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THE BERGMAN KERNEL FUNCTION
AND THE SZEGO KERNEL FUNCTION

YounG-Bok CHUNG

ABSTRACT. We compute the holomorphic derivative of the har-
monic measure associated to a C° bounded domain in the plane
and show that the exact Bergman kernel function associated to
a C* bounded domain in the plane relates the derivatives of the
Ahlfors map and the Szeg6 kernel in an explicit way. We find several
formulas for the exact Bergman kernel and the Szeg6 kernel and the
harmonic measure. Finally we survey some other properties of the
holomorphic derivative of the harmonic measure.

1. Introduction

I showed in [7] that the exact Bergman kernel function associated to
a C'*° smoothly bounded domain in the plane can be expressed in terms
of the derivative of the Ahlfors map and the harmonic measures. T also
showed in [8] that the exact Bergman kernel function is expressed in
terms of the derivative of the Ahlfors map and the Szegé kernel in the
first variable explicitly. In this paper, by computing the derivative of the
harmonic measure we shall show that the exact Bergman kernel is writ-
ten as a sum of the derivative of the Ahlfors map and the Szeg6 kernel
and the Garabedian kernel in it both variables explicitly. Furthermore,
an explicit formula for a relationship between the exact Bergman kernel,
the derivative of the Ahlfors map and the Szegd kernel will be presented
when the domain is doubly connected. In the last section, we survey
some other properties of the holomorphic derivative of the harmonic
measure. In particular, we find another expression of the derivative of
the harmonic measure from formulas introduced by Bell. The results
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of this paper are of practical importance because the Ahlfors map is a
solution of an extremal problem in a multiply connected domain such
as the Riemann mapping function in a simply connected domain. And
Kerzman and Stein [11], Kerzman and Trummer [12], Trummer [15] and
Bell [2] also showed that the Ahlfors map is highly computable object.

2. Preliminaries and notations

In this section, we review some preliminaries about the kernel func-
tions and notations. To begin with, we shall assume that 2 is a bounded
n-connected domain in the plane with C'*° smooth boundary. Let y;,5 =
1,...,n, denote the n non-intersecting C°° simple closed curves defining
the boundary b2 of {2. We assume that the boundary curve v; is param-
eterized in the standard sense by z;(t),0 < ¢t < 1. For convenience, let
~n denote the outer boundary curve of Q. Let T'(z) be the C* function
defined on bS2 by the complex unit tangent vector in the direction of the
Z;(t)
|5 ()]
We shall let L?(b§2) denote the space of complex valued functions on b
that are square integrable with respect to arc length measure ds and
let L2(Q) denote the space of complex valued functions on € that are
square integrable with respect to Lebesgue area measure dA. The Hardy
space of functions in L?(bS2) that are the L? boundary values of holo-
morphic functions on 2 shall be written H?(bS2) and the Bergman space
of holomorphic functions on {2 that are in L2(£2) shall be written H?().
The Bergman kernel B(z,w) is the reproducing kernel for the Bergman
projection which is the orthogonal projection B of L?(Q) onto H((Q).

The orthogonal projection of L2(b2) onto H?(b2) with respect to the

inner product
{(u, v)po :/ u v ds
b2

is called the Szegd projection denoted by P. The Szeg6 kernel denoted
by S(z,w) is the kernel for P. It is well known that S(z,w) extends
to the boundary to be in C*° ((Q2 x Q) \ {(z,2) : 2 € bQ}). And it is a
holomorphic function of z and an antiholomorphic function of w on 2x 2.
We note that S(z, z) is real and positive for z € Q and S(z,w) = S(w, 2).
The Garabedian kernel L(z, w) is the kernel for the orthogonal projection
P of L*(b92) onto H2(bQ2)* defined by

standard orientation. For example, when z = z;(t) € v;, T(2) =



Bergman kernel function and Szegd kernel function 201

(2.1) L(z,w) =18(z,w)T(z), for (z,w) € b x .
In fact, the Garabedian kernel satisfies the identity
1 1 —
) = — —1SP(C,T
(2.2 L(zu) = 5 —— —iSPC,T)(2),
where

1 T()
C’”(C)_%C—w’ Ceb, weN
is the kernel for the Cauchy transform defining the Cauchy integral. For
fixed w € Q, L(z,w) is a holomorphic function of z on Q \ {w} with
a simple pole at w with residue 1/27. Furthermore, L(z,w) extends
to be in C* (1 x Q) \ {(2,2) : z € }). We also note that L(w,2) =
—L(z,w) and L(z,w) is zero-free for all (z,w) € Q x Q with z # w. All
of these properties can be found in Bell’s book[4]. See also [6].

For fixed a € Q, the Ahlfors map f, associated to the pair (2, a) is
an n-to-one proper holomorphic mapping of 2 onto the unit disc and
extends C smoothly to the boundary of 2. And it also maps each
boundary curve y; one-to-one onto the unit disc. This Ahlfors map f,
is the unique solution to the extremal problem: among all holomorphic
functions h mapping 2 into the unit disc, find the one taking h'(a) real-
positive valued and as large as possible. Hence it is very important to
express classical kernel functions in terms of the derivative of the Ahlfors
map. On the other hand, The Ahlfors map is given in terms of the Szegé
kernel and Garabedian kernel (see [9]) by

_8(z,a)
fa(z) = L(z,a)

Let E?(2) denote the exact Bergman space of holomorphic functions
in H?(Q) such that have single-valued indefinite integrals. It is clear
that in a simply connected domain the exact Bergman space is equal to
the Bergman space. Let E(z,w) denote the exact Bergman kernel that
is the kernel for the orthogonal projection of L2(Q) onto E?(Q). In the
simply connected case, it is easy to see that the exact Bergman kernel
function(and hence the Bergman kernel) is related (see [7]) via

E(z,w) = 28(w, w) f,,(2).

Furthermore, I proved in [7] that in multiply connected domains the
exact Bergman kernel function can be written in terms of derivative of
the Ahlfors map and the Szegd kernel. In the next section by using Bell’s
result [5] we shall find much more explicit form of formula than before.
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3. Main results

The harmonic measure function w;,j = 1,...,n associated to the
boundary curves {v} of Q is a harmonic function that solves the Dirich-
let problem on € with boundary data equal to one on v; and zero on
the other boundary curves. Then the function

BWj
Fj=2 0z
is holomorphic in Q and it is the derivative of the multivalued holomor-
phic function obtained by analytically continuing around 2 a germ of
wj + iv, where vis a local harmonic conjugate of w;.

It is a classical fact that the set of functions {F} : j=1,...,n—1}is
linearly independent. In fact, the set {F; : j =1,...,n—1} is a basis for
the space H2(Q2)\ E?(Q) of the complement of the exact Bergman space.
From this, it is easy to see (see [6], [13]) that the exact Bergman kernel
function E(z,w) is related to the Szegd kernel S(z,w) via the identity

n—1
E(z,w) = 478(z,w)? + Z ai; By (2) F; (w),

2,7=1

where a;; are constants independent of the variables z and w.

Let a € Q be fixed. Since the Ahlfors map f,(2) = S(z,a)/L(z,a) is
n-to-one, it has n zeroes. But f,(a) = 0, f.(a) = 27S(a,a) # 0. Thus
the simple zero of f, at a accounts for the simple pole of L(z,a) at a.
The other n — 1 zeroes of f, come from exactly n — 1 zeroes of S(z,a)
in 2\ {a}. Let ay,as,...,a,—1 denote these n — 1 zeroes counted with
multiplicities. It was proved in [3] that for all but at most finitely many
points a € §, the kernel S(z,a) has n—1 distinct simple zeroes in 2 as a
function of z. We may thus assume without loss of generality that those
n — 1 zeroes aj,as, ..., a,—1 of S(z,a) are all distinct simple zeroes.

Schiffer [14] proved that the set of n — 1 functions {S(z,a;)L(z,a) :
j=1,...,n—1} and the set {F; : j = 1,...,n — 1} span the same
vector space of functions. Notice that since the pole of L(z,a) at z = a is
cancelled out by the zero of S(z,a;) at z = a, the function S(z,a;)L(z, a)
extends C* smoothly to the boundary of Q. It is also proved in [4] that
the linear span of {S(z,a;)L(z,a):j =1,...,n — 1} is the same as the
linear span of the set {S(z,a)L(2,a;):5=1,...,n—1}.

Hence we have obtained the following formula relating the exact
Bergman kernel to the Szeg6 kernel.
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THEOREM 3.1. 2 is an n-connected domain in the plane bounded by
the non-intersecting C* simple closed curves. Let a € ) be fixed and
let a1,a9,...,an_1 be n — 1 distinct simple zeroes of the Szegé kernel
function S(z,a). Then the exact Bergman kernel E(z,w) is related to
the Szegd kernel via the identity

n—1
E(z,w) = 4wS(z,w)? + Z 1S (z,a)S(w, a)L(z, a;) L(w, a;)
i,j=1

or

n—1
E(z,w) = 4nS(z,w)* + Y 14;9(2,0:)S(w, a;) L(2, a) L(w, a).
4,7=1

Notice (see [5]) that the (n — 1) x (n — 1) matrix
A = [S(ai, a5)]

is nonsingular. On the other hand, Bell [5] also proved that the Szegd
kernel is an easily computable object of one complex variable with the
following identity:

_ 1 S(z,a)S(w,a) l 1 N
Sl = 1—fa(z)m( Slaa) oSSl ]))'

Using the above identity, we obtain a formula for the exact Bergman
kernel expressed as a function of one variable very similar to the Bergman
kernel function as follows.

1,7=1

THEOREM 3.2. {Q is an n-connected domain in the plane bounded by
the non-intersecting C*° simple closed curves. Let a € () be fixed and
let ay,as,...,an-1 be n — 1 distinct simple zeroes of the Szegé kernel
function S(z,a). Then the exact Bergman kernel E(z,w) is related to
the Szegd kernel (and Garabedian kernel) via the identity

Blo.w) — L(z,0)I(,0) i
’ L(z,a)L(w,a) — S(z,a)S(w, a)

X Z aijkmS(2,0:)8(2,05)S(w, ag)S(w, am)
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n—1
+ Z S(Z, a’i)S(w7 aj)L(Z’ a)L(wa (I),
i,j=1
where ag = a. '

This theorem says that the exact Bergman kernel of two complex
variables is actually a function of one complex variable. In fact, all the
elements of the exact Bergman kernel can be computed by means of one
dimensional line integrals. See [2] for this matter.

By the definition of the exact Bergman kernel, E(z, w) is the deriv-
ative of a holomorphic function on € and hence it is very important to
find an indefinite integral of the kernel explicitly. I proved in [7] that
the exact Bergman kernel is related to the derivative of the Ahlfors map
via

(31) E(z,¢) =25(¢,0)f2)
i QR 9 (S(zw)\
_ otk F. W)= .
23 oF B A St )6;5(L(z,C)>dw’

Jik=

where o* is the (j, k)-th entry of the inverse of the matrix A = [aym).

As mentioned before, the F}; is a linear combination of the func-
tions S(¢,a)L{(¢,am),m = 1,2,...,n — 1. Thus we can write the exact
Bergman kernel via the identity

E(z,¢) = 25(¢, Q) f¢(2)

On the other hand, in (3.1) we would like to find the exact expression
of the holomorphic function F; in terms of the Szegl kernel and the
Garabedian kernel so that the (exact) Bergman kernel function can be
expressed in terms of only the Szegd kernel and the Garabedian kernel
with explicit coefficients.

7,k,m=1

THEOREM 3.3. () is an n-connected domain in the plane bounded by
the non-intersecting C™ simple closed curves. Let a € Q) be fixed and
let ay,a9,...,an—1 be n — 1 distinct simple zeroes of the Szegé kernel
function S(z,a). Then the holomorphic derivative F}, of the harmonic
measure with respect to () has the identity

=l 2m Fk (aj)

(32) Fk(Z) = < WS(Z, (I)L(Z,aj}l,
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where the S’(a;,a) means the derivative taken with respect to the holo-
morphic variable.

Proof. Suppose that z(t) parameterizes a boundary curve of Q. Since
the harmonic measure wy, is constant on the boundary of ), we see that
the chain rule of complex functions gives

_dwpoz . Ouwg(z(t)) dz(t) + Owy (2(t)) <dz(t))

o dt *) 0z dt 0z dt

. 8wkéz(t))d2it) N <3wk(§z(t))) (dilit)).

0
Hence the function Fj = 2—% has the property on the boundary of €2
z

(3.3) F,T = ~FiT.

Inserting (2.1) into the above formula implies

F j————— = —Fp ()T
e)ig s = - R
or
Fi(z) Fe(2) \ =
4 = - T Q)
34 st = (i) 7@ ze0
Notice that the Szeg6 kernel S(z, a) has all simple zeroes a1, as, .. ., an—1.

Thus the left hand side of the above is

Fo(z) _ X Frla))/S'(a5,0) | o
; e, THG,
where H(z) is a holomorphic function in H2(bQ2). On the other hand, it
is easy to see from Cauthy’s theorem and identity T(z)ds = dz that any
function of the form HT where H is holomorphic in H?(bQ2) is orthogonal
to the Hardy space H?(b2). (We remark here (see [1]) that the class of
such forms is exactly the same as the orthogonal complement of H?2(b(2)
in L?(b§2).) Since L(z,a) never vanishes in @ x , it follows that the
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functions in (3.4) is orthogonal to H2(b2) and hence
L F(2) \ s o [ FR(2)
() T =7 (st
= Frlay) pL_1
S'(aj,a) z—a;)

) = 27 L(z,a;). Thus from (3.4), we have

J=1
1
z — aj

By (2.2), P+ (

Fk(z) :n—l 271'Fk(aj)
S(z,a) = S'(aj,a)

L(Z,a’j)a

which finishes the proof of the identity (3.2). O

Now from Theorem 3.3 obtain the following identity which relates
the exact Bergman kernel to the Szeg6 kernel in an explicit way.

THEOREM 3.4. Suppose €1 is an n-connected domain in the plane
bounded by the non-intersecting C'*° simple closed curves. Let ~y; be
the boundary curves of ) and let F}, = 2—% where wy, is the harmonic

z
measure relative to €. Let a € Q be fixed and let a1,a2,...,a,-1 be
n — 1 distinct simple zeroes of the Szegd kernel function S(z,a). Let
S(z,¢)
fe(z) =
=160

the exact Bergman kernel function E(z, () is related to the Szeg6 kernel
function via the identity

E(z,¢) = 25(¢, O)f¢(2)
S —( Filam) \er—
— 475(2,¢) ot L ) IS, am)
2 7 (5es)

0 (S(z,w)\ ,_
“J.. S“’w)%(S(z,c)) o,

where o/* is the (j, k)-th entry of the inverse of the matrix A = [oym].

be the Ahlfors map associated to the point ¢ € §). Then

Since the Bergman kernel function is related similarly to the Sezgé
kernel (see [8]), we have the following result.

THEOREM 3.5. Suppose §) is an n-connected domain in the plane
bounded by the non-intersecting C'>° simple closed curves. Let vy be
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0
the boundary curves of ) and let Fy, = 229 where wy, is the harmonic
2
measure relative to ). Let a € ) be fixed and let a1,a9,...,an_1 be
n — 1 distinct simple zeroes of the Szegd kernel function S(z,a). Let
S(2,¢)
fe(z) =

L(z,()
Then the Bergman kernel function B(z,() is related to the Szeg8 kernel

function via the identity

be the Ahlfors map associated to the point ( € ).

B0 = 2505 + Y gy (B - 250 ey
=17\

— H(a;,0)) L{z,4;)S(2,¢) + H(2,),

where

HEQ) = S0 3 () ) B )
<[ sz (52g) o

Now we want to find a formula for the exact Bergman kernel and the
Szegd kernel that does not contain computation of complex line integrals.
Using the invertibility of (n — 1) x (n — 1) matrix

B = [S(aj, ax)?].
I also found in [8] the identity

S(a,0)fi(z) _ S(a,a) ™
2

1

(35)  S(z,a)?= cj(a)S(z,a;)%,

1

27
J

where ) )

S'(a1,a)

ci(a) L(ay,a)

. _ p-1 .
cn-1(a) S'(an-1,0)
B L(an-l’ a) i
On the other hand, it follows from Theorem 3.1 that by letting w = a,
n—1

E(z,a) = 418(z,a)? + Z i S(z, a)S(a,a)L(z,a;)L(a, a;).
ij=1
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Hence by inserting (3.5) into the above identity we obtain the follow-
ing useful formula between the exact Bergman kernel function and the
derivative of the Ahlfors map.

THEOREM 3.6. () is a n-connected domain in the plane bounded by
the non-intersecting C*° simple closed curves. Let a € €2 be fixed and
let aq,as,...,a,-1 be n — 1 distinct simple zeroes of the Szegé kernel
function S(z,a). Then the exact Bergman kernel E(z,a) is related to
the derivative of the Ahlfors map via the identity

E(z,a) = 25(a,a)f('z(z)—i25(@,a)cj(a)S(z,aj)2
j=1

n—1
+ Z 135S (2,0)S(a, a)L(z, a;) L(a, a;),

ij=1
where
[ S'(a1,0)
c1(a) L(a1,a)
: = [S(aj,ar)’]™! :
cn-1(a) S’ (an-1,a)
L L(an_l,(ﬁ ]

In particular, when n = 2, i.e., Q is doubly connected, since c¢;(a) =
1 S'(a1,a)

S(a1,a1)? L(ay,a)
that

and f!(a) = 27S(a,a), it follows from Theorem 3.6

E(a,a) = 47S(a,a)? + u115(a, a)?|L(a, a1)[*.
Notice that S(a,a1) = 0. Thus we have

E(z,a) = 28(a,a)fs(2)
E(a,a) — 47S(a, a)?
S(a,a)?|L(a,a1)[?
25(a,a)S (a1, a)
S(al,al)ZL(al’al)S(z,al)Z‘

THEOREM 3.7. €2 is a doubly connected domain in the plane bounded
by the non-intersecting C'*° simple closed curves. Let a € ! be fixed
and let a; be the unique simple zero of the Szeg6 kernel function S(z, a).
Then the exact Bergman kernel E(z, a) is related to the derivative of the

S(a,a)L(a,a1)L(z,a1)S(z,a)
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Ahlfors map via the identity

E(a,a) — 47S(a,a)?
S(a,a)L(a,a1)

S(z,a1)%.

E(z,a) = 25(a,a)fo(2) +

25(a,a)S (a1, a)
S{a1,a1)?L(a,a;)

L(z,01)5(z,a)

Theorem 3.7 shows that once the value of E(a,a) on the diagonal
point {(a,a)} is computed, the value of E(z,a) is easily obtained using
the values of the Szeg6 kernel.

4. Further properties of Fj

It is known (see [6]) that the holomorphic derivative F} of the har-
monic measure wy, Satisfies

F(w)=—1i K(z,w)dz,
Tm

where K (z,w) is the Bergman kernel. Since the Bergman kernel function
is related to the Fy’s via

n—1
k(z,w) = 4nS(z,w)? + Z CjpFj(2) Fr(w),
‘ k=1
it follows that
n—1
Fn(w) = —4m’/ S(z,w)dz + Z CjkAm; Fr(w)
Ym G k=1

n—1
= —47rz'/ S(z,w)%dz + Z (AC),,i Fr(w),
rm k=1

where Ap,; = / Fj(z)dz is the period of F; with respect to vy, A =

Ym
[Ar;] and C = [Cjk] are (n — 1) x (n — 1) matrices. Hence we obtain
the following.

THEOREM 4.1. Suppose () is a n-connected domain in the plane
bounded by the non-intersecting C* simple closed curves. Let v be
Owy,

Oz

the boundary curves of Q) and let Fj, = 2 , where wy, is the harmonic
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measure relative to (). Then there exists a real positive definite sym-
metric matrix C = [Cj] for which the Szeg6 kernel function is related
to Fy, via the identity

f S w)dz ] Fiw)
z =L U-40)| 1,
fyoey Sy )z Foi(w)

where A = [Am;) = ([, Fj(2)dz].

REMARK 4.2. S. Saitho proved in [13] that the class of functions
S(z,w)%,w € Q is complete in H?(bQ?) using the fact that the set of
functions

S(z,w)dz,m=1,2,...,n—1
Y

is linearly independent. The constant matrix C in the proof of Theo-
rem 4.1 is real positive definite symmetric (see [10}).

From now on, we for simplicity assume that €2 is doubly connected.
Thus there is exactly one inner boundary v of €. We introduce two
methods solving the Dirichlet problem on Q due to Bell ([1], [3]) to

relate the Szegb kernel to the function F(z) = 92 Wwhere w is the

harmonic measure associated to the boundary curve . As before, let a
be fixed in © and let a; be the only simple zero of S(z,a). Bell showed
in [1] that given any fixed point p of the bounded connected component
of C\ © and given the boundary data ¢ € C°°(b2) for the Dirichlet
problem, the harmonic extension ® of ¢ to  is

(4.1)
®(2)
_ P(OSGa) )
P(S(¢ a)log|C — pl)(a1
P(o(w)S(w,a))(a1) ,
((wo—P«S“%a)bghU_prm)bmpwosm@>u>

)mmz—m

+

S(z,a)P

1 ___Ple)Sw,a)(e) - A
"IGa P((“’“) P((S(w,a) logw — pD)(ar) ** pl) 1 >)< )
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Bell also proved in [3] that the harmonic extension ® of ¢ to Q is
given by

(4.2)

8(z) = PO a)e(O)(a)

[, LG a8, ayd¢ “%)

1 P8 e(O)ar) N\,
- S(z,a)P((w(O TEC 816, ajic (0) S(¢, >)(>

1 iP(5(¢,a)p(¢))(a1)
+ P ((so(o T I a) S(g,a)dlgw(o> L<<,a>) (2)

Differentiating both sides of (4.1) and (4.2), since F(z) = 22—2}, we
get

P(p($)S(¢, a))(ar) 1

P(S(¢,a)log|¢ —pl)(a1) 2 —p

o Pe()8(¢, a))(a1) Q(P(loglc—pls(C,a))(2)>
P(S(¢,a)log|¢ — pl)(a1) 02 S(z,a)

_ P o))
[, LG, a1)5(C, a)de
_ o tP(S(G a)p(¢))(a1) & (P(W(C)S(C,a))(z)>
f’y L(Qal)S(C’a)dC 0z S(Zsa‘)

Hence using the definition of the Szeg6 projection and the harmonic
measure, we can represent the F(z) in terms of the Szeg6 kernel as
follows.

THEOREM 4.3. Suppose (1 is a doubly connected domain in the plane
bounded by the non-intersecting C*® simple closed curves. Let v be the

w
inner boundary curve of ) and let F' = 2——, where w is the harmonic

z
measure relative to vy. Let a be fixed in } and let a; be the only simple
zero of S(z,a). Suppose that

[ 81,056 a)p()ds 0.
b2
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Then F(z) can be written in terms of the Szegd kernel explicitly via the
identity
S, 5 C a)L(¢, a1)d¢ 1

T 5(ar, O)S(C, @) 0B ¢ — plds = —p
9 (1,508 s,
0z S(z,a)

J, S( C,G)L ¢, a1)d¢
fbﬂ (a1,¢)S(¢,a)log|¢ — p|ds
o ([, S(6a)S(z Q) log|C — pldse

0z S(z,a)

F(z) =

+ 2
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