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L? HARMONIC FORMS ON GRADIENT SHRINKING
RICCI SOLITONS

GABJIN YUN

ABSTRACT. In this paper, we study vanishing properties for L? harmonic
1-forms on a gradient shrinking Ricci soliton. We prove that if (M, g, f)
is a complete oriented noncompact gradient shrinking Ricci soliton with
potential function f, then there are no non-trivial L? harmonic 1-forms
which are orthogonal to df. Second, we show that if the scalar curvature
of the metric g is greater than or equal to (n — 2)/2, then there are
no non-trivial L? harmonic 1-forms on (M,g). We also show that any
multiplication of the total differential df by a function cannot be an L2
harmonic 1-form unless it is trivial. Finally, we derive various integral
properties involving the potential function f and L? harmonic 1-forms,
and handle their applications.

1. Introduction

A differential form w on a Riemannian manifold (M, g) is said to be harmonic
if it satisfies

Aw = (d§ + 6d)w = 0

and w is said to be in L2 if

/w/\*w:/ |w|? dv, < oo,
M M

where * denotes the Hodge star operator and dv, is the volume form of (M, g).

If w is a harmonic 1-form, then its dual w¥ is a harmonic vector field on M
in the following sense: if we choose a local frame ey, ..., e, such that D.,e; =0
at a point and if we denote wh = wieq, then De,w; = D, w; and De,w; = 0 at
the point. Or, equivalently

(L.1) Wi = wjy;  and Zwi;i = 0.
%
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It is well-known that if w is an L? harmonic 1-form on a Riemannian manifold
(M, g), then

(1.2) dv=0 and dw=0.

The theory of L? harmonic differential forms can be used to study the ge-
ometry and topology of complete noncompact Riemannian manifolds.

In this paper, we study the structure of the space of L2 harmonic 1-forms
on a complete gradient shrinking Ricci soliton. A complete Riemannian metric
g on a smooth manifold M™ is called a Ricci soliton if there exist a constant p
and a smooth 1-form w such that

(1.3) 2rg + L9 = 2pg,

where rg is the Ricci tensor of the metric g, wt is the vector field dual to w,
and L, denotes the Lie derivative along w. Since £,:9(X,Y) = Dxw(Y) +
Dy w(X) for any vector fields X and Y, (1.3) is equivalent to

(1.4) 2ry(X,Y) + Dxw(Y) + Dyw(X) = 2pg(X,Y).

Moreover if there is a smooth function f on M such that w = df, then g is
called a gradient Ricci soliton. The Ricci soliton is said to be shrinking, steady
and ezpanding according as p > 0, p = 0, p < 0. In case of gradient Ricci
soliton, (1.3) becomes

(1.5) rq + Ddf = pg.

There are some books and expository articles on Ricci solitons and gradient
Ricci solitons (cf. [3], [5], [6] and references are therein).

In [12], O. Munteanu and N. Sesum proved that if (M, g) is a gradient shrink-
ing Kéahler-Ricci soliton (see [12] for the definition of Kéhler-Ricci soliton), or
a gradient steady Ricci soliton, then there are no nontrivial harmonic func-
tions with finite energy. Note that the total differential du of a nonconstant
harmonic function u defined on a noncompact complete Riemannian manifold
is a nontrivial harmonic 1-form. Furthermore, if v has finite energy, then the
total differential becomes a nontrivial L? harmonic 1-form on M. Thus due
to O. Munteanu and N. Sesum’s result, there are no nontrivial L? harmonic
1-forms on a gradient shrinking Kéahler-Ricci soliton or a gradient steady Ricci
soliton. In case of shrinking Kéahler-Ricci solitons (M, g, f), they proved that
if w is a harmonic function with finite energy, then (V f, Vu) = 0.

Motivated by this property, we consider, in this paper, vanishing properties
of L? harmonic 1-forms on a complete gradient shrinking Ricci soliton which
is orthogonal to the total differential of the potential function as above. We
prove a similar result as Munteanu and Sesum’s result mentioned above holds
in a complete gradient shrinking Ricci soliton.

Theorem A. Let (M,g,f) be a complete oriented gradient shrinking Ricci
soliton. Then there are no nontrivial L? harmonic 1-forms w on M such that
(df,w) = 0.
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When the scalar curvature s, of a complete gradient Ricci soliton (M, g, f)
satisfies (n—2)p < 54, we can also show that there are no nontrivial L2 harmonic
1-forms on (M, g).

Theorem B. Let (M, g, f) be a complete noncompact oriented gradient shrink-
ing Ricci soliton satisfying (1.5) with (n—2)p < s4. Then there are no nontrivial
L? harmonic 1-forms on (M, g).

In this paper, we also study various properties on the space of L? harmonic 1-
forms on a complete gradient shrinking Ricci soliton, and derive various useful
integral identities on L? harmonic 1-forms. Among them, we would like to
mention the following property.

Theorem C. Let (M,g,f) be a complete oriented gradient shrinking Ricci
soliton satisfying (1.5), and let w be an L* harmonic 1-form on (M,g). Then
(1) fM e_f(df, W>2 = pr e_f|w|2 + fM €_f|Dw|2_
(2) [y e~ (Ddf, Dw) = 0 and [y, e~ (df,w) = 0.

Using (1) in Theorem C, we can recover the proof of Theorem A. And from
(2), we can see a weaker version of Theorem A does hold. In fact, we can show
that, on a complete oriented gradient Ricci soliton, there are no nontrivial L?
harmonic 1-forms w on M such that either (df,w) is nonnegative or constant.

2. Preliminaries and basic formulas

In this section, we shall state some basic well-known facts on Ricci solitons,
and derive some integral properties involving differential 1-forms. First of all,
taking the trace in (1.5), we have

(2.1) Af =np—sg, dAf=—ds;, Asy= —A%f.

Note that the following identities on Riemannian manifolds hold without any
condition:

(2.2) 0Ddf = —dAf —ry(Vf,")
and
(2.3) org = f%dsg.

So, taking the divergence of both sides in (1.5) and using these identities, we
obtain

1
_stg —dAf —ry(Vf,-) =0,
which implies, from (2.1),

(2.4) rg(Vf,) = %dsg

and

1
(2.5) SDdf = 3 ds,.
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Next, it is well-known ([2], [9]) that, for any gradient Ricci soliton (M, g, f),
(2.6) sg + |V f|* — 2pf = C(constant).
In fact, using the Ricci soliton equation (1.5) and (2.4), we can easily show
that
d(sq+|VfI>=2pf) =0.

By (2.3) and (2.4)

1 1

§6d5g = —§<dsg,df) — (rg, Ddf).

In fact, choosing an orthonormal basis {e;} such that D.,e;(p) = 0 for some
point p € M, we have, at the point p,

%(Msg = —De,(ivsrg)(ei) = =De,(ivsrg(ei) = —De,(rg(Vf, €i))
= *DeiTg(Vf, ei) - Tg(Dein, ei)
= 6rg(Vf) = (rg, Ddf)

= 5 {dsy. df) — {ry, DAf).
Thus, we obtain
(2.7) Asg = (dsg,df) + 2(rq, Ddf).
It follows from (1.5) that
(ry, Ddf) = pAAf — | Ddf?

and

(rg, Ddf) = psq — |r9|2-
Thus, we get
(2.8) A2pf — s,) + (dsq, df) = 2| Ddf "

Note that the adjoint operator §* of the divergence operator § on the space
of symmetric 2-tensors is the composition of covariant derivative with sym-
metrization (cf. [1]). Thus on the space of 1-forms Q!(M), we have

5 a(X,Y) = %{Dxa(Y) + Dya(X)}

1
= EEQuQ(X, Y)

Convention. When we are going to integrate some quantity on a gradient
Ricci soliton (M, g, f), we omit the volume form dvg. Thus [, e f|rg|? just
means [, e~/ |ry|2 du,.

Lemma 2.1. Let (M, g, f) be a compact gradient Ricci soliton satisfying (1.5).
Then for any 1-form n,

2 /M e (df. ) = /M I (Ddf, L,:9).
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Proof. Since §*n = %[,nng, it follows from (1.5) that

. 1
<r9a6 77) = g(gaﬁnﬁg> - §<Ddfa £n”g>‘

From definition, we have

(9, Lpg) = trgLypg = —26n.
Thus 1

(rg,8"n) = —pdn — S (Ddf, Ly 9).

Since 6(e~/r,) = 0 for gradient Ricci solitons, we have

0= [ @ n)n = [ 5

1
= —p/ eifén — —/ eif<Ddf, ﬁnug>
M 2 M
_ 1 _
:p/ ) f<df,n>f§/ e (Ddf, L,:9). -
M M

When 7 = du for a function u : M — R, then
p / e~ {df, du) = / e~ (Ddf, Ddu).
M

M
In particular, we have

(2.9) ) /N e = /N D

Using (2.9), we can prove a well-known rigidity result which says that any
compact gradient steady or expanding Ricci soliton is Einstein.

From now, assume that (M, g, f) be a complete noncompact gradient Ricci
soliton.

Lemma 2.2. Let (M, g, f) be a complete noncompact gradient Ricci soliton
satisfying (1.5). Then for any 1-form n on M and any C' function 1 with
compact support,

2 A e (dfon) = /M et (Ddf, Lyeg) +2 / e (Ddf, dv © ).

M
where

Ap © (X, ) = L {dp(X)n(¥) + dp(V n(X)}.

Proof. Applying Lemma 2.1 to the 1-form « := 11 which has compact support,
we have

(2.10) 2 [ weldha) = [ DU Larg)
M M

Note that

(2.11) E(W?)ﬁg = ’lﬂﬁnug + 2d’t/1 ©n.
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Therefore,
2 [ et = [ e D Lpg) 2 [ e Dgaen.
M M M
If n = du for a function u : M — R, then

p | e I (df,du) = / Ye~F(Ddf, Ddu) + / e~ Ddf (Vu, V).
M M M

In particular,

@12 o[ we P = [ weiDarP+ [ e Da(91 0.

Notation. From now, for convenience we will use some confused notations for
vector fields and 1-forms if there is no ambiguity. For example, we use w for
both 1-form w and vector field w® which is dual to w, and df for both vector
field Vf and the total differential df as a 1-form. This means that

rg(w,w) = rg(Wh wh),  ro(df,df) =ry(VF V)
and
Ddf (w,w) = Ddf (w*,w*), Ddf(df,w) = Ddf(Vf,w?)
etc. And, by a definition, a cut-off function ¢ means that

2
0<p<t Vel<2 p=1onB(})
T

and
supp() C B(r)
for a geodesic ball B(r) at a point in M.

3. Vanishing property of L? harmonic 1-forms

In this section, we are going to show vanishing properties of L? harmonic
1-forms on a complete oriented gradient shrinking Ricci soliton (M, g, f) by
using Bochner formula for f-Hodge Laplancian. Let

5f =0+ LV,
where vy is the interior product with the vector field Vf. The f-Hodge
Laplacian is defined by
Af = — (d5f + 5fd).
Then it is well-known that, for a 1-form w on a smooth metric measure space
(M7 gv eifdvg)v

1
(3.1) EAgfwf? = Duf? + (A gw,w) + Ris(@,w)
where Ricy = ry + Ddf (cf. [11] or [16]).

Theorem 3.1. Let (M,g,f) be a complete noncompact oriented gradient
shrinking Ricci soliton satisfying (1.5). Then there are no nontrivial L* har-
monic 1-forms w on M such that {df,w) = 0.
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Proof. Let w be an L? harmonic 1-forms w on (M, g, f) such that {(df,w) = 0.
First of all, in case of gradient Ricci soliton, we have

Ricy(w,w) = plw|?.
Since dw = 0 = dw, Aw = 0 and
Ap=A—(dwy+tvrd),

we have
Ajw = —d{w,df) =0

by assumption. Thus, from (3.1) and Kato’s inequality, we obtain
1
(3.2) S Al = [Dwf + pluf? > V1wl + plef

Let ¢ be a cut-off function on M. Multiplying (3.2) by p?e~/ and integrating
it over M, we have

_ _ 1 _
[ FetVulP+o [ reflup <3 [ et fap
M M M
1 _
:_5/ e (Ve V)
M
<2 [ gl Vel Vil
M

< [ et [ vl
M M

_ 4
p [ petloP < [ b
M ™ JMm

Letting r — oo, we have w = 0. O

Thus, we obtain

Remark 3.2. Applying Theorem 4.6 in [14] or Theorem 4.2 in [15] to (3.2),
we have |w]| is constant. It is well-known that a complete oriented noncompact
gradient shrinking Ricci soliton has an infinite volume (cf. [13]). Thus w should
be trivial.

Theorem 3.1 can be reformulated as follows:

Theorem 3.3. Let (M,g,f) be a complete oriented noncompact gradient
shrinking Ricci soliton. Then there are no nontrivial L?> harmonic 1-forms
w on M such that, on each level hypersurface f~1(c) with a regular value ¢ of
f, the vector field w* dual to w is tangent to f~1(c).

Next, we are going to show vanishing property of L? harmonic 1-forms on a
complete oriented noncompact gradient shrinking Ricci solition (M, g, f) satis-
fying (1.5) with (n —2)p < s,4. Let ¢ be a cut-off function and let w be an L?
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harmonic 1-form on a complete oriented noncompact gradient shrinking Ricci
solition (M, g, f) satistying (1.5). Then

(3.3) /M eDdf (w,w) = /M Jijwiwjp = — /M fiilwiwjp),;

:*/ f;iwi;jwj@*/ f;iwiwj;jcp*/ Fawiw;(¢);j
M M M
:7/ f;iwi;jchp*/ fawiw;(9);5.

M M

Note that

/ f;iwi;jwj@Z/ f;iwj;iszﬁz—/ wj(fiwjp).i
M M M
=—/ ij;iiwjtp—/ wjf;iwj;itp—/ wj fiiw; ()si-
M M M

Thus

1 1
[ angoro =3 [ @plPe-; [ luPidrde.
M M M
Plugging this into (3.3), we obtain

(3.4) /M eDdf (w,w)

- %/M(Af)|w|290+%/M |w[?(df, dep) — /M<df,w><w,d<p).

To prove Theorem B, we need the following property on a complete noncompact
gradient shrinking Ricci soliton (M, g, f) which is well-known ([4], [12]):

1 1
(35) 10r(@) = 0 < [@) < () + O
for some positive constants ¢ and C. Here r(z) = dist(p,z) is the distance
function from a fixed point p € M. Thus, we have
(3.6) |df| = O(r)

as r — 0Q.

Lemma 3.4. Let (M, g, f) be a complete noncompact oriented gradient shrink-
ing Ricci soliton satisfying (1.5). Then for any L* harmonic 1-form on M,

1

(37) | patw.) =3 [ apr

Proof. Let ¢ be a cut-off function on M. Then, by (3.6),

9 2
[ raan) < [ P e [

Jw]?.
)

r
2
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Since w is in L2, this tends to 0 as 7 — co. The same argument also shows

lim [ (df,w){w,dy) =0.

r—00 M

So, the proof follows from (3.4). O

Theorem 3.5. Let (M,g,f) be a complete noncompact oriented gradient
shrinking Ricci soliton satisfying (1.5) with (n — 2)p < s4. Then there are
no nontrivial L? harmonic 1-forms on (M, g).

Proof. Tt follows from Lemma 3.4 together with the Ricci soliton equation (1.5)
and (2.1) that

1
(3.8) [ o) = 5 [ 15— 020l 20,
M M
Recall the usual Bochner-Weitzenbdck formula
1

(3.9) F AWl = [Dwl” + 7y (w,w)
for harmonic 1-forms w. Since

1

F Al = [wlAlw] + [Vw|?
and |Dw|? > |V|w||? by Kato’s inequality, we have
(3.10) |w]Alw] > 7rg(w,w).

Let ¢ be a cut-off function on M. Multiplying (3.10) by ¢? and integrating it
over M, we have

[ frww < [ Pt
M M
. / S|V [w|f? — 2 / ol (T, V)
M M

<- [ P19l +2 [ olllTellTIwll.
M M
By the inequality ea? + %bQ > 2ab for a,b > 0, we have

1
2 [ VATl < § [ PITRIP+a [ [9pPIP.
M M M

Thus,

3
| row <=1 [ PP [ [VePlp
M M M

3 16
<=3 [ P+ [
M ™ JmMm

Letting r — oo, |w| should be constant by (3.8). Since (M, g) has an infinite
volume, w = 0. O

N
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Remark 3.6. Lack of examples, the condition s; > (n — 2)p on a gradient
shrinking Ricci soliton looks a little strong. For instance, M = R x S§"~!
or M = R? x §"2 with product metric and f(z) = §|z|* for 2 € R or R?
satisfies this condition. Of course, it is easy to see that those manifolds do not
admit nontrivial L? harmonic 1-forms. We don’t know whether other gradient
shrinking Ricci solitons satisfying the scalar curvature condition (n —2)p < sg4
exist.

The next result shows that the total differential of the potential function
on a complete noncompact gradient Ricci soliton cannot be an L? harmonic
1-form unless it is constant.

Theorem 3.7. Let (M, g, f) be a gradient shrinking Ricci soliton which is not
Finstein. Assume that the scalar curvature s, satisfies

(3.11) sq(z) < Cr(x)

for some positive constant C, where r(x) = dist(p, z) for a fized point p. Then
for any smooth function «, € := adf cannot be L? harmonic 1-form except
a=0.

Proof. First, assume that & := adf is an L? harmonic 1-form with a > 0. Then
we have

(3.12) / o?ldf|? < oo
M
and
(3.13) dé =dandf =0, 066§=—{(da,df)—aAf=0.
Thus, we have the following PDE:
(3.14) Af+{(Vloga,Vf)=0.

Recall that f ~ O(r?) and so |V f| ~ O(r) from (2.6). Since V log « is parallel
to Vf by (3.13), (3.14) together with the fact Af = np—s, and our assumption
(3.11) shows that
|V log o
is bounded. By (3.5), f should attain its local minimum at somewhere point.
It follows from maximum principle (cf. [8], Theorem 3.5) that f should be
constant on a geodesic ball, which means that f is constant on M. This
contradicts that (M, g, f) is not Einstein.
Now assume that « is arbitrary. Let

Ot ={zeM : a(zx) > 0}.

Replacing adf by —adf if necessary, we may assume that Q% is unbounded
open subset of M. Choose a geodesic ball B C QF containing a local minimum
point of f. Applying arguments mentioned above to B, f should be constant
on B and so constant on M since Af = np —s,. Consequently, adf cannot be
an L? harmonic 1-form unless it is trivial. (I
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4. Integral properties and generalizations

In this section, we shall derive various integral identities including L? har-
monic 1-forms on a complete gradient shrinking Ricci soliton, and consider
generalizations of results mentioned in previous section. To do this, we need,
first, the following Ricci identity which is well-known.

Lemma 4.1. Let w be an L? harmonic 1-form on a Riemannian manifold
(M,g). Then

(4.1) —D*Dw = ry(w, ),

where D* is the adjoint of the covariant derivative D and D*Dw is given by

D*Dw =~ (D¢, De,w — D, eiw)
1=1

and {e;} is a local orthonormal frame.

The following property on a complete noncompact gradient shrinking Ricci
soliton (M, g, f) is well-known ([12]):

(4.2) / eyl < oo
M

Theorem 4.2. Let (M,g, f) be a complete oriented gradient shrinking Ricci
soliton. Then for any L? harmonic 1-form w,

(4.3) /M eI (df,w)? :p/Me*f|w|2+/Me*f|Dw|2.

Proof. Let ¢ be a cut-off function. Since §(e~fw) = e=f (df,w), we get
/ <p26_f<df,w>2 = / <p2<df,w>6(e_fw)
M M
— [ e
M
(4.4) —2 [ ol ds)
M

+ / e~ 1% [Ddf (w,w) + Dw(df,w)].
M

Next, from the Ricci identity (4.1) together with the Ricci soliton equation
(1.5), we have

(4.5) —D*Dw(w) = ry(w,w) = plw* — Ddf (w,w).
Multiplying both sides by e~/ y? and integrating it over M, we get

p [ b~ [ IR w)
M M

= —/ (D*Dw, e~ p%w)
M
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_ / (Dw. (e~ p*w))
M

= / e_fg02Dw(df,w)72/ e_fgaDw(dcp,w)f/ e~ 1% Dwl?.
M M M
Thus
/ e_ftp2Ddf(w,w)+/ e T Dw(df,w)
M

M
= p/ e_f<p2|w|2+/ e_f<p2|Dw|2—|—2/ e T pDuw(dp,w).
M M M

This together with (4.4) shows that

/ et (df,w)? — 2 / e oldf, ) (w, do)
M

M
4.6 = e T w|* + e 1% Dwl|? + 2 e foDw(dp,w).
P 2
M M M

Finally, using the usual Bochner-Weitzenbock formula (3.9) together with the
fact (3.5), we can see that [, , e~/|Dw|? is bounded and so by letting r — oo,
the third term in (4.6) tends to 0. By (4.2), the second term also tends to 0 as
r — oo. Consequently, we obtain

/ e~ {df,w)? = p/ e~ fw)? +/ e 7| Dw|?. .
M M M

As a direct consequence of Theorem 4.2, we can recover Theorem 3.1.

Lemma 4.3. Let (M, g, f) be a gradient shrinking Ricci soliton. Then for any
L? harmonic 1-form w on M, we have

(4.7) / e~/ (Ddf,Dw) =0 and / e~ {df,w) = 0.
M M
Proof. Let ¢ be a cut-off function on M. Since §(e~/r,) = 0, we have

@s) 0= [ s ) = [ @) ),
M M
Since w is harmonic, we have
" (pw) = dp ® w + pDw
and so
(0% (pw),rg) = (dp ®w + pDw, pg — Ddf)
= p(de ©w, g) = (de © w, Ddf) — p(Dw, Ddf).

By Cauchy-Schwarz inequality,

/ et (Dw, Ddf) = / pet (o O, g) - / ¢ (dp © w, Df)
M M

M



L? HARMONIC FORMS ON GRADIENT SHRINKING RICCI SOLITONS 1201

(49) <o(/[ e—ff (/[ |d<P|2IWI2)%

1 1
([ e ([ aaeer)
M M
By letting r — 0o, we have

(4.10) / e~/ (Dw, Ddf) = 0.
M
Next, recall, by (2.5), that
dDdf = rq(df,-).
So, we have

| ereenge) = [ et
M M
=0 [ )~ [ IPDdrrw).

On the other hand, integration by parts shows
| et enae = [ a5
M M
— - [ epd@rw) +2 | e ToDdfdow)
M

M
+ / e~ T2 (Ddf, Dw).
M
Comparing these two equalities, we have

p/M e T2 df,w) =2 /M e T pDdf (dp,w) —|—/ e T p*(Ddf, Dw).

M
Since

\ / e_wadf(d%w)‘S( / e‘waIDdeQ) ( / e-f|w|2|W|2) ,
M M M

we have, from (4.10),
-f —
e T {df,w) = 0.
fy e 0

Using Lemma 4.3, we can generalize Theorem 3.1 as follows.

Theorem 4.4. Let (M,g, f) be a gradient shrinking Ricci soliton. If w is an
L? harmonic 1-form on M satisfying either

(i) (df,w) is nonnegative or nonpositive on the whole M, or

(i) (df,w) is constant,

then w is trivial.
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Remark 4.5. We can prove the second part of Theorem 4.4 by using Lemma 4.3
and the co-area formula. In fact, we may assume that f is not constant.
Suppose that w is an L? harmonic 1-form such that the angle 6 between V f
and w' is constant. By Lemma 4.3 and the co-area formula,

0:/ e*f<df,w>:/ e~ 7| df||w| cos b
M M

/ et </ |w|cos€do> dt
0 f71®)
= cos@/ eft/ |w]| do dt.

0 =)

If cos@ = 0, then (df,w) = 0 and so w = 0 by Theorem 3.1. If cosf # 0, then
w = 0.

Next, we will derive a formula on the Laplacian of the function (df,w) for
an L? harmonic 1-form on a gradient shrinking Ricci soliton (M, g, f). Recall
that the Bochner-Weitzenbock formulas

SAIVIP = [Ddf> + (@AS.df) + r(df. df)
and
%A|w|2 = |Dwl|? + ry(w,w)
for a harmonic 1-form w. Since dAf = —ds, = —2r4(df, ),

S8+ dfP = Do+ DA + 1y -+ df, 0+ df) + (A + ), + )

1 1
= 5A|w|2 + 5A|Vf|2 + 2(Dw, Ddf).
On the other hand,
1 1 1

(4.11) 5A|w+df|2 = 5A|w|2+A<w,df> + 5A|df|2.
Comparing these two identities, we get
(4.12) A{w, df) = 2(Dw, Ddf).
From the Ricci identity in Lemma 4.1, we also have D*Dw(df) = —r4(df,w) =
—1dsg(w), ie.,

1

§<dsg,w> = —(df, D* Dw).
Theorem 4.6. Let (M, g, f) be a complete oriented gradient Ricci soliton. Let

w be an L? harmonic 1-form. If (Ddf, Dw) > 0 or (Ddf, Dw) < 0 on the whole
M, then (df,w) is a harmonic function.

Proof. Tt is obvious by Lemma 4.3 and (4.12). O
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We are going to mention a few more properties related to L? harmonic 1-
forms. First of all, it follows from (4.4) by letting r — oo that

(4.13) /M e I (df,w)? = /M e [Ddf (w,w) 4+ Dw(df,w)] .

Lemma 4.7. Let w be an L? harmonic 1-form on a gradient shrinking Ricci
soliton (M, g, f). Then

(4.14) /M e~ [Ddf (df,w) + Dw(df,df)] =0
and
(4.15) %/M e sy (df,w) = /M e~ Dw(df, df).

Proof. Since A(df,w) = 2(Ddf, Dw), we have
—f 2 _ ~F2A _ —F 2
2 / I DAf D) /Me PN, ) / (et i)
- / e~ G (Ddf (dfw) + Deo(df, df )]
M

— 2/ e_fgo[Ddf(dgo,w) + Dw(dy, df)].
M

By letting 7 — oo, both the third and fourth terms tend to 0, respectively, and
so we have

(4.16) 2 / e~ 1 (Ddf, Dw) = / e~ [Ddf (df,w) + Dw(df, df)].
M M
By Lemma 4.3, we have
(4.17) / e~ [Ddf (df,w) + Dw(df, df)] = 0.
M

Next, since fM e~f(df,w) = 0, we have

/ e_fDdf(df,w) = —/ e_frg(df,w)
M

M
from the Ricci soliton equation. So, (4.14) is equivalent to

-f — -f
(4.18) /Me rq(df,w) = /Me Dw(df,df).
Also since
1 1 1
/M e fry(df,w) = B /M e M {dsy,w) = B /M s40(eTw) = B /M e s, (df,w),
we have

(4.19) % /M e sy (df,w) = /M e~ Dw(df, df).
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By (4.14) and (4.17), we obtain

(4.20) 1/M e_fsg<df,w>+/ eI Ddf (df,w) = 0.

2 M

We can show (4.20) from the following identity which can be obtain from the
Ricei soliton equation (1.5),

(.21) £ (dsg,10) = pldf. ) — Df(df.0),

by multiplying (4.21) by e=7¢? and integrating it over M.
Finally, we would like to mention an integral identity which is similar as
Lemma 3.4. To derive this, we need, first, the following.

Lemma 4.8 ([7], [10]). Let w be an L? harmonic 1-form on a Riemannian
manifold. Then for any smooth bounded domain D CC M and smooth vector
field X, we have

(4.22) /D {((DX)w,w> - %(divX)|w|2}/aD {(ixw,iyw> - %(X, 1/>|w|2} .
Here (DX)w(Y) is defined by (DX)w(Y) = w (Dy X).

Lemma 4.9. Let w be an L? harmonic 1-form on a complete noncompact
gradient shrinking Ricci soliton (M, g, ). Then
(4.23)

[ Aerpawr-ger@nr = [ et ep-ge e},

Proof. Let D = B(r) be a geodesic ball and let
X :=e TVYf.
Then we have
(4.24) DX = —e~fdf @ df + e~ Ddf
and so
(DX)w,w) = —e~{df,w)? + e~ T Ddf (w,w).

Note also that
1

1 B 1 _
5(d1vX)|w|2:*§€ f|df|2|W|2+§e H(Af)|w]?

and
(ixw, i w) — %(X, V>|w|2 = eif(df, wi{w, v) — %eif<df, 1/)|w|2.

Substituting these into (4.22) in Lemma 4.8, we obtain

(4.25) /B( ){fe*f<df, w)? + e~ Ddf (w,w)}
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1 ~F(ldfl? — 2
w5 [, = A

_ 1 _
_ / {e 1) (w,v) — 5 (df, V>|w|2} .
OB(r)
Letting r — oo, the right hand side tends to 0, and so we have (4.23). (I

5. Decomposition of L? harmonic 1-forms

In this section, we consider an L? closed 1-form, but not necessarily harmonic
on a complete gradient shrinking Ricci soliton (M, g, f). We shall derive some
conditions so that such a form vanishes, and apply this to the decomposition
of an L? harmonic 1-form on (M, g, f).

Let 7 be a closed 1-form on a complete noncompact oriented gradient shrink-
ing Ricci soliton (M, g, f) satisfying

(5.1) (df,n) =0 and /M In]? < oc.

We have the following Ricci identity for a closed 1-form which is similar as
Lemma 4.1 for harmonic 1-forms.

Lemma 5.1. Let i be a closed 1-form on a gradient shrinking Ricci soliton

(M.,g,f). Then
(5.2) —D*Dn =1ry4(n,-) — don.
Proof. Let {e;} be a local frame which is normal at a point. Writing w =
> wie;, from dnp = 0, we have n; ; = n;,; for each 4, j. So, denoting r4(e;, e;) =
r;; and applying the Einstein convention,
D*Dn(ek) = 7D€iD€i77(ek) - 7D6iD6k77(ei)

= —=De, De;n(ei) — Rei, ex)n(e:)

= —ex(dn) — n(R(ei, ex)e;)

= dbn(ex) —rg(n,-)-
This implies that

—D*Dw = ry(w,-) — ddn. O

Let n be a closed 1-form on a gradient shrinking Ricci soliton (M, g, f)
satisfying (5.1). From Lemma 5.1 together with the Ricci soliton equation
(1.5), we have

—D*Dn(n) = pln|* — Ddf (n,n) — (dén,n).

Let ¢ be a cut-off function on M. Multiplying by e~/ (? and integrating it over
M, we get

p/ e’fsazlnIQ*/ e’f<P2Ddf(77ﬂ7)*/ e~ 1 *(dén, )
M M M
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_ / e 2 D* D) = — / (D, D(e~ o%n))
M M

:/ e‘f<p2Dn(df,n)*2/ 6‘stDn(ds0,n)*/ e 7% Dyl
M M M

Thus,
/M e~ 1 ? [Ddf (n,n) + Dn(df,n)]
:p/ e T o?nf? */ n (6(e~ 7 %n))
M M
+2/ 6‘f<PD77(d<W7)+/ e~ % Dpl?
M M
(5.3) =p/ e‘fso2|77|2+2/ e‘fw<dso,n>5n+/ e T (6n)?
M M M

+2/ e~fpDn(dp, n) +/ e~ ? Dnf*.
M M
Now assume that
(5.4) Dn(df,n) = Dn(n, df).
Since 7 is not harmonic, this is not true in general. Since (df,n) = 0, we have
Ddf(n,-) + Dn(-, df) = 0.
So, from (5.4)
(5.5) Ddf (n,n) + Dn(df,n) = 0.
Therefore, it follows from (5.3) that
p/ e T2l +/ e T2 (on)? +/ e~ 1?|Dnl?
M M M
= —2/ e_fw<d<p,n>5n—2/ e~ oDn(de,n)
M M
S R W
M M
s [ TP+ [ e TidePint
M M
Since 7 is in L2, by letting 7 — oo, we obtain

p/ e T?n> =0,
M

which implies that n = 0. Thus we have the following.

Lemma 5.2. Let 1) be an L? closed 1-form on a complete noncompact oriented
gradient shrinking Ricci soliton (M, g, f). Suppose that {(df,n) =0 and

(5.6) Dn(df,n) = Dn(n, df).
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Then n = 0.

Lemma 5.2 can be considered as a generalization of Theorem 3.1 because
harmonic 1-forms satisfy (5.6).

Proposition 5.3. Let w be an L? harmonic 1-form on a complete noncompact
oriented gradient shrinking Ricci soliton (M, g, f). If there is a function « :
M — R such that da and df are parallel and satisfying

<W_adf,df> :Oa
then w = 0.

Proof. Let 1 := w — adf so that 7 is a closed 1-form satisfying
(df,n) =0 and In* < oo
M
and
(da,m) = 0.
In particular,
Ddf (n,n) + Dn(n, df) = 0.
Moreover, since 0 = (df,n) = (df,w) — a|df|?, we have

|df|*(da, n) = (d{df,w),n) — a{d|df |*,n)
= Ddf (w,n) + Dw(df,n) — 2aDdf (df 1)
= Ddf (n,n) + aDdf (df,n) + da @ df (df,n) + aDdf (df . n)
+ Dn(df,n) — 2aDdf (df , n)

= Ddf (n,n) + Dn(df,n)
=0.

Thus,

Dn(n, df) = Dn(df,n).
By Lemma 5.2, we have n = 0 and so w = adf. Finally, by Theorem 3.7,
w = 0. O
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