = 0 = δω,∆ω = 0 and

∆f = ∆− (dι∇f + ι∇fd),

we have

∆fω = −d〈ω, df〉 = 0

by assumption. Thus, from (3.1) and Kato’s inequality, we obtain

1

2
∆f |ω|

2 = |Dω|2 + ρ|ω|2 ≥ |∇|ω||2 + ρ|ω|2.(3.2)

Let ϕ be a cut-off function on M . Multiplying (3.2) by ϕ2e−f and integrating
it over M , we have
∫

M

ϕ2e−f |∇|ω||2 + ρ

∫

M

ϕ2e−f |ω|2 ≤
1

2

∫

M

ϕ2e−f∆f |ω|
2

= −
1

2

∫

M

e−f 〈∇ϕ2,∇|ω|2〉

≤ 2

∫

M

e−fϕ|ω||∇ϕ||∇|ω||

≤

∫

M

e−fϕ2|∇|ω||2 +

∫

M

e−f |∇ϕ|2|ω|2.

Thus, we obtain

ρ

∫

M

ϕ2e−f |ω|2 ≤
4

r2

∫

M

|ω|2.

Letting r → ∞, we have ω = 0. �

Remark 3.2. Applying Theorem 4.6 in [14] or Theorem 4.2 in [15] to (3.2),
we have |ω| is constant. It is well-known that a complete oriented noncompact
gradient shrinking Ricci soliton has an infinite volume (cf. [13]). Thus ω should
be trivial.

Theorem 3.1 can be reformulated as follows:

Theorem 3.3. Let (M, g, f) be a complete oriented noncompact gradient

shrinking Ricci soliton. Then there are no nontrivial L2 harmonic 1-forms

ω on M such that, on each level hypersurface f−1(c) with a regular value c of

f , the vector field ω♯ dual to ω is tangent to f−1(c).

Next, we are going to show vanishing property of L2 harmonic 1-forms on a
complete oriented noncompact gradient shrinking Ricci solition (M, g, f) satis-
fying (1.5) with (n− 2)ρ ≤ sg. Let ϕ be a cut-off function and let ω be an L2
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harmonic 1-form on a complete oriented noncompact gradient shrinking Ricci
solition (M, g, f) satisfying (1.5). Then

∫

M

ϕDdf(ω, ω) =

∫

M

f;ijωiωjϕ = −

∫

M

f;i(ωiωjϕ);j(3.3)

= −

∫

M

f;iωi;jωjϕ−

∫

M

f;iωiωj;jϕ−

∫

M

f;iωiωj(ϕ);j

= −

∫

M

f;iωi;jωjϕ−

∫

M

f;iωiωj(ϕ);j .

Note that
∫

M

f;iωi;jωjϕ =

∫

M

f;iωj;iωjϕ = −

∫

M

ωj(f;iωjϕ);i

= −

∫

M

ωjf;iiωjϕ−

∫

M

ωjf;iωj;iϕ−

∫

M

ωjf;iωj(ϕ);i.

Thus
∫

M

f;iωi;jωjϕ = −
1

2

∫

M

(∆f)|ω|2ϕ−
1

2

∫

M

|ω|2〈df, dϕ〉.

Plugging this into (3.3), we obtain
∫

M

ϕDdf(ω, ω)(3.4)

=
1

2

∫

M

(∆f)|ω|2ϕ+
1

2

∫

M

|ω|2〈df, dϕ〉 −

∫

M

〈df, ω〉〈ω, dϕ〉.

To prove Theorem B, we need the following property on a complete noncompact
gradient shrinking Ricci soliton (M, g, f) which is well-known ([4], [12]):

1

4
(r(x) − c)2 ≤ f(x) ≤

1

4
(r(x) + C)2(3.5)

for some positive constants c and C. Here r(x) = dist(p, x) is the distance
function from a fixed point p ∈M . Thus, we have

|df | = O(r)(3.6)

as r → ∞.

Lemma 3.4. Let (M, g, f) be a complete noncompact oriented gradient shrink-

ing Ricci soliton satisfying (1.5). Then for any L2 harmonic 1-form on M ,
∫

M

Ddf(ω, ω) =
1

2

∫

M

(∆f)|ω|2.(3.7)

Proof. Let ϕ be a cut-off function on M . Then, by (3.6),
∣

∣

∣

∣

∫

M

|ω|2〈df, dϕ〉

∣

∣

∣

∣

≤

∫

M

|ω|2|df ||dϕ| ≤ C

∫

B(r)\B( r
2
)
|ω|2.
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Since ω is in L2, this tends to 0 as r → ∞. The same argument also shows

lim
r→∞

∫

M

〈df, ω〉〈ω, dϕ〉 = 0.

So, the proof follows from (3.4). �

Theorem 3.5. Let (M, g, f) be a complete noncompact oriented gradient

shrinking Ricci soliton satisfying (1.5) with (n − 2)ρ ≤ sg. Then there are

no nontrivial L2 harmonic 1-forms on (M, g).

Proof. It follows from Lemma 3.4 together with the Ricci soliton equation (1.5)
and (2.1) that

∫

M

rg(ω, ω) =
1

2

∫

M

[sg − (n− 2)ρ] |ω|2 ≥ 0.(3.8)

Recall the usual Bochner-Weitzenböck formula

1

2
∆|ω|2 = |Dω|2 + rg(ω, ω)(3.9)

for harmonic 1-forms ω. Since
1

2
∆|ω|2 = |ω|∆|ω|+ |∇|ω||2

and |Dω|2 ≥ |∇|ω||2 by Kato’s inequality, we have

|ω|∆|ω| ≥ rg(ω, ω).(3.10)

Let ϕ be a cut-off function on M . Multiplying (3.10) by ϕ2 and integrating it
over M , we have

∫

M

ϕ2rg(ω, ω) ≤

∫

M

ϕ2|ω|∆|ω|

= −

∫

M

ϕ2|∇|ω||2 − 2

∫

M

ϕ|ω|〈∇ϕ,∇|ω|〉

≤ −

∫

M

ϕ2|∇|ω||2 + 2

∫

M

ϕ|ω||∇ϕ||∇|ω||.

By the inequality ǫa2 + 1
ǫ
b2 ≥ 2ab for a, b > 0, we have

2

∫

M

ϕ|ω||∇ϕ||∇|ω|| ≤
1

4

∫

M

ϕ2|∇|ω||2 + 4

∫

M

|∇ϕ|2|ω|2.

Thus,
∫

M

ϕ2rg(ω, ω) ≤ −
3

4

∫

M

ϕ2|∇|ω||2 + 4

∫

M

|∇ϕ|2|ω|2

≤ −
3

4

∫

M

ϕ2|∇|ω||2 +
16

r2

∫

M

|ω|2.

Letting r → ∞, |ω| should be constant by (3.8). Since (M, g) has an infinite
volume, ω = 0. �
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Remark 3.6. Lack of examples, the condition sg ≥ (n − 2)ρ on a gradient
shrinking Ricci soliton looks a little strong. For instance, M = R × Sn−1

or M = R
2 × Sn−2 with product metric and f(x) = ρ

2 |x|
2 for x ∈ R or R

2

satisfies this condition. Of course, it is easy to see that those manifolds do not
admit nontrivial L2 harmonic 1-forms. We don’t know whether other gradient
shrinking Ricci solitons satisfying the scalar curvature condition (n− 2)ρ ≤ sg
exist.

The next result shows that the total differential of the potential function
on a complete noncompact gradient Ricci soliton cannot be an L2 harmonic
1-form unless it is constant.

Theorem 3.7. Let (M, g, f) be a gradient shrinking Ricci soliton which is not

Einstein. Assume that the scalar curvature sg satisfies

sg(x) ≤ Cr(x)(3.11)

for some positive constant C, where r(x) = dist(p, x) for a fixed point p. Then

for any smooth function α, ξ := αdf cannot be L2 harmonic 1-form except

α = 0.

Proof. First, assume that ξ := αdf is an L2 harmonic 1-form with α > 0. Then
we have

∫

M

α2|df |2 <∞(3.12)

and

dξ = dα ∧ df = 0, δξ = −〈dα, df〉 − α∆f = 0.(3.13)

Thus, we have the following PDE:

∆f + 〈∇ logα,∇f〉 = 0.(3.14)

Recall that f ∼ O(r2) and so |∇f | ∼ O(r) from (2.6). Since ∇ logα is parallel
to ∇f by (3.13), (3.14) together with the fact ∆f = nρ−sg and our assumption
(3.11) shows that

|∇ logα|

is bounded. By (3.5), f should attain its local minimum at somewhere point.
It follows from maximum principle (cf. [8], Theorem 3.5) that f should be
constant on a geodesic ball, which means that f is constant on M . This
contradicts that (M, g, f) is not Einstein.

Now assume that α is arbitrary. Let

Ω+ = {x ∈M : α(x) > 0}.

Replacing αdf by −αdf if necessary, we may assume that Ω+ is unbounded
open subset ofM . Choose a geodesic ball B ⊂ Ω+ containing a local minimum
point of f . Applying arguments mentioned above to B, f should be constant
on B and so constant on M since ∆f = nρ− sg. Consequently, αdf cannot be
an L2 harmonic 1-form unless it is trivial. �
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4. Integral properties and generalizations

In this section, we shall derive various integral identities including L2 har-
monic 1-forms on a complete gradient shrinking Ricci soliton, and consider
generalizations of results mentioned in previous section. To do this, we need,
first, the following Ricci identity which is well-known.

Lemma 4.1. Let ω be an L2 harmonic 1-form on a Riemannian manifold

(M, g). Then

−D∗Dω = rg(ω, ·),(4.1)

where D∗ is the adjoint of the covariant derivative D and D∗Dω is given by

D∗Dω = −

n
∑

i=1

(DeiDeiω −Deieiω)

and {ei} is a local orthonormal frame.

The following property on a complete noncompact gradient shrinking Ricci
soliton (M, g, f) is well-known ([12]):

∫

M

e−f |rg|
2 <∞.(4.2)

Theorem 4.2. Let (M, g, f) be a complete oriented gradient shrinking Ricci

soliton. Then for any L2 harmonic 1-form ω,
∫

M

e−f〈df, ω〉2 = ρ

∫

M

e−f |ω|2 +

∫

M

e−f |Dω|2.(4.3)

Proof. Let ϕ be a cut-off function. Since δ(e−fω) = e−f 〈df, ω〉, we get
∫

M

ϕ2e−f〈df, ω〉2 =

∫

M

ϕ2〈df, ω〉δ(e−fω)

=

∫

M

e−f〈d(ϕ2〈df, ω〉), ω〉

= 2

∫

M

e−fϕ〈df, ω〉〈ω, dϕ〉(4.4)

+

∫

M

e−fϕ2 [Ddf(ω, ω) +Dω(df, ω)] .

Next, from the Ricci identity (4.1) together with the Ricci soliton equation
(1.5), we have

−D∗Dω(ω) = rg(ω, ω) = ρ|ω|2 −Ddf(ω, ω).(4.5)

Multiplying both sides by e−fϕ2 and integrating it over M , we get

ρ

∫

M

e−fϕ2|ω|2 −

∫

M

e−fϕ2Ddf(ω, ω)

= −

∫

M

〈D∗Dω, e−fϕ2ω〉
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= −

∫

M

〈Dω,D(e−fϕ2ω)〉

=

∫

M

e−fϕ2Dω(df, ω)− 2

∫

M

e−fϕDω(dϕ, ω)−

∫

M

e−fϕ2|Dω|2.

Thus
∫

M

e−fϕ2Ddf(ω, ω) +

∫

M

e−fϕ2Dω(df, ω)

= ρ

∫

M

e−fϕ2|ω|2 +

∫

M

e−fϕ2|Dω|2 + 2

∫

M

e−fϕDω(dϕ, ω).

This together with (4.4) shows that
∫

M

ϕ2e−f 〈df, ω〉2 − 2

∫

M

e−fϕ〈df, ω〉〈ω, dϕ〉

= ρ

∫

M

e−fϕ2|ω|2 +

∫

M

e−fϕ2|Dω|2 + 2

∫

M

e−fϕDω(dϕ, ω).(4.6)

Finally, using the usual Bochner-Weitzenböck formula (3.9) together with the
fact (3.5), we can see that

∫

M
e−f |Dω|2 is bounded and so by letting r → ∞,

the third term in (4.6) tends to 0. By (4.2), the second term also tends to 0 as
r → ∞. Consequently, we obtain

∫

M

e−f〈df, ω〉2 = ρ

∫

M

e−f |ω|2 +

∫

M

e−f |Dω|2.
�

As a direct consequence of Theorem 4.2, we can recover Theorem 3.1.

Lemma 4.3. Let (M, g, f) be a gradient shrinking Ricci soliton. Then for any

L2 harmonic 1-form ω on M , we have
∫

M

e−f〈Ddf,Dω〉 = 0 and

∫

M

e−f 〈df, ω〉 = 0.(4.7)

Proof. Let ϕ be a cut-off function on M . Since δ(e−frg) = 0, we have

0 =

∫

M

〈ϕω, δ(e−frg)〉 =

∫

M

〈δ∗(ϕω), e−frg〉.(4.8)

Since ω is harmonic, we have

δ∗(ϕω) = dϕ⊙ ω + ϕDω

and so

〈δ∗(ϕω), rg〉 = 〈dϕ⊙ ω + ϕDω, ρg −Ddf〉

= ρ〈dϕ⊙ ω, g〉 − 〈dϕ⊙ ω,Ddf〉 − ϕ〈Dω,Ddf〉.

By Cauchy-Schwarz inequality,
∫

M

ϕe−f 〈Dω,Ddf〉 =

∫

M

ρe−f〈dϕ ⊙ ω, g〉 −

∫

M

e−f 〈dϕ⊙ ω,Ddf〉
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≤ ρ

(
∫

M

e−f
)

1

2

(
∫

M

|dϕ|2|ω|2
)

1

2

(4.9)

+

(
∫

M

e−f |Ddf |2
)

1

2

(
∫

M

|dϕ|2|ω|2
)

1

2

.

By letting r → ∞, we have
∫

M

e−f 〈Dω,Ddf〉 = 0.(4.10)

Next, recall, by (2.5), that

δDdf = rg(df, ·).

So, we have
∫

M

e−fϕ2〈δDdf, ω〉 =

∫

M

e−fϕ2rg(df, ω)

= ρ

∫

M

e−fϕ2〈df, ω〉 −

∫

M

e−fϕ2Ddf(df, ω).

On the other hand, integration by parts shows
∫

M

e−fϕ2〈δDdf, ω〉 =

∫

M

〈Ddf, δ∗(e−fϕ2ω)〉

= −

∫

M

e−fϕ2Ddf(df, ω) + 2

∫

M

e−fϕDdf(dϕ, ω)

+

∫

M

e−fϕ2〈Ddf,Dω〉.

Comparing these two equalities, we have

ρ

∫

M

e−fϕ2〈df, ω〉 = 2

∫

M

e−fϕDdf(dϕ, ω) +

∫

M

e−fϕ2〈Ddf,Dω〉.

Since
∣

∣

∣

∣

∫

M

e−fϕDdf(dϕ, ω)

∣

∣

∣

∣

≤

(
∫

M

e−fϕ2|Ddf |2
)

1

2

(
∫

M

e−f |ω|2 |∇ϕ|2
)

1

2

,

we have, from (4.10),
∫

M

e−f 〈df, ω〉 = 0.
�

Using Lemma 4.3, we can generalize Theorem 3.1 as follows.

Theorem 4.4. Let (M, g, f) be a gradient shrinking Ricci soliton. If ω is an

L2 harmonic 1-form on M satisfying either

(i) 〈df, ω〉 is nonnegative or nonpositive on the whole M , or

(ii) 〈df, ω〉 is constant,

then ω is trivial.
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Remark 4.5. We can prove the second part of Theorem 4.4 by using Lemma 4.3
and the co-area formula. In fact, we may assume that f is not constant.
Suppose that ω is an L2 harmonic 1-form such that the angle θ between ∇f
and ω♯ is constant. By Lemma 4.3 and the co-area formula,

0 =

∫

M

e−f 〈df, ω〉 =

∫

M

e−f |df ||ω| cos θ

=

∫ ∞

0

e−t

(

∫

f−1(t)

|ω| cos θ dσ

)

dt

= cos θ

∫ ∞

0

e−t
∫

f−1(t)

|ω| dσ dt.

If cos θ = 0, then 〈df, ω〉 = 0 and so ω = 0 by Theorem 3.1. If cos θ 6= 0, then
ω = 0.

Next, we will derive a formula on the Laplacian of the function 〈df, ω〉 for
an L2 harmonic 1-form on a gradient shrinking Ricci soliton (M, g, f). Recall
that the Bochner-Weitzenböck formulas

1

2
∆|∇f |2 = |Ddf |2 + 〈d∆f, df〉 + rg(df, df)

and

1

2
∆|ω|2 = |Dω|2 + rg(ω, ω)

for a harmonic 1-form ω. Since d∆f = −dsg = −2rg(df, ·),

1

2
∆|ω + df |2 = |Dω +Ddf |2 + rg(ω + df, ω + df) + 〈∆(ω + df), ω + df〉

=
1

2
∆|ω|2 +

1

2
∆|∇f |2 + 2〈Dω,Ddf〉.

On the other hand,

1

2
∆|ω + df |2 =

1

2
∆|ω|2 +∆〈ω, df〉+

1

2
∆|df |2.(4.11)

Comparing these two identities, we get

∆〈ω, df〉 = 2〈Dω,Ddf〉.(4.12)

From the Ricci identity in Lemma 4.1, we also have D∗Dω(df) = −rg(df, ω) =
− 1

2dsg(ω), i.e.,
1

2
〈dsg, ω〉 = −〈df,D∗Dω〉.

Theorem 4.6. Let (M, g, f) be a complete oriented gradient Ricci soliton. Let

ω be an L2 harmonic 1-form. If 〈Ddf,Dω〉 ≥ 0 or 〈Ddf,Dω〉 ≤ 0 on the whole

M , then 〈df, ω〉 is a harmonic function.

Proof. It is obvious by Lemma 4.3 and (4.12). �
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We are going to mention a few more properties related to L2 harmonic 1-
forms. First of all, it follows from (4.4) by letting r → ∞ that

∫

M

e−f〈df, ω〉2 =

∫

M

e−f [Ddf(ω, ω) +Dω(df, ω)] .(4.13)

Lemma 4.7. Let ω be an L2 harmonic 1-form on a gradient shrinking Ricci

soliton (M, g, f). Then
∫

M

e−f [Ddf(df, ω) +Dω(df, df)] = 0(4.14)

and

1

2

∫

M

e−fsg〈df, ω〉 =

∫

M

e−fDω(df, df).(4.15)

Proof. Since ∆〈df, ω〉 = 2〈Ddf,Dω〉, we have

2

∫

M

e−fϕ2〈Ddf,Dω〉 =

∫

M

e−fϕ2∆〈df, ω〉 = −

∫

M

〈d(e−fϕ2), d〈df, ω〉〉

=

∫

M

e−fϕ2[Ddf(df, ω) +Dω(df, df)]

− 2

∫

M

e−fϕ[Ddf(dϕ, ω) +Dω(dϕ, df)].

By letting r → ∞, both the third and fourth terms tend to 0, respectively, and
so we have

(4.16) 2

∫

M

e−f 〈Ddf,Dω〉 =

∫

M

e−f [Ddf(df, ω) +Dω(df, df)].

By Lemma 4.3, we have
∫

M

e−f [Ddf(df, ω) +Dω(df, df)] = 0.(4.17)

Next, since
∫

M
e−f 〈df, ω〉 = 0, we have

∫

M

e−fDdf(df, ω) = −

∫

M

e−frg(df, ω)

from the Ricci soliton equation. So, (4.14) is equivalent to
∫

M

e−frg(df, ω) =

∫

M

e−fDω(df, df).(4.18)

Also since
∫

M

e−frg(df, ω) =
1

2

∫

M

e−f〈dsg, ω〉 =
1

2

∫

M

sgδ(e
−fω) =

1

2

∫

M

e−fsg〈df, ω〉,

we have

1

2

∫

M

e−fsg〈df, ω〉 =

∫

M

e−fDω(df, df).(4.19)
�
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By (4.14) and (4.17), we obtain

1

2

∫

M

e−fsg〈df, ω〉+

∫

M

e−fDdf(df, ω) = 0.(4.20)

We can show (4.20) from the following identity which can be obtain from the
Ricci soliton equation (1.5),

1

2
〈dsg, ω〉 = ρ〈df, ω〉 −Ddf(df, ω),(4.21)

by multiplying (4.21) by e−fϕ2 and integrating it over M .
Finally, we would like to mention an integral identity which is similar as

Lemma 3.4. To derive this, we need, first, the following.

Lemma 4.8 ([7], [10]). Let ω be an L2 harmonic 1-form on a Riemannian

manifold. Then for any smooth bounded domain D ⊂⊂ M and smooth vector

field X, we have

(4.22)

∫

D

{

〈(DX)ω, ω〉 −
1

2
(divX)|ω|2

}

=

∫

∂D

{

〈iXω, iνω〉 −
1

2
〈X, ν〉|ω|2

}

.

Here (DX)ω(Y ) is defined by (DX)ω(Y ) = ω (DYX).

Lemma 4.9. Let ω be an L2 harmonic 1-form on a complete noncompact

gradient shrinking Ricci soliton (M, g, f). Then

(4.23)
∫

M

{

e−fDdf(ω, ω)−
1

2
e−f (∆f)|ω|2

}

=

∫

M

{

e−f 〈df, ω〉2−
1

2
e−f |df |2|ω|2

}

.

Proof. Let D = B(r) be a geodesic ball and let

X := e−f∇f.

Then we have

DX = −e−fdf ⊗ df + e−fDdf(4.24)

and so

〈(DX)ω, ω〉 = −e−f〈df, ω〉2 + e−fDdf(ω, ω).

Note also that

1

2
(divX)|ω|2 = −

1

2
e−f |df |2|ω|2 +

1

2
e−f (∆f)|ω|2

and

〈iXω, iνω〉 −
1

2
〈X, ν〉|ω|2 = e−f 〈df, ω〉〈ω, ν〉 −

1

2
e−f〈df, ν〉|ω|2.

Substituting these into (4.22) in Lemma 4.8, we obtain
∫

B(r)

{

−e−f〈df, ω〉2 + e−fDdf(ω, ω)
}

(4.25)
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+
1

2

∫

B(r)

e−f (|df |2 −∆f)|ω|2

=

∫

∂B(r)

{

e−f〈df, ω〉〈ω, ν〉 −
1

2
e−f 〈df, ν〉|ω|2

}

.

Letting r → ∞, the right hand side tends to 0, and so we have (4.23). �

5. Decomposition of L2 harmonic 1-forms

In this section, we consider an L2 closed 1-form, but not necessarily harmonic
on a complete gradient shrinking Ricci soliton (M, g, f). We shall derive some
conditions so that such a form vanishes, and apply this to the decomposition
of an L2 harmonic 1-form on (M, g, f).

Let η be a closed 1-form on a complete noncompact oriented gradient shrink-
ing Ricci soliton (M, g, f) satisfying

〈df, η〉 = 0 and

∫

M

|η|2 <∞.(5.1)

We have the following Ricci identity for a closed 1-form which is similar as
Lemma 4.1 for harmonic 1-forms.

Lemma 5.1. Let η be a closed 1-form on a gradient shrinking Ricci soliton

(M, g, f). Then

−D∗Dη = rg(η, ·)− dδη.(5.2)

Proof. Let {ei} be a local frame which is normal at a point. Writing ω =
∑

ωiei, from dη = 0, we have ηi,j = ηj,i for each i, j. So, denoting rg(ei, ej) =
rij and applying the Einstein convention,

D∗Dη(ek) = −DeiDeiη(ek) = −DeiDekη(ei)

= −DekDeiη(ei)−R(ei, ek)η(ei)

= −ek(δη)− η(R(ei, ek)ei)

= dδη(ek)− rg(η, ·).

This implies that

−D∗Dω = rg(ω, ·)− dδη. �

Let η be a closed 1-form on a gradient shrinking Ricci soliton (M, g, f)
satisfying (5.1). From Lemma 5.1 together with the Ricci soliton equation
(1.5), we have

−D∗Dη(η) = ρ|η|2 −Ddf(η, η)− 〈dδη, η〉.

Let ϕ be a cut-off function onM . Multiplying by e−fϕ2 and integrating it over
M , we get

ρ

∫

M

e−fϕ2|η|2 −

∫

M

e−fϕ2Ddf(η, η)−

∫

M

e−fϕ2〈dδη, η〉
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= −

∫

M

e−fϕ2D∗Dη(η) = −

∫

M

〈Dη,D(e−fϕ2η)〉

=

∫

M

e−fϕ2Dη(df, η) − 2

∫

M

e−fϕDη(dϕ, η) −

∫

M

e−fϕ2|Dη|2.

Thus,
∫

M

e−fϕ2 [Ddf(η, η) +Dη(df, η)]

= ρ

∫

M

e−fϕ2|η|2 −

∫

M

δη
(

δ(e−fϕ2η)
)

+2

∫

M

e−fϕDη(dϕ, η) +

∫

M

e−fϕ2|Dη|2

= ρ

∫

M

e−fϕ2|η|2 + 2

∫

M

e−fϕ〈dϕ, η〉δη +

∫

M

e−fϕ2(δη)2(5.3)

+2

∫

M

e−fϕDη(dϕ, η) +

∫

M

e−fϕ2|Dη|2.

Now assume that

Dη(df, η) = Dη(η, df).(5.4)

Since η is not harmonic, this is not true in general. Since 〈df, η〉 = 0, we have

Ddf(η, ·) +Dη(·, df) = 0.

So, from (5.4)

Ddf(η, η) +Dη(df, η) = 0.(5.5)

Therefore, it follows from (5.3) that

ρ

∫

M

e−fϕ2|η|2 +

∫

M

e−fϕ2(δη)2 +

∫

M

e−fϕ2|Dη|2

= −2

∫

M

e−fϕ〈dϕ, η〉δη − 2

∫

M

e−fϕDη(dϕ, η)

≤

∫

M

e−fϕ2(δη)2 +

∫

M

e−f |dϕ|2|η|2

+

∫

M

e−fϕ2|Dη|2 +

∫

M

e−f |dϕ|2|η|2.

Since η is in L2, by letting r → ∞, we obtain

ρ

∫

M

e−fϕ2|η|2 = 0,

which implies that η = 0. Thus we have the following.

Lemma 5.2. Let η be an L2 closed 1-form on a complete noncompact oriented

gradient shrinking Ricci soliton (M, g, f). Suppose that 〈df, η〉 = 0 and

Dη(df, η) = Dη(η, df).(5.6)
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Then η = 0.

Lemma 5.2 can be considered as a generalization of Theorem 3.1 because
harmonic 1-forms satisfy (5.6).

Proposition 5.3. Let ω be an L2 harmonic 1-form on a complete noncompact

oriented gradient shrinking Ricci soliton (M, g, f). If there is a function α :
M → R such that dα and df are parallel and satisfying

〈ω − αdf, df〉 = 0,

then ω = 0.

Proof. Let η := ω − αdf so that η is a closed 1-form satisfying

〈df, η〉 = 0 and

∫

M

|η|2 <∞

and

〈dα, η〉 = 0.

In particular,

Ddf(η, η) +Dη(η, df) = 0.

Moreover, since 0 = 〈df, η〉 = 〈df, ω〉 − α|df |2, we have

|df |2〈dα, η〉 = 〈d〈df, ω〉, η〉 − α〈d|df |2, η〉

= Ddf(ω, η) +Dω(df, η)− 2αDdf(df, η)

= Ddf(η, η) + αDdf(df, η) + dα⊗ df(df, η) + αDdf(df, η)

+Dη(df, η)− 2αDdf(df, η)

= Ddf(η, η) +Dη(df, η)

= 0.

Thus,

Dη(η, df) = Dη(df, η).

By Lemma 5.2, we have η = 0 and so ω = αdf . Finally, by Theorem 3.7,
ω = 0. �
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