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HYPER-CONJUGATE HARMONIC FUNCTION OF CONIC

REGULAR FUNCTIONS IN CONIC QUATERNIONS

Ji Eun Kim and Kwang Ho Shon*

Abstract. We give a rth conic regular functions with conic quaternion

variables in C2 and obtain a hyper-conjugate harmonic function of conic

regular function in conic quaternions in the sense of Clifford analysis.

1. Introduction

The quaternions in Clifford algebra are a normed division algebra with four
dimensions over the real numbers. The quaternions are non-commutative and
non-associative, but satisfy a weaker form of associativity. The quaternions
were envisioned by Musès to a complete, integrated, connected, and natural
number system. Musès [12, 13] sketched certain fundamental types of hyper-
numbers and arranged them in hyperbolic quaternions and conic quaternions
with associated arithmetic and geometry. The conic quaternions have been ap-
plied in fields such as special theory and string theory of relativity and quantum
theory. Deavours [1] provided a mathematical summary of quaternion algebra
such as calculus and properties of several operators in quaternions. Kajiwara
et al . [2, 3] obtained several regenerations in complex and studied the inho-
mogeneous Cauchy-Riemann system of quaternions and Clifford analysis in
ellipsoid. In 2011, Koriyama et al . [8] gave some regularities of quaternionic
functions based on holomorphic mappings in a domain in C2. Naser [14] and
Nôno [15, 16, 17] gave some properties of quaternionic hyperholomorphic func-
tions in quaternions. Sudbery [18] gave the line of quaternionic analysis which
remedies these deficiencies by using the exterior differential calculus. He was
able to clarify the relationship between quaternionic analysis and complex anal-
ysis.

For any complex harmonic function f1 in a domain of holomorphy D in C2,
we [10, 11] investigated the uniqueness and existence of hyper-conjugate har-
monic functions of an octonion number system and dual quaternion in Clifford
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analysis. We [4, 5, 6, 7] researched certain properties of a regularity of func-
tions with values in special quaternions on Clifford analysis and correspond-
ing Cauchy-Riemann systems in special quaternions. Also, we gave a regular
function with values in dual split quaternions and some analogous conditions
of complex Cauchy-Riemann systems and relations between a corresponding
Cauchy-Riemann system and a regularity of functions with values in dual split
quaternions.

In this paper, we give the conditions of conic Cauchy-Riemann systems and
conic harmonicity in C2. Then for any complex valued function g1(z) satisfying
the condition of harmonicity in a pseudoconvex domain Ω in C2, we can find a
hyper-conjugate harmonic function g2(z) on Ω such that g(z) = g1(z)+g2(z)e2
is a conic regular function on Ω.

2. Preliminaries

Suppose the following base elements

e0 =

(
1 0
0 1

)
, e1 =

(
i 0
0 i

)
, e2 =

(
0 1
1 0

)
, e3 =

(
0 i
i 0

)
.

These satisfy the following commutative multiplication rules:

e20 = e22 = 1, e21 = e23 = −1, e1e2 = e3, e2e3 = e1, e3e1 = −e2.

Consider the field

CQ = {Z = x0 + x1e1 + x2e2 + x3e3| xl(l = 0, 1, 2, 3) ∈ R}, (1)

where the element e0 is the identity of CQ and e1 identifies the imaginary unit√
−1 in the C-field of complex numbers. A conic quaternion Z is given by (1),

Z = z1 + z2e2 ∈ CQ,

where z1 = x0 + x1e1 and z2 = x2 + x3e1 are complex numbers in C. Conic
quaternions are built on bases {1, e1, e2, e3} and form a commutative, asso-
ciative, and distributive arithmetic. They contain non-trivial idempotents and
zero divisors, but no nilpotents. Conic quaternions are isomorphic to tessarines,
and also to bicomplex numbers. Thus, we identify CQ with C2.

We write a conic quaternion Z = z1 + z2e2, the 1st conic quaternion conju-
gate number is Z†1 = z1 − z2e2 and its modulus is

ZZ†1 = z21 + z22 = (x0 + x1e1)2 + (x2 + x3e1)2.

Analogously, the 2nd conic quaternion conjugate number is Z†2 = z1 + z2e2
and its modulus is

ZZ†2 = z1z1 + z2z2 + (z1z2 + z2z1)e2 = (x0 + x2e2)2 + (x1 + x3e2)2.

Also, the 3rd conic quaternion conjugate number is Z†3 = z1 − z2e2 and its
modulus is

ZZ†3 = z1z1 − z2z2 − (z1z2 − z2z1)e2 = (x0 + x3e3)2 + (x1 − x2e3)2.
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We use the following differential operators:

∂

∂Z
:=

∂

∂z1
+ e2

∂

∂z2
=

1

2

( ∂

∂x0
− e1

∂

∂x1
+ e2

∂

∂x2
− e3

∂

∂x3

)
,

∂

∂Z†1
=

∂

∂z1
− e2

∂

∂z2
=

1

2

( ∂

∂x0
− e1

∂

∂x1
− e2

∂

∂x2
+ e3

∂

∂x3

)
,

∂

∂Z†2
=

∂

∂z1
+ e2

∂

∂z2
=

1

2

( ∂

∂x0
+ e1

∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3

)
,

∂

∂Z†3
=

∂

∂z1
− e2

∂

∂z2
=

1

2

( ∂

∂x0
+ e1

∂

∂x1
− e2

∂

∂x2
− e3

∂

∂x3

)
,

where ∂
∂z1

, ∂
∂z1

, ∂
∂z2

, ∂
∂z2

are usual differential operators used in complex anal-
ysis.

And we use the following differential operators:

∆†1 :=
∂2

∂Z∂Z†1
=

∂2

∂z21
− ∂2

∂z22

=
1

4

( ∂

∂x0
− e1

∂

∂x1

)2
+

1

4

( ∂

∂x2
− e1

∂

∂x3

)2
,

∆†2 :=
∂2

∂Z∂Z†2
=

∂2

∂z1∂z1
+

∂2

∂z2∂z2
+ e2

( ∂2

∂z1∂z2
+

∂2

∂z2∂z1

)
=

1

4

( ∂

∂x0
+ e2

∂

∂x2

)2
+

1

4

( ∂

∂x1
+ e2

∂

∂x3

)2
,

∆†3 :=
∂2

∂Z∂Z†2
=

∂2

∂z1∂z1
− ∂2

∂z2∂z2
+ e2

(
− ∂2

∂z1∂z2
+

∂2

∂z2∂z1

)
=

1

4

( ∂

∂x0
− e3

∂

∂x3

)2
+

1

4

( ∂

∂x1
+ e3

∂

∂x2

)2
are the analogous complex Laplacian operators. Specially, ∆†1 and ∆†3 are
called complex multiplicative moduli.

3. Hyper-conjugate harmonic functions on CQ

Let Ω be a bounded open set in CQ. A function f(Z) : Ω → CQ is defined
on Ω with values in CQ as follows:

f(Z) = f(z1 + z2e2) = f1(z1, z2) + f2(z1, z2)e2,

where f1(z1, z2) = u0 + u1e1 and f2(z1, z2) = u2 + u3e1 are complex valued
functions with real valued functions ul = ul(x0, x1, x2, x3), (l = 0, 1, 2, 3) are
real valued functions.
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Remark 1. From the definition of differential operators, we have the following
equations:

∂f

∂Z
=

(∂f1
∂z1

+
∂f2
∂z2

)
+
(∂f2
∂z1

+
∂f1
∂z2

)
e2,

∂f

∂Z†1
=

(∂f1
∂z1
− ∂f2
∂z2

)
+
(∂f2
∂z1
− ∂f1
∂z2

)
e2,

∂f

∂Z†2
=

(∂f1
∂z1

+
∂f2
∂z2

)
+
(∂f2
∂z1

+
∂f1
∂z2

)
e2,

∂f

∂Z†3
=

(∂f1
∂z1
− ∂f2
∂z2

)
+
(∂f2
∂z1
− ∂f1
∂z2

)
e2.

Definition 1. Let Ω be an open set in CQ. A function f(Z) is the rth conic
regular (r=1,2,3) in Ω if and only if :

(i) f1 and f2 are continuously differential functions in Ω,
(ii) f satisfies the following equations called the rth conic Cauchy-Riemann

system:

∂f

∂Z†r
= 0.

Definition 2. Let Ω be an open set in CQ. A function f(Z) is the rth conic
harmonic (r = 1, 2, 3) in Ω if and only if :

(i) f1 and f2 are continuously differential functions in Ω.
(ii) f satisfies the following equations called the rth conic Cauchy-Riemann

system:

∆†rf = 0.

Remark 2. We have

∆†1f =
∂2f1
∂z21

− ∂2f1
∂z22

+
(∂2f2
∂z21

− ∂2f2
∂z22

)
e2,

∆†2f =
∂2f1
∂z1∂z1

+
∂2f1
∂z2∂z2

+
∂2f2
∂z1∂z2

+
∂2f2
∂z2∂z1

+
( ∂2f2
∂z1∂z1

+
∂2f2
∂z2∂z2

+
∂2f1
∂z1∂z2

+
∂2f1
∂z2∂z1

)
e2,

∆†3f =
∂2f1
∂z1∂z1

− ∂2f1
∂z2∂z2

− ∂2f2
∂z1∂z2

+
∂2f2
∂z2∂z1

+
( ∂2f2
∂z1∂z1

− ∂2f2
∂z2∂z2

− ∂2f1
∂z1∂z2

+
∂2f1
∂z2∂z1

)
e2.
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Proposition 3.1. Let Ω be an open set in CQ. If a function f(Z) is the rth
conic regular (r = 1, 2, 3) in Ω, then f(Z) is the rth conic harmonic (r = 1, 2, 3)
in Ω.

Proof. Since f is the 1st conic regular in Ω, it satisfies the equations:

∂f1
∂z1

=
∂f2
∂z2

and
∂f2
∂z1

=
∂f1
∂z2

.

Hence, we have the following result:

∆†1f =
∂2f1
∂z21

− ∂2f1
∂z22

+
(∂2f2
∂z21

− ∂2f2
∂z22

)
e2

=
∂2f2
∂z1∂z2

− ∂f2
∂z2∂z1

+
( ∂2f1
∂z1∂z2

− ∂f1
∂z2∂z1

)
e2 = 0.

Also, since f is the 2nd conic regular in Ω, it satisfies the equations:

∂f1
∂z1

= −∂f2
∂z2

and
∂f2
∂z1

= −∂f1
∂z2

.

Hence, we have

∆†2f = − ∂2f2
∂z1∂z2

− ∂2f2
∂z2∂z1

+
∂f2

∂z1∂z2
+

∂2f2
∂z2∂z1

+
(
− ∂2f1
∂z1∂z2

− ∂2f1
∂z2∂z1

+
∂2f1
∂z1∂z2

+
∂2f1
∂z2∂z1

)
e2 = 0.

Since f is the 3rd conic regular in Ω, it satisfies the equations

∂f1
∂z1

=
∂f2
∂z2

and
∂f2
∂z1

=
∂f1
∂z2

.

Hence, we have

∆†3f =
∂2f2
∂z1∂z2

− ∂2f2
∂z2∂z1

− ∂2f2
∂z1∂z2

+
∂2f2
∂z2∂z1

+
( ∂2f1
∂z1∂z2

− ∂2f1
∂z2∂z1

− ∂2f1
∂z1∂z2

+
∂2f1
∂z2∂z1

)
e2 = 0.

�

Definition 3. Let Ω in C2 be an open set with a C2 boundary. Let Ω =
{Z | ρ(Z) < 0}, where ρ ∈ C2 is in a neighborhood of Ω and grad ρ 6= 0 on bΩ.
If

2∑
j,k=1

∂2ρ(Z)

∂zj∂zk
wjwk ≥ 0,
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for all z ∈ bΩ and w ∈ C2 satisfying

2∑
j,k=1

∂ρ(Z)

∂zj
wj = 0,

then Ω is pseudoconvex.

Consider an automorphism γ1:

γ1(z1, z2) := (z1, z2)

of C2. If γ1(Ω) is a pseudoconvex domain of the space C2 of two complex
variables z1, z2, then a domain Ω ∈ C2 ∼= CQ is said to be pseudoconvex with
respect to the complex variables z1, z2.

Also, consider an automorphism γ2:

γ2(z1, z2) := (z1, z2)

of C2. A domain Ω ∈ C2 ∼= CQ is said to be pseudoconvex with respect to the
complex variables z1, z2 if γ2(Ω) is a pseudoconvex domain of the space C2 of
two complex variables z1, z2.

Theorem 3.2. Let Ω be a domain in CQ, which is a pseudoconvex domain
with respect to the complex variables z1, z2 and let g1(z1, z2) be complex-valued
functions of class C2 on Ω satisfying the 1st conic Cauchy-Riemann system.
Then there exist 1st conic conjugate harmonic functions g2(z1, z2) of class C2
on Ω such that g(Z) is the 1st conic regular function in Ω.

Proof. We consider the 1-forms and the differential operator on γ1(Ω):

ψ :=
∂g1
∂z2

dz1 +
∂g1
∂z1

dz2

and

δ =
∂

∂z1
dz1 +

∂

∂z2
dz2.

We compute the operator δ from the left-hand side of the 1-forms ψ on γ1(Ω):

δψ = (
∂

∂z1

∂g1
∂z1
− ∂

∂z2

∂g1
∂z2

)dz1 ∧ dz2.

By the 1st conic Cauchy-Riemann system, the coefficient vanishes. From
Krantz [9], the δ-closed form ψ of z1 and z2 are δ-exact form on γ1(Ω). Since
Ω is a pseudoconvex domain, there exists the 1st conic conjugate harmonic
function g2 of class C∞ in Ω, where ∂-closed form γ−11 ψ = ∂g2 on Ω of z1 and

z2 are ∂-exact (0, 1)-forms on Ω such that g(Z) is the 1st conic regular function
in Ω. �
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Corollary 3.3. Let Ω be a domain in CQ, which is a pseudoconvex domain
with respect to z1 and z2. Let g1(z1, z2) be complex-valued functions of class C2
on Ω satisfying the rth conic Cauchy-Riemann system (r = 2, 3). Then there
exist rth conic conjugate harmonic functions g2(z1, z2) of class C2 on Ω such
that g(Z) is a rth conic regular function in Ω (r = 2, 3).

Proof. We consider the 1-forms and the differential operator on γ2(Ω):

ψ :=
∂g1
∂z2

dz1 +
∂g1
∂z1

dz2

and

δ =
∂

∂z1
dz1 +

∂

∂z2
dz2.

We operate the operator δ from the left-hand side of the 1-forms ψ on γ2(Ω):

δψ = (
∂

∂z1

∂g1
∂z1
− ∂

∂z2

∂g1
∂z2

)dz1 ∧ dz2.

By the rth conic Cauchy-Riemann system (r = 2, 3), the coefficient vanishes.
Similarly, from Krantz [9], the δ-closed form ψ of z1 and z2 are δ-exact form on
γ(Ω). Since Ω is a pseudoconvex domain, there exists the rth conic conjugate
harmonic function g2 of class C∞ in Ω, where ∂-closed form γ−12 ψ = ∂g2 on

Ω of z1 and z2 are ∂-exact (0, 1)-forms on Ω such that g(Z) is the rth conic
regular function in Ω. �
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