J. Korean Math. Soc. **54** (2017), No. 4, pp. 1189–1208 https://doi.org/10.4134/JKMS.j160421 pISSN: 0304-9914 / eISSN: 2234-3008

L² HARMONIC FORMS ON GRADIENT SHRINKING RICCI SOLITONS

GABJIN YUN

ABSTRACT. In this paper, we study vanishing properties for L^2 harmonic 1-forms on a gradient shrinking Ricci soliton. We prove that if (M, g, f)is a complete oriented noncompact gradient shrinking Ricci soliton with potential function f, then there are no non-trivial L^2 harmonic 1-forms which are orthogonal to df. Second, we show that if the scalar curvature of the metric g is greater than or equal to (n-2)/2, then there are no non-trivial L^2 harmonic 1-forms on (M,g). We also show that any multiplication of the total differential df by a function cannot be an L^2 harmonic 1-form unless it is trivial. Finally, we derive various integral properties involving the potential function f and L^2 harmonic 1-forms, and handle their applications.

1. Introduction

A differential form ω on a Riemannian manifold (M, g) is said to be *harmonic* if it satisfies

$$\Delta\omega = (d\delta + \delta d)\omega = 0$$

and ω is said to be in L^2 if

$$\int_M \omega \wedge *\omega = \int_M |\omega|^2 \, dv_g < \infty,$$

where * denotes the Hodge star operator and dv_g is the volume form of (M, g).

If ω is a harmonic 1-form, then its dual ω^{\sharp} is a harmonic vector field on M in the following sense: if we choose a local frame e_1, \ldots, e_n such that $D_{e_i}e_j = 0$ at a point and if we denote $\omega^{\sharp} = \omega_i e_i$, then $D_{e_i}\omega_j = D_{e_j}\omega_i$ and $D_{e_i}\omega_i = 0$ at the point. Or, equivalently

(1.1)
$$\omega_{i;j} = \omega_{j;i} \text{ and } \sum_{i} \omega_{i;i} = 0.$$

Received June 10, 2016; Revised September 1, 2016.

2010 Mathematics Subject Classification. Primary 53C20; 53C25.

Key words and phrases. gradient shrinking Ricci solitons, L^2 harmonic forms.

©2017 Korean Mathematical Society

This work was supported by 2014 Research Fund of Myongji University.

It is well-known that if ω is an L^2 harmonic 1-form on a Riemannian manifold (M, g), then

(1.2) $d\omega = 0$ and $\delta\omega = 0$.

The theory of L^2 harmonic differential forms can be used to study the geometry and topology of complete noncompact Riemannian manifolds.

In this paper, we study the structure of the space of L^2 harmonic 1-forms on a complete gradient shrinking Ricci soliton. A complete Riemannian metric g on a smooth manifold M^n is called a *Ricci soliton* if there exist a constant ρ and a smooth 1-form ω such that

(1.3)
$$2r_g + \mathcal{L}_{\omega^{\sharp}}g = 2\rho g,$$

where r_g is the Ricci tensor of the metric g, ω^{\sharp} is the vector field dual to ω , and $\mathcal{L}_{\omega^{\sharp}}$ denotes the Lie derivative along ω^{\sharp} . Since $\mathcal{L}_{\omega^{\sharp}}g(X,Y) = D_X\omega(Y) + D_Y\omega(X)$ for any vector fields X and Y, (1.3) is equivalent to

(1.4)
$$2r_g(X,Y) + D_X\omega(Y) + D_Y\omega(X) = 2\rho g(X,Y).$$

Moreover if there is a smooth function f on M such that $\omega = df$, then g is called a *gradient Ricci soliton*. The Ricci soliton is said to be *shrinking, steady* and *expanding* according as $\rho > 0$, $\rho = 0$, $\rho < 0$. In case of gradient Ricci soliton, (1.3) becomes

(1.5)
$$r_g + Ddf = \rho g$$

There are some books and expository articles on Ricci solitons and gradient Ricci solitons (cf. [3], [5], [6] and references are therein).

In [12], O. Munteanu and N. Sesum proved that if (M, g) is a gradient shrinking Kähler-Ricci soliton (see [12] for the definition of Kähler-Ricci soliton), or a gradient steady Ricci soliton, then there are no nontrivial harmonic functions with finite energy. Note that the total differential du of a nonconstant harmonic function u defined on a noncompact complete Riemannian manifold is a nontrivial harmonic 1-form. Furthermore, if u has finite energy, then the total differential becomes a nontrivial L^2 harmonic 1-form on M. Thus due to O. Munteanu and N. Sesum's result, there are no nontrivial L^2 harmonic 1-forms on a gradient shrinking Kähler-Ricci soliton or a gradient steady Ricci soliton. In case of shrinking Kähler-Ricci solitons (M, g, f), they proved that if u is a harmonic function with finite energy, then $\langle \nabla f, \nabla u \rangle = 0$.

Motivated by this property, we consider, in this paper, vanishing properties of L^2 harmonic 1-forms on a complete gradient shrinking Ricci soliton which is orthogonal to the total differential of the potential function as above. We prove a similar result as Munteanu and Sesum's result mentioned above holds in a complete gradient shrinking Ricci soliton.

Theorem A. Let (M, g, f) be a complete oriented gradient shrinking Ricci soliton. Then there are no nontrivial L^2 harmonic 1-forms ω on M such that $\langle df, \omega \rangle = 0$.

When the scalar curvature s_g of a complete gradient Ricci soliton (M, g, f) satisfies $(n-2)\rho \leq s_g$, we can also show that there are no nontrivial L^2 harmonic 1-forms on (M, g).

Theorem B. Let (M, g, f) be a complete noncompact oriented gradient shrinking Ricci soliton satisfying (1.5) with $(n-2)\rho \leq s_g$. Then there are no nontrivial L^2 harmonic 1-forms on (M, g).

In this paper, we also study various properties on the space of L^2 harmonic 1forms on a complete gradient shrinking Ricci soliton, and derive various useful integral identities on L^2 harmonic 1-forms. Among them, we would like to mention the following property.

Theorem C. Let (M, g, f) be a complete oriented gradient shrinking Ricci soliton satisfying (1.5), and let ω be an L^2 harmonic 1-form on (M, g). Then (1) $\int_M e^{-f} \langle df, \omega \rangle^2 = \rho \int_M e^{-f} |\omega|^2 + \int_M e^{-f} |D\omega|^2$. (2) $\int_M e^{-f} \langle Ddf, D\omega \rangle = 0$ and $\int_M e^{-f} \langle df, \omega \rangle = 0$.

Using (1) in Theorem C, we can recover the proof of Theorem A. And from (2), we can see a weaker version of Theorem A does hold. In fact, we can show that, on a complete oriented gradient Ricci soliton, there are no nontrivial L^2 harmonic 1-forms ω on M such that either $\langle df, \omega \rangle$ is nonnegative or constant.

2. Preliminaries and basic formulas

In this section, we shall state some basic well-known facts on Ricci solitons, and derive some integral properties involving differential 1-forms. First of all, taking the trace in (1.5), we have

(2.1)
$$\Delta f = n\rho - s_g, \quad d\Delta f = -ds_g, \quad \Delta s_g = -\Delta^2 f.$$

Note that the following identities on Riemannian manifolds hold without any condition:

(2.2)
$$\delta Ddf = -d\Delta f - r_g(\nabla f, \cdot)$$

and

(2.3)
$$\delta r_g = -\frac{1}{2}ds_g.$$

So, taking the divergence of both sides in (1.5) and using these identities, we obtain

$$-\frac{1}{2}ds_g - d\Delta f - r_g(\nabla f, \cdot) = 0,$$

which implies, from (2.1),

(2.4)
$$r_g(\nabla f, \cdot) = \frac{1}{2} ds_g$$

and

(2.5)
$$\delta Ddf = \frac{1}{2}ds_g$$

Next, it is well-known ([2], [9]) that, for any gradient Ricci soliton (M, g, f),

(2.6) $s_g + |\nabla f|^2 - 2\rho f = C(\text{constant}).$

In fact, using the Ricci soliton equation (1.5) and (2.4), we can easily show that

$$d\left(s_g + |\nabla f|^2 - 2\rho f\right) = 0$$

By (2.3) and (2.4)

$$\frac{1}{2}\delta ds_g = -\frac{1}{2}\langle ds_g, df \rangle - \langle r_g, Ddf \rangle.$$

In fact, choosing an orthonormal basis $\{e_i\}$ such that $D_{e_i}e_j(p) = 0$ for some point $p \in M$, we have, at the point p,

$$\begin{split} \frac{1}{2} \delta ds_g &= -D_{e_i}(i_{\nabla f} r_g)(e_i) = -D_{e_i}(i_{\nabla f} r_g(e_i)) = -D_{e_i}(r_g(\nabla f, e_i)) \\ &= -D_{e_i} r_g(\nabla f, e_i) - r_g(D_{e_i} \nabla f, e_i) \\ &= \delta r_g(\nabla f) - \langle r_g, Ddf \rangle \\ &= -\frac{1}{2} \langle ds_g, df \rangle - \langle r_g, Ddf \rangle. \end{split}$$

Thus, we obtain

(2.7)
$$\Delta s_g = \langle ds_g, df \rangle + 2 \langle r_g, Ddf \rangle.$$

It follows from (1.5) that

$$\langle r_g, Ddf \rangle = \rho \Delta f - |Ddf|^2$$

and

$$\langle r_g, Ddf \rangle = \rho s_g - |r_g|^2.$$

Thus, we get

(2.8)
$$\Delta(2\rho f - s_g) + \langle ds_g, df \rangle = 2|Ddf|^2.$$

Note that the adjoint operator δ^* of the divergence operator δ on the space of symmetric 2-tensors is the composition of covariant derivative with symmetrization (cf. [1]). Thus on the space of 1-forms $\Omega^1(M)$, we have

$$\delta^* \alpha(X, Y) = \frac{1}{2} \{ D_X \alpha(Y) + D_Y \alpha(X) \}$$
$$= \frac{1}{2} \mathcal{L}_{\alpha^{\sharp}} g(X, Y).$$

Convention. When we are going to integrate some quantity on a gradient Ricci soliton (M, g, f), we omit the volume form dv_g . Thus $\int_M e^{-f} |r_g|^2$ just means $\int_M e^{-f} |r_g|^2 dv_g$.

Lemma 2.1. Let (M, g, f) be a compact gradient Ricci soliton satisfying (1.5). Then for any 1-form η ,

$$2\rho \int_{M} e^{-f} \langle df, \eta \rangle = \int_{M} e^{-f} \langle Ddf, \mathcal{L}_{\eta^{\sharp}} g \rangle.$$

Proof. Since $\delta^* \eta = \frac{1}{2} \mathcal{L}_{\eta^{\sharp}} g$, it follows from (1.5) that

$$\langle r_g, \delta^*\eta \rangle = rac{
ho}{2} \langle g, \mathcal{L}_{\eta^{\sharp}}g \rangle - rac{1}{2} \langle Ddf, \mathcal{L}_{\eta^{\sharp}}g \rangle.$$

From definition, we have

$$\langle g, \mathcal{L}_{\eta^{\sharp}}g \rangle = \mathrm{tr}_{g}\mathcal{L}_{\eta^{\sharp}}g = -2\delta\eta.$$

Thus

$$\langle r_g, \delta^*\eta \rangle = -\rho \delta \eta - \frac{1}{2} \langle Ddf, \mathcal{L}_{\eta^{\sharp}}g \rangle.$$

Since $\delta(e^{-f}r_g)=0$ for gradient Ricci solitons, we have

$$0 = \int_{M} \langle \delta(e^{-f}r_{g}), \eta \rangle = \int_{M} e^{-f} \langle r_{g}, \delta^{*}\eta \rangle$$

= $-\rho \int_{M} e^{-f} \delta \eta - \frac{1}{2} \int_{M} e^{-f} \langle Ddf, \mathcal{L}_{\eta^{\sharp}}g \rangle$
= $\rho \int_{M} e^{-f} \langle df, \eta \rangle - \frac{1}{2} \int_{M} e^{-f} \langle Ddf, \mathcal{L}_{\eta^{\sharp}}g \rangle.$

When $\eta = du$ for a function $u: M \to \mathbb{R}$, then

$$\rho \int_{M} e^{-f} \langle df, du \rangle = \int_{M} e^{-f} \langle Ddf, Ddu \rangle.$$

In particular, we have

(2.9)
$$\rho \int_{M} e^{-f} |df|^{2} = \int_{M} e^{-f} |Ddf|^{2}.$$

Using (2.9), we can prove a well-known rigidity result which says that any compact gradient steady or expanding Ricci soliton is Einstein.

From now, assume that (M, g, f) be a complete noncompact gradient Ricci soliton.

Lemma 2.2. Let (M, g, f) be a complete noncompact gradient Ricci soliton satisfying (1.5). Then for any 1-form η on M and any C^1 function ψ with compact support,

$$2\rho \int_{M} \psi e^{-f} \langle df, \eta \rangle = \int_{M} \psi e^{-f} \langle Ddf, \mathcal{L}_{\eta^{\sharp}}g \rangle + 2 \int_{M} e^{-f} \langle Ddf, d\psi \odot \eta \rangle,$$

where

$$d\psi \odot \eta(X,Y) = \frac{1}{2} \{ d\psi(X)\eta(Y) + d\psi(Y)\eta(X) \}.$$

Proof. Applying Lemma 2.1 to the 1-form $\alpha := \psi \eta$ which has compact support, we have

(2.10)
$$2\rho \int_{M} \psi e^{-f} \langle df, \eta \rangle = \int_{M} e^{-f} \langle Ddf, \mathcal{L}_{\alpha^{\sharp}} g \rangle.$$

Note that

(2.11)
$$\mathcal{L}_{(\psi\eta)^{\sharp}}g = \psi \mathcal{L}_{\eta^{\sharp}}g + 2d\psi \odot \eta.$$

Therefore,

$$2\rho \int_{M} \psi e^{-f} \langle df, \eta \rangle = \int_{M} \psi e^{-f} \langle Ddf, \mathcal{L}_{\eta^{\sharp}}g \rangle + 2 \int_{M} e^{-f} \langle Ddf, d\psi \odot \eta \rangle. \quad \Box$$

If $\eta = du$ for a function $u: M \to \mathbb{R}$, then

$$\rho \int_{M} \psi e^{-f} \langle df, du \rangle = \int_{M} \psi e^{-f} \langle Ddf, Ddu \rangle + \int_{M} e^{-f} Ddf (\nabla u, \nabla \psi).$$

In particular,

(2.12)
$$\rho \int_{M} \psi e^{-f} |df|^{2} = \int_{M} \psi e^{-f} |Ddf|^{2} + \int_{M} e^{-f} Ddf (\nabla f, \nabla \psi).$$

Notation. From now, for convenience we will use some confused notations for vector fields and 1-forms if there is no ambiguity. For example, we use ω for both 1-form ω and vector field ω^{\sharp} which is dual to ω , and df for both vector field ∇f and the total differential df as a 1-form. This means that

$$r_g(\omega,\omega) = r_g(\omega^{\sharp},\omega^{\sharp}), \quad r_g(df,df) = r_g(\nabla f,\nabla f)$$

and

$$Ddf(\omega,\omega) = Ddf(\omega^{\sharp},\omega^{\sharp}), \quad Ddf(df,\omega) = Ddf(\nabla f,\omega^{\sharp})$$

etc. And, by a definition, a cut-off function φ means that

 \mathbf{S}

$$0 \le \varphi \le 1$$
, $|\nabla \varphi| \le \frac{2}{r}$, $\varphi = 1$ on $B\left(\frac{r}{2}\right)$

and

$$\operatorname{upp}(\varphi) \subset B(r)$$

for a geodesic ball B(r) at a point in M.

3. Vanishing property of L^2 harmonic 1-forms

In this section, we are going to show vanishing properties of L^2 harmonic 1-forms on a complete oriented gradient shrinking Ricci soliton (M, g, f) by using Bochner formula for f-Hodge Laplancian. Let

$$\delta_f = \delta + \iota_{\nabla f},$$

where $\iota_{\nabla f}$ is the interior product with the vector field ∇f . The *f*-Hodge Laplacian is defined by

$$\Delta_f = -\left(d\delta_f + \delta_f d\right).$$

Then it is well-known that, for a 1-form ω on a smooth metric measure space $(M, g, e^{-f} dv_g)$,

(3.1)
$$\frac{1}{2}\Delta_f |\omega|^2 = |D\omega|^2 + \langle \Delta_f \omega, \omega \rangle + \operatorname{Ric}_f(\omega, \omega),$$

where $\text{Ric}_{f} = r_{g} + Ddf$ (cf. [11] or [16]).

Theorem 3.1. Let (M, g, f) be a complete noncompact oriented gradient shrinking Ricci soliton satisfying (1.5). Then there are no nontrivial L^2 harmonic 1-forms ω on M such that $\langle df, \omega \rangle = 0$.

Proof. Let ω be an L^2 harmonic 1-forms ω on (M, g, f) such that $\langle df, \omega \rangle = 0$. First of all, in case of gradient Ricci soliton, we have

$$\operatorname{Ric}_f(\omega,\omega) = \rho |\omega|^2.$$

Since $d\omega = 0 = \delta\omega, \Delta\omega = 0$ and

$$\Delta_f = \Delta - (d\iota_{\nabla f} + \iota_{\nabla f}d),$$

we have

$$\Delta_f \omega = -d\langle \omega, df \rangle = 0$$

by assumption. Thus, from (3.1) and Kato's inequality, we obtain

(3.2)
$$\frac{1}{2}\Delta_f |\omega|^2 = |D\omega|^2 + \rho |\omega|^2 \ge |\nabla|\omega||^2 + \rho |\omega|^2.$$

Let φ be a cut-off function on M. Multiplying (3.2) by $\varphi^2 e^{-f}$ and integrating it over M, we have

$$\begin{split} \int_{M} \varphi^{2} e^{-f} |\nabla|\omega||^{2} + \rho \int_{M} \varphi^{2} e^{-f} |\omega|^{2} &\leq \frac{1}{2} \int_{M} \varphi^{2} e^{-f} \Delta_{f} |\omega|^{2} \\ &= -\frac{1}{2} \int_{M} e^{-f} \langle \nabla \varphi^{2}, \nabla |\omega|^{2} \rangle \\ &\leq 2 \int_{M} e^{-f} \varphi |\omega| |\nabla \varphi| |\nabla|\omega|| \\ &\leq \int_{M} e^{-f} \varphi^{2} |\nabla|\omega||^{2} + \int_{M} e^{-f} |\nabla \varphi|^{2} |\omega|^{2} \end{split}$$

Thus, we obtain

$$\rho \int_M \varphi^2 e^{-f} |\omega|^2 \le \frac{4}{r^2} \int_M |\omega|^2.$$

Letting $r \to \infty$, we have $\omega = 0$.

Remark 3.2. Applying Theorem 4.6 in [14] or Theorem 4.2 in [15] to (3.2), we have $|\omega|$ is constant. It is well-known that a complete oriented noncompact gradient shrinking Ricci soliton has an infinite volume (cf. [13]). Thus ω should be trivial.

Theorem 3.1 can be reformulated as follows:

Theorem 3.3. Let (M, g, f) be a complete oriented noncompact gradient shrinking Ricci soliton. Then there are no nontrivial L^2 harmonic 1-forms ω on M such that, on each level hypersurface $f^{-1}(c)$ with a regular value c of f, the vector field ω^{\sharp} dual to ω is tangent to $f^{-1}(c)$.

Next, we are going to show vanishing property of L^2 harmonic 1-forms on a complete oriented noncompact gradient shrinking Ricci solition (M, g, f) satisfying (1.5) with $(n-2)\rho \leq s_g$. Let φ be a cut-off function and let ω be an L^2

harmonic 1-form on a complete oriented noncompact gradient shrinking Ricci solition (M,g,f) satisfying (1.5). Then

$$(3.3) \quad \int_{M} \varphi Ddf(\omega, \omega) = \int_{M} f_{;ij} \omega_{i} \omega_{j} \varphi = -\int_{M} f_{;i} (\omega_{i} \omega_{j} \varphi)_{;j}$$
$$= -\int_{M} f_{;i} \omega_{i;j} \omega_{j} \varphi - \int_{M} f_{;i} \omega_{i} \omega_{j;j} \varphi - \int_{M} f_{;i} \omega_{i} \omega_{j}(\varphi)_{;j}$$
$$= -\int_{M} f_{;i} \omega_{i;j} \omega_{j} \varphi - \int_{M} f_{;i} \omega_{i} \omega_{j}(\varphi)_{;j}.$$

Note that

$$\int_{M} f_{;i}\omega_{i;j}\omega_{j}\varphi = \int_{M} f_{;i}\omega_{j;i}\omega_{j}\varphi = -\int_{M} \omega_{j}(f_{;i}\omega_{j}\varphi)_{;i}$$
$$= -\int_{M} \omega_{j}f_{;ii}\omega_{j}\varphi - \int_{M} \omega_{j}f_{;i}\omega_{j;i}\varphi - \int_{M} \omega_{j}f_{;i}\omega_{j}(\varphi)_{;i}.$$

Thus

$$\int_{M} f_{;i}\omega_{i;j}\omega_{j}\varphi = -\frac{1}{2}\int_{M} (\Delta f)|\omega|^{2}\varphi - \frac{1}{2}\int_{M} |\omega|^{2}\langle df, d\varphi \rangle.$$

Plugging this into (3.3), we obtain

(3.4)
$$\int_{M} \varphi D df(\omega, \omega) = \frac{1}{2} \int_{M} (\Delta f) |\omega|^{2} \varphi + \frac{1}{2} \int_{M} |\omega|^{2} \langle df, d\varphi \rangle - \int_{M} \langle df, \omega \rangle \langle \omega, d\varphi \rangle.$$

To prove Theorem B, we need the following property on a complete noncompact gradient shrinking Ricci soliton (M, g, f) which is well-known ([4], [12]):

(3.5)
$$\frac{1}{4}(r(x) - c)^2 \le f(x) \le \frac{1}{4}(r(x) + C)^2$$

for some positive constants c and C. Here r(x) = dist(p, x) is the distance function from a fixed point $p \in M$. Thus, we have

$$(3.6) |df| = \mathcal{O}(r)$$

as $r \to \infty$.

Lemma 3.4. Let (M, g, f) be a complete noncompact oriented gradient shrinking Ricci soliton satisfying (1.5). Then for any L^2 harmonic 1-form on M,

(3.7)
$$\int_{M} Ddf(\omega, \omega) = \frac{1}{2} \int_{M} (\Delta f) |\omega|^{2}.$$

Proof. Let φ be a cut-off function on M. Then, by (3.6),

$$\left|\int_{M} |\omega|^{2} \langle df, d\varphi \rangle\right| \leq \int_{M} |\omega|^{2} |df| |d\varphi| \leq C \int_{B(r) \setminus B\left(\frac{r}{2}\right)} |\omega|^{2}.$$

Since ω is in L^2 , this tends to 0 as $r \to \infty$. The same argument also shows

$$\lim_{r \to \infty} \int_M \langle df, \omega \rangle \langle \omega, d\varphi \rangle = 0.$$

So, the proof follows from (3.4).

Theorem 3.5. Let (M, g, f) be a complete noncompact oriented gradient shrinking Ricci soliton satisfying (1.5) with $(n-2)\rho \leq s_g$. Then there are no nontrivial L^2 harmonic 1-forms on (M, g).

Proof. It follows from Lemma 3.4 together with the Ricci soliton equation (1.5) and (2.1) that

(3.8)
$$\int_{M} r_{g}(\omega, \omega) = \frac{1}{2} \int_{M} [s_{g} - (n-2)\rho] |\omega|^{2} \ge 0.$$

Recall the usual Bochner-Weitzenböck formula

(3.9)
$$\frac{1}{2}\Delta|\omega|^2 = |D\omega|^2 + r_g(\omega,\omega)$$

for harmonic 1-forms ω . Since

$$\frac{1}{2}\Delta|\omega|^2 = |\omega|\Delta|\omega| + |\nabla|\omega||^2$$

and $|D\omega|^2 \ge |\nabla|\omega||^2$ by Kato's inequality, we have

(3.10)
$$|\omega|\Delta|\omega| \ge r_g(\omega,\omega).$$

Let φ be a cut-off function on M. Multiplying (3.10) by φ^2 and integrating it over M, we have

$$\begin{split} \int_{M} \varphi^{2} r_{g}(\omega, \omega) &\leq \int_{M} \varphi^{2} |\omega| \Delta |\omega| \\ &= -\int_{M} \varphi^{2} |\nabla|\omega||^{2} - 2 \int_{M} \varphi |\omega| \langle \nabla \varphi, \nabla |\omega| \rangle \\ &\leq -\int_{M} \varphi^{2} |\nabla|\omega||^{2} + 2 \int_{M} \varphi |\omega| |\nabla \varphi| |\nabla|\omega||. \end{split}$$

By the inequality $\epsilon a^2 + \frac{1}{\epsilon}b^2 \ge 2ab$ for a, b > 0, we have

$$2\int_{M}\varphi|\omega||\nabla\varphi||\nabla|\omega|| \leq \frac{1}{4}\int_{M}\varphi^{2}|\nabla|\omega||^{2} + 4\int_{M}|\nabla\varphi|^{2}|\omega|^{2}.$$

Thus,

$$\begin{split} \int_{M} \varphi^{2} r_{g}(\omega, \omega) &\leq -\frac{3}{4} \int_{M} \varphi^{2} |\nabla|\omega||^{2} + 4 \int_{M} |\nabla\varphi|^{2} |\omega|^{2} \\ &\leq -\frac{3}{4} \int_{M} \varphi^{2} |\nabla|\omega||^{2} + \frac{16}{r^{2}} \int_{M} |\omega|^{2}. \end{split}$$

Letting $r \to \infty$, $|\omega|$ should be constant by (3.8). Since (M, g) has an infinite volume, $\omega = 0$.

Remark 3.6. Lack of examples, the condition $s_g \ge (n-2)\rho$ on a gradient shrinking Ricci soliton looks a little strong. For instance, $M = \mathbb{R} \times S^{n-1}$ or $M = \mathbb{R}^2 \times S^{n-2}$ with product metric and $f(x) = \frac{\rho}{2}|x|^2$ for $x \in \mathbb{R}$ or \mathbb{R}^2 satisfies this condition. Of course, it is easy to see that those manifolds do not admit nontrivial L^2 harmonic 1-forms. We don't know whether other gradient shrinking Ricci solitons satisfying the scalar curvature condition $(n-2)\rho \le s_g$ exist.

The next result shows that the total differential of the potential function on a complete noncompact gradient Ricci soliton cannot be an L^2 harmonic 1-form unless it is constant.

Theorem 3.7. Let (M, g, f) be a gradient shrinking Ricci soliton which is not Einstein. Assume that the scalar curvature s_q satisfies

$$(3.11) s_g(x) \le Cr(x)$$

for some positive constant C, where r(x) = dist(p, x) for a fixed point p. Then for any smooth function α , $\xi := \alpha df$ cannot be L^2 harmonic 1-form except $\alpha = 0$.

Proof. First, assume that $\xi := \alpha df$ is an L^2 harmonic 1-form with $\alpha > 0$. Then we have

(3.12)
$$\int_M \alpha^2 |df|^2 < \infty$$

and

(3.13)
$$d\xi = d\alpha \wedge df = 0, \quad \delta\xi = -\langle d\alpha, df \rangle - \alpha \Delta f = 0.$$

Thus, we have the following PDE:

(3.14)
$$\Delta f + \langle \nabla \log \alpha, \nabla f \rangle = 0.$$

Recall that $f \sim O(r^2)$ and so $|\nabla f| \sim O(r)$ from (2.6). Since $\nabla \log \alpha$ is parallel to ∇f by (3.13), (3.14) together with the fact $\Delta f = n\rho - s_g$ and our assumption (3.11) shows that

 $|\nabla \log \alpha|$

is bounded. By (3.5), f should attain its local minimum at somewhere point. It follows from maximum principle (cf. [8], Theorem 3.5) that f should be constant on a geodesic ball, which means that f is constant on M. This contradicts that (M, g, f) is not Einstein.

Now assume that α is arbitrary. Let

$$\Omega^+ = \{ x \in M : \alpha(x) > 0 \}.$$

Replacing αdf by $-\alpha df$ if necessary, we may assume that Ω^+ is unbounded open subset of M. Choose a geodesic ball $B \subset \Omega^+$ containing a local minimum point of f. Applying arguments mentioned above to B, f should be constant on B and so constant on M since $\Delta f = n\rho - s_g$. Consequently, αdf cannot be an L^2 harmonic 1-form unless it is trivial.

4. Integral properties and generalizations

In this section, we shall derive various integral identities including L^2 harmonic 1-forms on a complete gradient shrinking Ricci soliton, and consider generalizations of results mentioned in previous section. To do this, we need, first, the following Ricci identity which is well-known.

Lemma 4.1. Let ω be an L^2 harmonic 1-form on a Riemannian manifold (M,g). Then

(4.1)
$$-D^*D\omega = r_g(\omega, \cdot)$$

where D^* is the adjoint of the covariant derivative D and $D^*D\omega$ is given by

$$D^*D\omega = -\sum_{i=1}^n \left(D_{e_i} D_{e_i} \omega - D_{e_i} e_i \omega \right)$$

and $\{e_i\}$ is a local orthonormal frame.

The following property on a complete noncompact gradient shrinking Ricci soliton (M, g, f) is well-known ([12]):

(4.2)
$$\int_M e^{-f} |r_g|^2 < \infty.$$

Theorem 4.2. Let (M, g, f) be a complete oriented gradient shrinking Ricci soliton. Then for any L^2 harmonic 1-form ω ,

(4.3)
$$\int_M e^{-f} \langle df, \omega \rangle^2 = \rho \int_M e^{-f} |\omega|^2 + \int_M e^{-f} |D\omega|^2.$$

Proof. Let φ be a cut-off function. Since $\delta(e^{-f}\omega) = e^{-f} \langle df, \omega \rangle$, we get

(4.4)

$$\int_{M} \varphi^{2} e^{-f} \langle df, \omega \rangle^{2} = \int_{M} \varphi^{2} \langle df, \omega \rangle \delta(e^{-f}\omega) \\
= \int_{M} e^{-f} \langle d(\varphi^{2} \langle df, \omega \rangle), \omega \rangle \\
= 2 \int_{M} e^{-f} \varphi \langle df, \omega \rangle \langle \omega, d\varphi \rangle \\
+ \int_{M} e^{-f} \varphi^{2} \left[Ddf(\omega, \omega) + D\omega(df, \omega) \right].$$

Next, from the Ricci identity (4.1) together with the Ricci soliton equation (1.5), we have

(4.5)
$$-D^*D\omega(\omega) = r_g(\omega,\omega) = \rho|\omega|^2 - Ddf(\omega,\omega).$$

Multiplying both sides by $e^{-f}\varphi^2$ and integrating it over M, we get

$$\begin{split} \rho \int_{M} e^{-f} \varphi^{2} |\omega|^{2} &- \int_{M} e^{-f} \varphi^{2} D df(\omega, \omega) \\ = &- \int_{M} \langle D^{*} D \omega, e^{-f} \varphi^{2} \omega \rangle \end{split}$$

$$= -\int_{M} \langle D\omega, D(e^{-f}\varphi^{2}\omega) \rangle$$

=
$$\int_{M} e^{-f}\varphi^{2} D\omega(df,\omega) - 2\int_{M} e^{-f}\varphi D\omega(d\varphi,\omega) - \int_{M} e^{-f}\varphi^{2} |D\omega|^{2}.$$

Thus

$$\int_{M} e^{-f} \varphi^2 D df(\omega, \omega) + \int_{M} e^{-f} \varphi^2 D \omega(df, \omega)$$
$$= \rho \int_{M} e^{-f} \varphi^2 |\omega|^2 + \int_{M} e^{-f} \varphi^2 |D\omega|^2 + 2 \int_{M} e^{-f} \varphi D \omega(d\varphi, \omega)$$

This together with (4.4) shows that

(4.6)
$$\int_{M} \varphi^{2} e^{-f} \langle df, \omega \rangle^{2} - 2 \int_{M} e^{-f} \varphi \langle df, \omega \rangle \langle \omega, d\varphi \rangle$$
$$= \rho \int_{M} e^{-f} \varphi^{2} |\omega|^{2} + \int_{M} e^{-f} \varphi^{2} |D\omega|^{2} + 2 \int_{M} e^{-f} \varphi D\omega (d\varphi, \omega) d\varphi$$

Finally, using the usual Bochner-Weitzenböck formula (3.9) together with the fact (3.5), we can see that $\int_M e^{-f} |D\omega|^2$ is bounded and so by letting $r \to \infty$, the third term in (4.6) tends to 0. By (4.2), the second term also tends to 0 as $r \to \infty$. Consequently, we obtain

$$\int_M e^{-f} \langle df, \omega \rangle^2 = \rho \int_M e^{-f} |\omega|^2 + \int_M e^{-f} |D\omega|^2.$$

As a direct consequence of Theorem 4.2, we can recover Theorem 3.1.

Lemma 4.3. Let (M, g, f) be a gradient shrinking Ricci soliton. Then for any L^2 harmonic 1-form ω on M, we have

(4.7)
$$\int_{M} e^{-f} \langle Ddf, D\omega \rangle = 0 \quad and \quad \int_{M} e^{-f} \langle df, \omega \rangle = 0.$$

Proof. Let φ be a cut-off function on M. Since $\delta(e^{-f}r_g) = 0$, we have

(4.8)
$$0 = \int_{M} \langle \varphi \omega, \delta(e^{-f} r_g) \rangle = \int_{M} \langle \delta^*(\varphi \omega), e^{-f} r_g \rangle.$$

Since ω is harmonic, we have

$$\delta^*(\varphi\omega) = d\varphi \odot \omega + \varphi D\omega$$

and so

$$\begin{split} \langle \delta^*(\varphi\omega), r_g \rangle &= \langle d\varphi \odot \omega + \varphi D\omega, \rho g - Ddf \rangle \\ &= \rho \langle d\varphi \odot \omega, g \rangle - \langle d\varphi \odot \omega, Ddf \rangle - \varphi \langle D\omega, Ddf \rangle. \end{split}$$

By Cauchy-Schwarz inequality,

$$\int_{M} \varphi e^{-f} \langle D\omega, Ddf \rangle = \int_{M} \rho e^{-f} \langle d\varphi \odot \omega, g \rangle - \int_{M} e^{-f} \langle d\varphi \odot \omega, Ddf \rangle$$

(4.9)
$$\leq \rho \left(\int_{M} e^{-f} \right)^{\frac{1}{2}} \left(\int_{M} |d\varphi|^{2} |\omega|^{2} \right)^{\frac{1}{2}} + \left(\int_{M} e^{-f} |Ddf|^{2} \right)^{\frac{1}{2}} \left(\int_{M} |d\varphi|^{2} |\omega|^{2} \right)^{\frac{1}{2}}$$

By letting $r \to \infty$, we have

(4.10)
$$\int_{M} e^{-f} \langle D\omega, Ddf \rangle = 0.$$

Next, recall, by (2.5), that

$$\delta Ddf = r_g(df, \cdot).$$

So, we have

$$\int_{M} e^{-f} \varphi^{2} \langle \delta D df, \omega \rangle = \int_{M} e^{-f} \varphi^{2} r_{g}(df, \omega)$$
$$= \rho \int_{M} e^{-f} \varphi^{2} \langle df, \omega \rangle - \int_{M} e^{-f} \varphi^{2} D df(df, \omega).$$

On the other hand, integration by parts shows

$$\begin{split} \int_{M} e^{-f} \varphi^{2} \langle \delta D df, \omega \rangle &= \int_{M} \langle D df, \delta^{*}(e^{-f} \varphi^{2} \omega) \rangle \\ &= -\int_{M} e^{-f} \varphi^{2} D df(df, \omega) + 2 \int_{M} e^{-f} \varphi D df(d\varphi, \omega) \\ &+ \int_{M} e^{-f} \varphi^{2} \langle D df, D \omega \rangle. \end{split}$$

Comparing these two equalities, we have

$$\rho \int_{M} e^{-f} \varphi^{2} \langle df, \omega \rangle = 2 \int_{M} e^{-f} \varphi D df (d\varphi, \omega) + \int_{M} e^{-f} \varphi^{2} \langle D df, D \omega \rangle.$$

Since

we

$$\left| \int_{M} e^{-f} \varphi D df(d\varphi, \omega) \right| \leq \left(\int_{M} e^{-f} \varphi^{2} |Ddf|^{2} \right)^{\frac{1}{2}} \left(\int_{M} e^{-f} |\omega|^{2} |\nabla \varphi|^{2} \right)^{\frac{1}{2}},$$
have, from (4.10),

$$\int_{M} e^{-f} \langle df, \omega \rangle = 0.$$

Using Lemma 4.3, we can generalize Theorem 3.1 as follows.

Theorem 4.4. Let (M, g, f) be a gradient shrinking Ricci soliton. If ω is an L^2 harmonic 1-form on M satisfying either

(i) $\langle df, \omega \rangle$ is nonnegative or nonpositive on the whole M, or

(ii) $\langle df, \omega \rangle$ is constant,

then ω is trivial.

Remark 4.5. We can prove the second part of Theorem 4.4 by using Lemma 4.3 and the co-area formula. In fact, we may assume that f is not constant. Suppose that ω is an L^2 harmonic 1-form such that the angle θ between ∇f and ω^{\sharp} is constant. By Lemma 4.3 and the co-area formula,

$$0 = \int_{M} e^{-f} \langle df, \omega \rangle = \int_{M} e^{-f} |df| |\omega| \cos \theta$$
$$= \int_{0}^{\infty} e^{-t} \left(\int_{f^{-1}(t)} |\omega| \cos \theta \, d\sigma \right) \, dt$$
$$= \cos \theta \int_{0}^{\infty} e^{-t} \int_{f^{-1}(t)} |\omega| \, d\sigma \, dt.$$

If $\cos \theta = 0$, then $\langle df, \omega \rangle = 0$ and so $\omega = 0$ by Theorem 3.1. If $\cos \theta \neq 0$, then $\omega = 0$.

Next, we will derive a formula on the Laplacian of the function $\langle df, \omega \rangle$ for an L^2 harmonic 1-form on a gradient shrinking Ricci soliton (M, g, f). Recall that the Bochner-Weitzenböck formulas

$$\frac{1}{2}\Delta|\nabla f|^2 = |Ddf|^2 + \langle d\Delta f, df \rangle + r_g(df, df)$$

and

$$\frac{1}{2}\Delta|\omega|^2 = |D\omega|^2 + r_g(\omega,\omega)$$

for a harmonic 1-form ω . Since $d\Delta f = -ds_g = -2r_g(df, \cdot)$,

$$\frac{1}{2}\Delta|\omega + df|^2 = |D\omega + Ddf|^2 + r_g(\omega + df, \omega + df) + \langle \Delta(\omega + df), \omega + df \rangle$$
$$= \frac{1}{2}\Delta|\omega|^2 + \frac{1}{2}\Delta|\nabla f|^2 + 2\langle D\omega, Ddf \rangle.$$

On the other hand,

(4.11)
$$\frac{1}{2}\Delta|\omega + df|^2 = \frac{1}{2}\Delta|\omega|^2 + \Delta\langle\omega, df\rangle + \frac{1}{2}\Delta|df|^2.$$

Comparing these two identities, we get

(4.12)
$$\Delta \langle \omega, df \rangle = 2 \langle D\omega, Ddf \rangle.$$

From the Ricci identity in Lemma 4.1, we also have $D^*D\omega(df) = -r_g(df,\omega) = -\frac{1}{2}ds_g(\omega)$, i.e.,

$$\frac{1}{2}\langle ds_g, \omega \rangle = -\langle df, D^* D \omega \rangle.$$

Theorem 4.6. Let (M, g, f) be a complete oriented gradient Ricci soliton. Let ω be an L^2 harmonic 1-form. If $\langle Ddf, D\omega \rangle \geq 0$ or $\langle Ddf, D\omega \rangle \leq 0$ on the whole M, then $\langle df, \omega \rangle$ is a harmonic function.

Proof. It is obvious by Lemma 4.3 and (4.12).

We are going to mention a few more properties related to L^2 harmonic 1forms. First of all, it follows from (4.4) by letting $r \to \infty$ that

(4.13)
$$\int_{M} e^{-f} \langle df, \omega \rangle^{2} = \int_{M} e^{-f} \left[Ddf(\omega, \omega) + D\omega(df, \omega) \right].$$

Lemma 4.7. Let ω be an L^2 harmonic 1-form on a gradient shrinking Ricci soliton (M, g, f). Then

(4.14)
$$\int_{M} e^{-f} [Ddf(df,\omega) + D\omega(df,df)] = 0$$

and

(4.15)
$$\frac{1}{2} \int_{M} e^{-f} s_g \langle df, \omega \rangle = \int_{M} e^{-f} D\omega(df, df).$$

Proof. Since $\Delta \langle df, \omega \rangle = 2 \langle Ddf, D\omega \rangle$, we have

$$\begin{split} 2\int_{M}e^{-f}\varphi^{2}\langle Ddf,D\omega\rangle &= \int_{M}e^{-f}\varphi^{2}\Delta\langle df,\omega\rangle = -\int_{M}\langle d(e^{-f}\varphi^{2}),d\langle df,\omega\rangle\rangle\\ &= \int_{M}e^{-f}\varphi^{2}[Ddf(df,\omega) + D\omega(df,df)]\\ &\quad -2\int_{M}e^{-f}\varphi[Ddf(d\varphi,\omega) + D\omega(d\varphi,df)]. \end{split}$$

By letting $r \to \infty,$ both the third and fourth terms tend to 0, respectively, and so we have

(4.16)
$$2\int_{M} e^{-f} \langle Ddf, D\omega \rangle = \int_{M} e^{-f} [Ddf(df, \omega) + D\omega(df, df)].$$

By Lemma 4.3, we have

(4.17)
$$\int_{M} e^{-f} [Ddf(df,\omega) + D\omega(df,df)] = 0.$$

Next, since $\int_M e^{-f} \langle df, \omega \rangle = 0$, we have

$$\int_{M} e^{-f} Ddf(df,\omega) = -\int_{M} e^{-f} r_{g}(df,\omega)$$

from the Ricci soliton equation. So, (4.14) is equivalent to

(4.18)
$$\int_{M} e^{-f} r_g(df, \omega) = \int_{M} e^{-f} D\omega(df, df).$$

Also since

$$\int_{M} e^{-f} r_g(df,\omega) = \frac{1}{2} \int_{M} e^{-f} \langle ds_g, \omega \rangle = \frac{1}{2} \int_{M} s_g \delta(e^{-f}\omega) = \frac{1}{2} \int_{M} e^{-f} s_g \langle df, \omega \rangle,$$
 we have

(4.19)
$$\frac{1}{2} \int_{M} e^{-f} s_g \langle df, \omega \rangle = \int_{M} e^{-f} D\omega(df, df).$$

By (4.14) and (4.17), we obtain

(4.20)
$$\frac{1}{2} \int_M e^{-f} s_g \langle df, \omega \rangle + \int_M e^{-f} D df (df, \omega) = 0.$$

We can show (4.20) from the following identity which can be obtain from the Ricci soliton equation (1.5),

(4.21)
$$\frac{1}{2}\langle ds_g, \omega \rangle = \rho \langle df, \omega \rangle - Ddf(df, \omega)$$

by multiplying (4.21) by $e^{-f}\varphi^2$ and integrating it over M.

Finally, we would like to mention an integral identity which is similar as Lemma 3.4. To derive this, we need, first, the following.

Lemma 4.8 ([7], [10]). Let ω be an L^2 harmonic 1-form on a Riemannian manifold. Then for any smooth bounded domain $D \subset M$ and smooth vector field X, we have

$$(4.22) \quad \int_{D} \left\{ \langle (DX)\omega, \omega \rangle - \frac{1}{2} (\operatorname{div} X) |\omega|^{2} \right\} = \int_{\partial D} \left\{ \langle i_{X}\omega, i_{\nu}\omega \rangle - \frac{1}{2} \langle X, \nu \rangle |\omega|^{2} \right\}.$$

Here $(DX)\omega(Y)$ is defined by $(DX)\omega(Y) = \omega (D_{Y}X).$

Lemma 4.9. Let ω be an L^2 harmonic 1-form on a complete noncompact gradient shrinking Ricci soliton (M, g, f). Then (4.23)

$$\int_{M}^{P} \left\{ e^{-f} D df(\omega, \omega) - \frac{1}{2} e^{-f} (\Delta f) |\omega|^{2} \right\} = \int_{M} \left\{ e^{-f} \langle df, \omega \rangle^{2} - \frac{1}{2} e^{-f} |df|^{2} |\omega|^{2} \right\}.$$

Proof. Let D = B(r) be a geodesic ball and let

$$X := e^{-f} \nabla f$$

Then we have

$$(4.24) DX = -e^{-f}df \otimes df + e^{-f}Ddf$$

and so

$$\langle (DX)\omega,\omega\rangle = -e^{-f}\langle df,\omega\rangle^2 + e^{-f}Ddf(\omega,\omega).$$

Note also that

$$\frac{1}{2}({\rm div} X)|\omega|^2 = -\frac{1}{2}e^{-f}|df|^2|\omega|^2 + \frac{1}{2}e^{-f}(\Delta f)|\omega|^2$$

and

$$\langle i_X \omega, i_\nu \omega \rangle - \frac{1}{2} \langle X, \nu \rangle |\omega|^2 = e^{-f} \langle df, \omega \rangle \langle \omega, \nu \rangle - \frac{1}{2} e^{-f} \langle df, \nu \rangle |\omega|^2.$$

Substituting these into (4.22) in Lemma 4.8, we obtain

(4.25)
$$\int_{B(r)} \left\{ -e^{-f} \langle df, \omega \rangle^2 + e^{-f} D df(\omega, \omega) \right\}$$

$$+\frac{1}{2}\int_{B(r)}e^{-f}(|df|^2-\Delta f)|\omega|^2$$
$$=\int_{\partial B(r)}\left\{e^{-f}\langle df,\omega\rangle\langle\omega,\nu\rangle-\frac{1}{2}e^{-f}\langle df,\nu\rangle|\omega|^2\right\}$$

Letting $r \to \infty$, the right hand side tends to 0, and so we have (4.23).

5. Decomposition of L^2 harmonic 1-forms

In this section, we consider an L^2 closed 1-form, but not necessarily harmonic on a complete gradient shrinking Ricci soliton (M, g, f). We shall derive some conditions so that such a form vanishes, and apply this to the decomposition of an L^2 harmonic 1-form on (M, g, f).

Let η be a closed 1-form on a complete noncompact oriented gradient shrinking Ricci soliton (M,g,f) satisfying

(5.1)
$$\langle df, \eta \rangle = 0 \text{ and } \int_M |\eta|^2 < \infty.$$

We have the following Ricci identity for a closed 1-form which is similar as Lemma 4.1 for harmonic 1-forms.

Lemma 5.1. Let η be a closed 1-form on a gradient shrinking Ricci soliton (M, g, f). Then

(5.2)
$$-D^*D\eta = r_q(\eta, \cdot) - d\delta\eta.$$

Proof. Let $\{e_i\}$ be a local frame which is normal at a point. Writing $\omega = \sum \omega_i e_i$, from $d\eta = 0$, we have $\eta_{i,j} = \eta_{j,i}$ for each i, j. So, denoting $r_g(e_i, e_j) = r_{ij}$ and applying the Einstein convention,

$$D^* D\eta(e_k) = -D_{e_i} D_{e_i} \eta(e_k) = -D_{e_i} D_{e_k} \eta(e_i) = -D_{e_k} D_{e_i} \eta(e_i) - R(e_i, e_k) \eta(e_i) = -e_k(\delta\eta) - \eta(R(e_i, e_k)e_i) = d\delta\eta(e_k) - r_g(\eta, \cdot).$$

This implies that

$$-D^*D\omega = r_g(\omega, \cdot) - d\delta\eta.$$

Let η be a closed 1-form on a gradient shrinking Ricci soliton (M, g, f) satisfying (5.1). From Lemma 5.1 together with the Ricci soliton equation (1.5), we have

$$-D^*D\eta(\eta) = \rho |\eta|^2 - Ddf(\eta, \eta) - \langle d\delta\eta, \eta \rangle.$$

Let φ be a cut-off function on M. Multiplying by $e^{-f}\varphi^2$ and integrating it over M, we get

$$\rho \int_{M} e^{-f} \varphi^{2} |\eta|^{2} - \int_{M} e^{-f} \varphi^{2} D df(\eta, \eta) - \int_{M} e^{-f} \varphi^{2} \langle d\delta\eta, \eta \rangle$$

$$= -\int_{M} e^{-f} \varphi^{2} D^{*} D\eta(\eta) = -\int_{M} \langle D\eta, D(e^{-f} \varphi^{2} \eta) \rangle$$

=
$$\int_{M} e^{-f} \varphi^{2} D\eta(df, \eta) - 2 \int_{M} e^{-f} \varphi D\eta(d\varphi, \eta) - \int_{M} e^{-f} \varphi^{2} |D\eta|^{2}.$$

Thus,

(5.3)

$$\int_{M} e^{-f} \varphi^{2} \left[Ddf(\eta, \eta) + D\eta(df, \eta) \right]$$

$$= \rho \int_{M} e^{-f} \varphi^{2} |\eta|^{2} - \int_{M} \delta\eta \left(\delta(e^{-f} \varphi^{2} \eta) \right)$$

$$+ 2 \int_{M} e^{-f} \varphi D\eta(d\varphi, \eta) + \int_{M} e^{-f} \varphi^{2} |D\eta|^{2}$$

$$= \rho \int_{M} e^{-f} \varphi^{2} |\eta|^{2} + 2 \int_{M} e^{-f} \varphi \langle d\varphi, \eta \rangle \delta\eta + \int_{M} e^{-f} \varphi^{2} \langle \delta\eta \rangle^{2}$$

$$+ 2 \int_{M} e^{-f} \varphi D\eta(d\varphi, \eta) + \int_{M} e^{-f} \varphi^{2} |D\eta|^{2}.$$

Now assume that

(5.4)
$$D\eta(df,\eta) = D\eta(\eta,df).$$

Since η is not harmonic, this is not true in general. Since $\langle df, \eta \rangle = 0$, we have $Ddf(\eta, \cdot) + D\eta(\cdot, df) = 0.$

So, from (5.4)

(5.5)
$$Ddf(\eta,\eta) + D\eta(df,\eta) = 0.$$

Therefore, it follows from (5.3) that

$$\begin{split} \rho \int_{M} e^{-f} \varphi^{2} |\eta|^{2} + \int_{M} e^{-f} \varphi^{2} (\delta \eta)^{2} + \int_{M} e^{-f} \varphi^{2} |D\eta|^{2} \\ = -2 \int_{M} e^{-f} \varphi \langle d\varphi, \eta \rangle \delta \eta - 2 \int_{M} e^{-f} \varphi D\eta (d\varphi, \eta) \\ \leq \int_{M} e^{-f} \varphi^{2} (\delta \eta)^{2} + \int_{M} e^{-f} |d\varphi|^{2} |\eta|^{2} \\ + \int_{M} e^{-f} \varphi^{2} |D\eta|^{2} + \int_{M} e^{-f} |d\varphi|^{2} |\eta|^{2}. \end{split}$$

Since η is in L^2 , by letting $r \to \infty$, we obtain

$$\rho \int_M e^{-f} \varphi^2 |\eta|^2 = 0,$$

which implies that $\eta = 0$. Thus we have the following.

Lemma 5.2. Let η be an L^2 closed 1-form on a complete noncompact oriented gradient shrinking Ricci soliton (M, g, f). Suppose that $\langle df, \eta \rangle = 0$ and

(5.6)
$$D\eta(df,\eta) = D\eta(\eta,df).$$

Then $\eta = 0$.

Lemma 5.2 can be considered as a generalization of Theorem 3.1 because harmonic 1-forms satisfy (5.6).

Proposition 5.3. Let ω be an L^2 harmonic 1-form on a complete noncompact oriented gradient shrinking Ricci soliton (M, g, f). If there is a function α : $M \to \mathbb{R}$ such that $d\alpha$ and df are parallel and satisfying

$$\langle \omega - \alpha df, df \rangle = 0,$$

then $\omega = 0$.

Proof. Let $\eta := \omega - \alpha df$ so that η is a closed 1-form satisfying

$$\langle df,\eta
angle=0$$
 and $\int_M |\eta|^2<\infty$

and

$$\langle d\alpha, \eta \rangle = 0$$

10)

In particular,

$$\begin{aligned} Ddf(\eta,\eta) + D\eta(\eta,df) &= 0.\\ \text{Moreover, since } 0 &= \langle df, \eta \rangle = \langle df, \omega \rangle - \alpha |df|^2, \text{ we have} \\ |df|^2 \langle d\alpha, \eta \rangle &= \langle d \langle df, \omega \rangle, \eta \rangle - \alpha \langle d |df|^2, \eta \rangle \\ &= Ddf(\omega, \eta) + D\omega(df, \eta) - 2\alpha Ddf(df, \eta) \\ &= Ddf(\eta, \eta) + \alpha Ddf(df, \eta) + d\alpha \otimes df(df, \eta) + \alpha Ddf(df, \eta) \\ &+ D\eta(df, \eta) - 2\alpha Ddf(df, \eta) \\ &= Ddf(\eta, \eta) + D\eta(df, \eta) \\ &= 0. \end{aligned}$$

Thus,

$$D\eta(\eta, df) = D\eta(df, \eta).$$

By Lemma 5.2, we have $\eta = 0$ and so $\omega = \alpha df$. Finally, by Theorem 3.7, $\omega = 0.$

Acknowledgment. I would like to thank the referee for meaningful suggestions that led to improvements of the article.

References

- [1] A. Besse, Einstein Manifolds, Springer-Verlag, New York, 1987.
- [2] H.-D. Cao, Geometry of complete gradient shrinking Ricci solitons, Geometry and Analysis. No. 1, Adv. Lect. Math. (ALM), vol. 17, pp. 227-246, Int. Press, Somerville, MA, 2011.
- [3] _____, Recent progress on Ricci solitons, Recent advances in geometric analysis, Adv. Lect. Math. (ALM), vol. 11, pp. 1–38, Int. Press, Somerville, MA, 2010.
- [4] H.-D. Cao and D. Zhou, On complete gradient shrinking Ricci solitons, J. Differential Geom. 85 (2010), no. 2, 175-185.

- [5] B. Chow et al., The Ricci flow: techniques and applications, Part I, Geometric aspects, Mathematical Surveys and Monographs, 135, American Mahtematical Society, Providence, RI, 2007.
- [6] M. Eminenti, G. La Nave, and C. Mantegazza, Ricci solitons: the equation point of view, Manuscripta Math. 127 (2008), no. 3, 345–367.
- [7] J. F. Escobar, A. Freire, and M. Min-Oo, L² vanishing theorems in positive curvature, Indiana Univ. Math. J. 42 (1993), no. 4, 1545–1554.
- [8] D. Gilbarg and N. S. Trudinger, *Elliptic Partial Differential Equations of Second Order*, 2nd ed., Grundlehren der Mathematischen Wissenschaften, 224, Springer-Verlag, Berline-New York, 1983.
- R. S. Hamilton, The formation of singularities in the Ricci flow, Surveys in Differential Geometry (Cambridge, MA, 1993), Vol. II, 7–136, International Press, Combridge, MA, 1995.
- [10] H. Karcher and J. C. Wood, Nonexistence results and growth properties for harmonic maps and forms, J. Reine Angew. Math. 353 (1984), 165–180.
- J. Lott, Some geometric properties of the Bakry-Émery-Ricci tensor, Comment. Math. Helv. 78 (2003), no. 4, 865–883.
- [12] O. Munteanu and N. Sesum, On gradient Ricci solitons, J. Geom. Anal. 23 (2013), no. 2, 539–561.
- O. Munteanu and J. Wang, Volume growth of complete gradient shrinking Ricci solitons, arXive:0903.3927v2 [math.DG] 18 Aug 2009.
- [14] P. Petersen and W. Wylie, Rigidity of gradient Ricci solitons, Pacific J. Math. 241 (2009), no. 2, 329–345.
- [15] _____, On the classification of gradient Ricci solitons, Geom. Topol. 14 (2010), no. 4, 2277–2300.
- [16] M. Vieira, Harmonic forms on manifolds with non-negative Bakry-Émery-Ricci curvature, Arch. Math. 101 (2013), no. 6, 581–590.

GABJIN YUN DEPARTMENT OF MATHEMATICS MYONG JI UNIVERSITY YONGIN 17058, KOREA *E-mail address:* gabjin@mju.ac.kr