ASYMPTOTIC BEHAVIOR OF \mathcal{A}-HARMONIC FUNCTIONS AND p-EXTREMAL LENGTH

Seok Woo Kim, Sang Moon Lee, and Yong Hah Lee

Abstract

We describe the asymptotic behavior of functions of the Royden p-algebra in terms of p-extremal length. We also prove that each bounded \mathcal{A}-harmonic function with finite energy on a complete Riemannian manifold is uniquely determined by the behavior of the function along p-almost every curve.

1. Introduction

Let Ω be an open subset of an n-dimensional complete Riemannian manifold M and $W^{1, p}(\Omega)$ be the Sobolev space of all functions u in $L^{p}(\Omega)$ whose distributional gradient ∇u also belongs to $L^{p}(\Omega)$, where p is a constant such that $1<p<\infty$. We equip $W^{1, p}(\Omega)$ with the norm $\|u\|_{1, p}=\|u\|_{p}+\|\nabla u\|_{p}$. We denote by $W_{0}^{1, p}(\Omega)$ the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1, p}(\Omega)$. Let $\mathbf{F}: \bigcup_{x \in \Omega} T_{x} M \rightarrow \mathbb{R}$ be a variational kernel satisfying following conditions:
$(A 1)$ the mapping $\mathbf{F}_{x}=\left.\mathbf{F}\right|_{T_{x} M}: T_{x} M \rightarrow \mathbb{R}$ is strictly convex and differentiable for all x in Ω, and the mapping $x \mapsto \mathbf{F}_{x}(\xi)$ is measurable whenever ξ is;
(A2) for a constant $1<p<\infty$, there exist constants $0<C_{1} \leq C_{2}<\infty$ such that

$$
C_{1}|\xi|^{p} \leq \mathbf{F}_{x}(\xi) \leq C_{2}|\xi|^{p}
$$

for all x in Ω and ξ in $T_{x} M$.
It is instructive to note that if $\mathcal{A}_{x}(\xi)=\left(\mathcal{A}_{x}^{1}(\xi), \mathcal{A}_{x}^{2}(\xi), \ldots, \mathcal{A}_{x}^{n}(\xi)\right)$, where $\mathcal{A}_{x}^{i}(\xi)=\frac{\partial}{\partial \xi^{i}} F_{x}(\xi)$ for each $i=1,2, \ldots, n$, then \mathcal{A} satisfies the following properties: (See [1] and [7])

[^0](A3) the mapping $\mathcal{A}_{x}=\left.\mathcal{A}\right|_{T_{x} M}: T_{x} M \rightarrow T_{x} M$ is continuous for a.e. x in Ω, and the mapping $x \mapsto \mathcal{A}_{x}(\xi)$ is a measurable vector field whenever ξ is;
for a.e. x in Ω and for all ξ, ξ^{\prime} in $T_{x} M$,
$(A 4)\left\langle\mathcal{A}_{x}(\xi), \xi\right\rangle \geq C_{1}|\xi|^{p} ;$
(A5) $\left|\mathcal{A}_{x}(\xi)\right| \leq C_{2}|\xi|^{p-1}$;
(A6) $\left\langle\mathcal{A}_{x}(\xi)-\mathcal{A}_{x}\left(\xi^{\prime}\right), \xi-\xi^{\prime}\right\rangle>0$ whenever $\xi \neq \xi^{\prime}$.
We say that a function u in $W_{\text {loc }}^{1, p}(\Omega)$ is a solution (supersolution, respectively) of the equation
\[

$$
\begin{equation*}
-\operatorname{div} \mathcal{A}_{x}(\nabla u)=0(\geq 0, \text { respectively }) \tag{1.1}
\end{equation*}
$$

\]

in Ω if

$$
\int_{\Omega}\left\langle\mathcal{A}_{x}(\nabla u), \nabla \phi\right\rangle=0(\geq 0, \text { respectively })
$$

for any (nonnegative, respectively) function ϕ in $C_{0}^{\infty}(\Omega)$. A function v in $W_{\text {loc }}^{1, p}(\Omega)$ is called a subsolution of (1.1) in Ω if $-v$ is a supersolution of (1.1) in Ω. We say that a function u is \mathcal{A}-harmonic (of type p) if u is a continuous solution of (1.1). In a typical case $\mathcal{A}_{x}(\xi)=\xi|\xi|^{p-2}$, \mathcal{A}-harmonic functions are called p-harmonic and, in particular, if $p=2$, then we obtain harmonic functions. Suppose that E is a measurable set and that $u \in W_{\text {loc }}^{1, p}(\Omega)$ for an open neighborhood Ω of E. Then the variational integral

$$
\mathbf{J}(u, E)=\int_{E} \mathbf{F}_{x}(\nabla u)
$$

is well defined. If $\mathbf{J}(u, M)<\infty$, then we say that u has finite energy. In fact, given $f \in W^{1, p}(\Omega)$, each \mathcal{A}-harmonic function u with $u-f \in W_{0}^{1, p}(\Omega)$ minimizes the energy functional $J(v, \Omega)$ on the set $\left\{v \in W^{1, p}(\Omega): v-f \in\right.$ $\left.W_{0}^{1, p}(\Omega)\right\}$ (See [1]). A Green's function $G=G(o, \cdot)$ for \mathcal{A} on M denotes (if exists) a positive solution of the equation

$$
\begin{equation*}
-\operatorname{div} \mathcal{A}(\nabla G)=\delta_{o} \tag{1.2}
\end{equation*}
$$

for each o in M, in the sense of distributions, i.e.,

$$
\int_{M}\langle\mathcal{A}(\nabla G), \nabla \phi\rangle=\phi(o)
$$

for any function ϕ in $C_{0}^{\infty}(M)$. In fact, there exists a Green's function G satisfying (1.2) if and only if M has positive p-capacity at infinity, i.e., there exists a compact subset K of M such that

$$
\operatorname{Cap}_{p}(K, \infty, M)=\inf _{u} \int_{M}|\nabla u|^{p}>0
$$

where the infimum is taken over all functions u in $C_{0}^{\infty}(M)$ with $u=1$ on K. In particular, we say that a complete Riemannian manifold M is p-parabolic if $\operatorname{Cap}_{p}(K, \infty, M)=0$ for every compact subset K of M. Otherwise, M is called p-nonparabolic. It is well known that a complete Riemannian manifold M is
p-nonparabolic if and only if M has the positive \mathcal{A}-capacity, i.e., there exists a compact subset K of M such that

$$
\operatorname{Cap}_{\mathcal{A}}(K, \infty, M)=\inf _{u} \mathbf{J}(u, M)>0
$$

where the infimum is taken over all functions u in $C_{0}^{\infty}(M)$ with $u=1$ on K.
We now introduce additional conditions on \mathbf{F} as follows:
(A7) $\mathcal{A}_{x}(\lambda \xi)=\lambda|\lambda|^{p-2} \mathcal{A}_{x}(\xi)$ whenever $\lambda \in \mathbb{R} \backslash\{0\}$; for any ξ, ξ^{\prime} in $T_{x} M$,
(A8) in case $2 \leq p<\infty$,

$$
\mathbf{F}_{x}\left(\frac{\xi+\xi^{\prime}}{2}\right)+\mathbf{F}_{x}\left(\frac{\xi-\xi^{\prime}}{2}\right) \leq \frac{1}{2}\left(\mathbf{F}_{x}(\xi)+\mathbf{F}_{x}\left(\xi^{\prime}\right)\right)
$$

in case $1<p \leq 2$,

$$
\mathbf{F}_{x}\left(\frac{\xi+\xi^{\prime}}{2}\right)^{\tilde{p}}+\mathbf{F}_{x}\left(\frac{\xi-\xi^{\prime}}{2}\right)^{\tilde{p}} \leq\left(\frac{1}{2}\left(\mathbf{F}_{x}(\xi)+\mathbf{F}_{x}\left(\xi^{\prime}\right)\right)\right)^{\tilde{p}}
$$

where $\tilde{p}=1 /(p-1)$.
For $\mathbf{F}(\xi)=\frac{1}{p}|\xi|^{p}$, the condition (A8) is called the Clarkson inequality (See [3]).
Let $\mathcal{B} \mathcal{D}_{p}(M)$ be the set of all bounded continuous functions u on a complete Riemannian manifold M whose distributional gradient ∇u belongs to $L^{p}(M)$. Then, by using the Minkowski inequality, it is easy to see that $\mathcal{B D}_{p}(M)$ forms an algebra over the real numbers with the usual addition and multiplication of functions and scalar multiplication defined pointwise. The function space $\mathcal{B} \mathcal{D}_{p}(M)$ is called the Royden p-algebra of M (See [9]). We say that a sequence $\left\{f_{n}\right\}$ of functions in $\mathcal{B D}_{p}(M)$ converges to a function $f \in \mathcal{B D}_{p}(M)$ in the $\mathcal{B} \mathcal{D}_{p}$-topology if
(i) $\left\{f_{n}\right\}$ is uniformly bounded;
(ii) f_{n} converges uniformly to f on each compact subset of M;
(iii) $\lim _{n \rightarrow \infty} \int_{M}\left|\nabla\left(f_{n}-f\right)\right|^{p}=0$.

It is well known that $\mathcal{B} \mathcal{D}_{p}(M)$ is complete in the $\mathcal{B D}_{p}$-topology. Let $\mathcal{B D}_{p, 0}(M)$ be the closure of the set of all compactly supported smooth functions in $\mathcal{B D}{ }_{p}(M)$. It is easy to see that $\mathcal{B} \mathcal{D}_{p, 0}(M)$ is not only a subalgebra but also an ideal of $\mathcal{B D}_{p}(M)$. We denote by $\mathcal{H B} \mathcal{D}_{\mathcal{A}}(M)$ the subset of all bounded energy finite \mathcal{A}-harmonic functions in $\mathcal{B} \mathcal{D}_{p}(M)$, where \mathcal{A} is an elliptic operator on M satisfying conditions $(A 1),(A 2),(A 7)$ and (A8). Adopting the arguments in [6], one can prove the following \mathcal{A}-harmonic version of the Royden decomposition theorem:

Proposition 1.1. Let \mathcal{A} be an elliptic operator on a p-nonparabolic complete Riemannian manifold M satisfying conditions (A1), (A2), (A7) and (A8). Then for each $f \in \mathcal{B D}_{p}(M)$, there exist unique $u \in \mathcal{H B D}_{\mathcal{A}}(M)$ and $g \in \mathcal{B D}_{p, 0}(M)$ such that $f=u+g$.

For a complete Riemannian manifold M, there exists a locally compact Hausdorff space \hat{M}, called the Royden p-compactification of M, which contains
M as an open dense subset. In particular, every function $f \in \mathcal{B} \mathcal{D}_{p}(M)$ can be extended to a continuous function, denoted again by f, on \hat{M} and the class of such extended functions separates points in \hat{M}. The Royden p-boundary of \hat{M} is the set $\hat{M} \backslash M$ and will be denoted by $\partial \hat{M}$. Throughout the paper, for a subset Ω of M, we denote by $\bar{\Omega}$ the closure of Ω in M and $\hat{\Omega}$ the closure of Ω in \hat{M}. An important part of the Royden p-boundary $\partial \hat{M}$ is the p-harmonic boundary Δ_{M} defined by

$$
\Delta_{M}=\left\{\mathbf{x} \in \partial \hat{M}: f(\mathbf{x})=0 \text { for all } f \in \mathcal{B D}_{p, 0}(M)\right\}
$$

Let \mathcal{F} be a family of locally rectifiable curves in a complete Riemannian manifold M. Let us fix a real number p such that $1<p<\infty$. A nonnegative Borel measurable function $\rho: M \rightarrow \mathbb{R}$ is called admissible with respect to \mathcal{F} if $\int_{\gamma} \rho \geq 1$ for all curves γ in \mathcal{F}. The p-extremal length of \mathcal{F}, denoted by $\lambda_{p}(\mathcal{F})$, is defined as

$$
\lambda_{p}(\mathcal{F})=\left(\inf _{\rho} \int_{M} \rho^{p}\right)^{-1}
$$

where the infimum is taken over the set of all admissible functions ρ with respect to \mathcal{F}. A property is said to hold for p-almost every curve in \mathcal{F} if it holds for all curves in $\mathcal{F} \backslash \mathcal{F}_{0}$, where \mathcal{F}_{0} is a subfamily of \mathcal{F} with p-extremal length ∞.

Under the above setting, the value at the p-harmonic boundary of each function of the Royden p-algebra is completely determined by its asymptotic behavior along p-almost every curve as follows:

Theorem 1.2. Let us denote \mathcal{G} to be the family of all locally rectifiable curves in a complete Riemannian manifold M joining $\bar{B}_{R}(o)$ to infinity of M, where $B_{R}(o)$ denotes a geodesic ball of radius $R>0$ centered at o. Then for any function f in $\mathcal{B D}_{p}(M)$, the following conditions are equivalent:
(i) $\left.f\right|_{\Delta_{M}}=0$.
(ii) f converges to a constant 0 for p-almost every curve in \mathcal{G}, that is,

$$
\lim _{t \rightarrow \infty} f(\gamma(t))=0
$$

along each curve γ in \mathcal{G} except a subfamily of \mathcal{G} whose p-extremal length is ∞.

Applying the comparison principle in Lemma 2.3 together with Theorem 1.2, one can prove that each bounded \mathcal{A}-harmonic function with finite energy is uniquely determined by the behavior of the function along p-almost every curve as follows:

Corollary 1.3. Let \mathcal{G} be given as in Theorem 1.2. Suppose that $f, h \in$ $\mathcal{H B D}_{\mathcal{A}}(M)$ and

$$
\lim _{t \rightarrow \infty} f(\gamma(t))=\lim _{t \rightarrow \infty} h(\gamma(t))
$$

for p-almost every curve in \mathcal{G}. Then $f \equiv h$ on M.

Corollary 1.4. Let \mathcal{G} be given as in Theorem 1.2. Suppose that $h \in \mathcal{H B} \mathcal{D}_{\mathcal{A}}(M)$ and $c \in \mathbb{R}$ with

$$
\lim _{t \rightarrow \infty} h(\gamma(t))=c
$$

for p-almost every curve in \mathcal{G}. Then $h \equiv c$ on M.

2. The maximum principle and the p-extremal length

We now study the relation between a sort of asymptotic behavior of functions in the Royden p-algebra $\mathcal{B D}_{p}(M)$ near infinity of M and the values of the functions at the p-harmonic boundary Δ_{M} of M. We first give a characterization of the p-parabolicity in terms of the p-harmonic boundary as follows (See [6]):

Lemma 2.1. A complete Riemannian manifold M is p-parabolic if and only if the p-harmonic boundary Δ_{M} of M is empty.
Furthermore, there is a useful duality relation between $\mathcal{B} \mathcal{D}_{p, 0}(M)$ and Δ_{M} (See [6]):

Lemma 2.2. For any complete Riemannian manifold M,

$$
\mathcal{B D}_{p, 0}(M)=\left\{f \in \mathcal{B D}_{p}(M): f=0 \text { on } \Delta_{M}\right\} .
$$

We now give the comparison principle and the maximum principle for \mathcal{A} harmonic functions as follows:

Lemma 2.3. Let \mathcal{A} be an elliptic operator on a p-nonparabolic complete Riemannian manifold M satisfying conditions (A1), (A2), (A7) and (A8).
(C) Suppose that there exist \mathcal{A}-harmonic functions $u, v \in \mathcal{H B} \mathcal{D}_{\mathcal{A}}(M)$ such that

$$
v \leq u \text { on } \Delta_{M}
$$

Then we have $v \leq u$ on M.
(M) Suppose that there exists an \mathcal{A}-harmonic function $u \in \mathcal{H B D}_{\mathcal{A}}(M)$ such that

$$
a \leq u \leq b \text { on } \Delta_{M}
$$

for some constants a and b with $a \leq b$. Then we have $a \leq u \leq b$ on M.
Proof. Let us consider a function $\phi=\min \{u-v, 0\}$. Since $v \leq u$ on Δ_{M}, we conclude that $\phi=0$ on Δ_{M}. Thus by Lemma 2.2, we conclude that ϕ belongs to $\mathcal{B} \mathcal{D}_{p, 0}(M)$. Since u and v are \mathcal{A}-harmonic on M and there is a sequence of compactly supported smooth functions converging to ϕ in $\mathcal{B} \mathcal{D}_{p}(M)$, we have

$$
\int_{M}\left\langle\mathcal{A}_{x}(\nabla u), \nabla \phi\right\rangle=0
$$

and

$$
\int_{M}\left\langle\mathcal{A}_{x}(\nabla v), \nabla \phi\right\rangle=0
$$

Let 1_{Ω} be the characteristic function of the set $\Omega=\{x \in M: u(x) \leq v(x)\}$. Since $\nabla \phi=1_{\Omega} \nabla(u-v)$ almost everywhere in M, we conclude that

$$
\int_{\Omega}\left\langle\mathcal{A}_{x}(\nabla u)-\mathcal{A}_{x}(\nabla v), \nabla(u-v)\right\rangle=0 .
$$

By the condition (A6), $u-v$ is almost everywhere constant in Ω. Since u and v are continuous, $u-v$ is constant in Ω. Hence we have (C) from the continuity of u and v.

On the other hand, since every constant function is also \mathcal{A}-harmonic, we have (M) from (C).

We now introduce the notion of the p-capacity of a condenser: Let $\Omega \subset M$ be a nonempty open set and let E_{1} and E_{2} be mutually disjoint closed subsets of $\bar{\Omega}$. The p-capacity for a triple $\left(E_{1}, E_{2}, \Omega\right)$ is defined by

$$
\operatorname{Cap}_{p}\left(E_{1}, E_{2}, \Omega\right)=\inf _{v} \int_{\Omega}|\nabla v|^{p}
$$

where the infimum is taken over all smooth functions v on $\Omega \cup E_{1} \cup E_{2}$ such that $0 \leq v \leq 1$ on $\Omega, v=0$ on E_{1} and $v=1$ on E_{2}. Such a triple $\left(E_{1}, E_{2}, \Omega\right)$ is called a condenser. For an unbounded open set $\Omega \subset M$ and a nonempty compact set $E \subset \bar{\Omega}$, we define

$$
\operatorname{Cap}_{p}(E, \infty, \Omega)=\lim _{r \rightarrow \infty} \operatorname{Cap}_{p}\left(E, \bar{\Omega} \backslash B_{r}(o), \Omega\right)
$$

where $B_{r}(o)$ denotes the geodesic ball of radius $r>0$ centered at a fixed point o in M. It is needed to note that $\operatorname{Cap}_{p}\left(E, \bar{\Omega} \backslash B_{r}(o), \Omega\right)$ is monotone decreasing in $r>0$. On the other hand, an unbounded open set $\Omega \subset M$ is called p-hyperbolic if there exists a nonempty compact set $E \subset \bar{\Omega}$ such that

$$
\operatorname{Cap}_{p}(E, \infty, \Omega)>0
$$

From the properties of the p-capacity, it is easy to see that any open set Ω is p-hyperbolic if there exists a p-hyperbolic subset Ω^{\prime} of Ω. An unbounded open proper set $\Omega \subset M$ is called \mathcal{A}-massive if there exists a function u in $\mathcal{B} \mathcal{D}_{p}(M)$ such that

$$
\left\{\begin{array}{cl}
\mathcal{A} u=0 & \text { in } \Omega ; \\
u=0 & \text { on } M \backslash \Omega ; \\
\sup _{\Omega} u=1 . &
\end{array}\right.
$$

Such a function u is called an inner potential of Ω. In fact, for each nonconstant function u in $\mathcal{H B D}_{\mathcal{A}}(M)$, the set $\{x \in M: u(x)>c\}$ is \mathcal{A}-massive, where $\inf _{M} u<c<\sup _{M} u$. There is a useful property of \mathcal{A}-massive sets (See [4], [5] and [6]):

Lemma 2.4. Let \mathcal{A} be an elliptic operator on a complete Riemannian manifold M satisfying conditions (A1), (A2), (A7) and (A8). If Ω is \mathcal{A}-massive, then there exists a proper p-hyperbolic subset Ω_{0} of Ω such that $\bar{\Omega}_{0} \subset \Omega$ and a continuous function v on $\bar{\Omega}$ such that $\mathcal{A} v=0$ in $\Omega \backslash \bar{\Omega}_{0}, v=0$ on $\partial \Omega$ and v has finite energy, that is, $\mathbf{J}(v, M)<\infty$.

On the other hand, the p-capacity of a condenser is closely related to the p-extremal length of a family of curves as follows: Let Ω be an unbounded open subset of M and E be a compact set in Ω. Let $\mathcal{F}_{\Omega, E}$ be the family of all locally rectifiable curves in Ω joining E to infinity of Ω. This means that γ is a curve in $\mathcal{F}_{\Omega, E}$ if $\gamma:[\alpha, \beta) \rightarrow \Omega(\beta$ may be $\infty)$ is locally rectifiable, $\gamma(\alpha)$ belongs to E, and for any compact set K of M, there exists $t_{K} \in[\alpha, \beta)$ such that $\gamma(t)$ does not belong to K for all $t>t_{K}$. Then, by results in [2], we have

$$
\begin{equation*}
\left(\lambda_{p}\left(\mathcal{F}_{\Omega, E}\right)\right)^{-1}=\operatorname{Cap}_{p}(E, \infty, \Omega) \tag{2.1}
\end{equation*}
$$

(See also [12] or [8]). In particular, if Ω is \mathcal{A}-massive, then by Lemma 2.4, there exists a proper p-hyperbolic subset Ω_{0} of Ω such that $\bar{\Omega}_{0} \subset \Omega$. Since Ω_{0} is p-hyperbolic, there exists a nonempty compact subset $E \subset \bar{\Omega}_{0}$ such that $\operatorname{Cap}_{p}\left(E, \infty, \Omega_{0}\right)>0$. Therefore, combining (2.1) and the monotone property of the p-capacity, we conclude that

$$
\begin{equation*}
\left(\lambda_{p}\left(\mathcal{F}_{\Omega, E}\right)\right)^{-1}=\operatorname{Cap}_{p}(E, \infty, \Omega)>0 \tag{2.2}
\end{equation*}
$$

Let us denote \mathcal{G} to be the family of all locally rectifiable curves in M joining $\bar{B}_{R}(o)$ to infinity of M. For an unbounded set Ω of M, \mathcal{G}_{Ω} denotes the subfamily of \mathcal{G} which consists of all locally rectifiable curves in Ω joining $\bar{B}_{R}(o) \cap \Omega$ to infinity of Ω, where $R>0$ is sufficiently large such that $\bar{B}_{R}(o) \cap \Omega \neq \emptyset$. From now on, \mathcal{G} and \mathcal{G}_{Ω} mean those appear in the above setting unless otherwise specified. In particular, if Ω is a \mathcal{A}-massive set of M, we have $\lambda_{p}\left(\mathcal{G}_{\Omega}\right)<\infty$.

In fact, the p-extremal length of a family of curves in an unbounded set is closely related to the p-harmonic boundary as follows: Let us denote $e(\gamma)$ to be the end part of a curve $\gamma \in \mathcal{G}$ in $\partial \hat{M}$, this means that $e(\gamma)=\hat{\gamma} \cap \partial \hat{M}$, where $\hat{\gamma}$ denotes the closure in \hat{M} of the image set under γ. The following lemmas give a tractable criterion for a family of curves in an unbounded set to have infinite p-extremal length:

Lemma 2.5. Let Ω be an unbounded open subset of M such that $\bar{B}_{R}(o) \cap \Omega \neq \emptyset$ for sufficiently large $R>0$. Let \mathcal{G}_{0} be a subfamily of \mathcal{G}_{Ω} and K be the closure of the set $\bigcup_{\gamma \in \mathcal{G}_{0}} e(\gamma)$ in $\partial \hat{M}$. Suppose that K is disjoint from $\hat{\Omega} \cap \Delta_{M}$. Then $\lambda_{p}\left(\mathcal{G}_{0}\right)=\infty$.

Proof. If M is p-parabolic, then $\Delta_{M}=\emptyset$ and $\operatorname{Cap}_{p}\left(\bar{B}_{R}(o), \infty, M\right)=0$. Thus by (2.1), we have

$$
\left(\lambda_{p}(\mathcal{G})\right)^{-1}=\operatorname{Cap}_{p}\left(\bar{B}_{R}(o), \infty, M\right)=0
$$

So we may assume that M is p-nonparabolic. By the result in [11], it suffices to show that there exists a function ρ in $L^{p}(M)$ such that

$$
\int_{\gamma} \rho=\infty \quad \text { for each curve } \gamma \in \mathcal{G}_{0}
$$

Since K is a nonempty compact subset in $\partial \hat{M} \backslash \Delta_{M}$, there exists a continuous function f such that $\left.f\right|_{K}=\infty$ and $\int_{M}|\nabla f|^{p}<\infty$ (See [10], [1], and [13]). Hence the lemma follows. To be precise, from the definition of K, we have $e(\gamma) \in K$ for any curve $\gamma \in \mathcal{G}_{0}$. Thus we conclude that $f(\gamma)=\infty$ for any curve $\gamma \in \mathcal{G}_{0}$, where $f(\gamma)=\lim _{t \rightarrow \infty} f(\gamma(t))$. Then for any $\varepsilon>0$, the function $\varepsilon|\nabla f|$ is admissible with respect to \mathcal{G}_{0}. Consequently,

$$
\lambda_{p}\left(\mathcal{G}_{0}\right) \geq\left(\varepsilon^{p} \int_{M}|\nabla f|^{p}\right)^{-1}
$$

This completes the proof.
Lemma 2.6. Let \mathcal{G}_{0} be a subfamily of \mathcal{G} such that $\lambda_{p}\left(\mathcal{G}_{0}\right)=\infty$ and K be the closure of the set $\bigcup_{\gamma \in \mathcal{G} \backslash \mathcal{G}_{0}} e(\gamma)$ in $\partial \hat{M}$. Then K contains Δ_{M}.
Proof. If $\Delta_{M}=\emptyset$, then nothing to prove. So we may assume that $\Delta_{M} \neq \emptyset$. That is, M is p-nonparabolic. Then by (2.1), we have

$$
\left(\lambda_{p}(\mathcal{G})\right)^{-1}=\operatorname{Cap}_{p}\left(\bar{B}_{R}(o), \infty, M\right)>0
$$

Since $\lambda_{p}\left(\mathcal{G} \backslash \mathcal{G}_{0}\right)<\infty$, by Lemma 2.5 , we have $K \cap \Delta_{M} \neq \emptyset$. Suppose that the lemma is not true. We may assume that $\mathbf{x} \in \Delta_{M} \backslash K$. Let us choose a function $f \in \mathcal{B D}_{p}(M)$ such that $0<f<1$ on M and

$$
\left\{\begin{array}{r}
f(\mathbf{x})=1 ; \\
\left.f\right|_{K \cap \Delta_{M}}=0
\end{array}\right.
$$

By Proposition 1.1, there exist unique $h \in \mathcal{H B D}_{\mathcal{A}}(M)$ and $g \in \mathcal{B D}_{p, 0}(M)$ such that $f=h+g$, where \mathcal{A} is an elliptic operator on M satisfying conditions $(A 1),(A 2),(A 7)$ and (A8). Since g belongs to $\mathcal{B} \mathcal{D}_{p, 0}(M)$, by Lemma $2.2, g=0$ on Δ_{M}. From this fact together with the maximum principle, one can conclude that $0<h<1$ on M and

$$
\left\{\begin{array}{r}
h(\mathbf{x})=1 \\
\left.h\right|_{K \cap \Delta_{M}}=0 .
\end{array}\right.
$$

Let us consider the set

$$
\Omega=\{x \in M: h(x)>1-\varepsilon\},
$$

where ε is a positive constant so small that $1-\varepsilon>0$. Clearly, Ω is an \mathcal{A}-massive subset of M. Similarly arguing as (2.2), we have $\lambda_{p}\left(\mathcal{G}_{\Omega}\right)<\infty$. Let us denote K_{1} to be the closure of the set $\bigcup_{\gamma \in \mathcal{G}_{\Omega} \backslash \mathcal{G}_{0}} e(\gamma)$ in $\partial \hat{M}$. Since $\lambda_{p}\left(\mathcal{G}_{\Omega} \backslash \mathcal{G}_{0}\right)<\infty$, by Lemma 2.5 again, we have $K_{1} \cap \Delta_{M} \neq \emptyset$. Since $K_{1} \cap \Delta_{M}$ is a subset of $K \cap \Delta_{M}$, we conclude that

$$
\left.h\right|_{K_{1} \cap \Delta_{M}}=0 .
$$

On the other hand, from the definition of Ω, we see that $h(\gamma) \geq 1-\varepsilon$ for all curves $\gamma \in \mathcal{G}_{\Omega}$, where $h(\gamma)=\lim _{t \rightarrow \infty} h(\gamma(t))$. Hence we have

$$
\left.h\right|_{K_{1}} \geq 1-\varepsilon
$$

which is a contradiction. This completes the proof.

3. The proof of Theorem 1.2

We are ready to prove the main theorem which gives a connection between a sort of asymptotic behavior of functions in $\mathcal{B} \mathcal{D}_{p}(M)$ near infinity of M and the values of the functions at Δ_{M} :

Proof of Theorem 1.2. Suppose that $\left.f\right|_{\Delta_{M}}=0$. By considering the positive part and the negative part of f separately, we may assume that $f \geq 0$. For each positive integer n, let us consider the family of curves

$$
\mathcal{G}_{n}=\left\{\gamma \in \mathcal{G}: f(\gamma) \geq \frac{1}{n}\right\},
$$

where $f(\gamma)=\lim _{t \rightarrow \infty} f(\gamma(t))$. Since $\left.f\right|_{\Delta_{M}}=0$, we conclude that $K_{n} \cap \Delta_{M}=\emptyset$ for each positive integer n, where K_{n} is the closure of the set $\bigcup_{\gamma \in \mathcal{G}_{n}} e(\gamma)$ in $\partial \hat{M}$. Hence, by Lemma 2.5, one can conclude that $\lambda_{p}\left(\mathcal{G}_{n}\right)=\infty$ for each positive integer n. Then $\lim _{t \rightarrow \infty} f(\gamma(t))=0$ for all curves $\gamma \in \mathcal{G} \backslash \mathcal{G}_{\infty}$, where $\mathcal{G}_{\infty}=\bigcup_{n=1}^{\infty} \mathcal{G}_{n}$. Since $\lambda_{p}\left(\mathcal{G}_{\infty}\right)=\infty$, we have $\lim _{t \rightarrow \infty} f(\gamma(t))=0$ for p-almost every curve $\gamma \in \mathcal{G}$.

On the other hand, the converse follows immediately from Lemma 2.6. This completes the proof.

References

[1] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993.
[2] J. Hesse, A p-extremal length and p-capacity equality, Ark. Mat. 13 (1975), 131-144.
[3] E. Hewitt and K. Stormberg, Real and Abstract Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 1965.
[4] I. Holopainen, Rough isometries and p-harmonic functions with finite Dirichlet integral, Rev. Mat. Iberoamericana 10 (1994), no. 1, 143-176.
[5] S. W. Kim and Y. H. Lee, Rough isometry and energy finite solutions for Schrödinger operator on Riemannian manifolds, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 4, 855-873.
[6] Y. H. Lee, Rough isometry and energy finite solutions of elliptic equations on Riemannian manifolds, Math. Ann. 318 (2000), no. 1, 181-204.
[7] J. Malý and W. P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, Mathematical Surveys and Monographs, 51. American Mathematical Society, Providence, RI, 1997.
[8] S. Rickman, Quasiregular Mappings, Ergebnisse Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, 1993.
[9] L. Sario and M. Nakai, Classification Theory of Riemann Surfaces, Springer Verlag, Berlin, Heidelberg, New York, 1970.
[10] H. Tanaka, Harmonic boundaries of Riemannian manifolds, Nonlinear Anal. 14 (1990), no. 1, 55-67.
[11] J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Math. 229 Springer-Verlag, Berlin, Heidelberg, New Yorko, 1971.
[12] W. P. Ziemer, Extremal length and p-capacity, Michigan Math. J. 16 (1969), 43-51.
[13] , Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989.

Seok Woo Kim
Department of Mathematics Education
Konkuk University
Seoul 143-701, Korea
E-mail address: swkim@konkuk.ac.kr
Sang Moon Lee
Department of Mathematics
Konkuk University
Seoul 143-701, Korea
E-mail address: upsm99@konkuk.ac.kr
Yong Hah Lee
Department of Mathematics Education
Ewha Womans University
Seoul 120-750, Korea
E-mail address: yonghah@ewha.ac.kr

[^0]: Received November 19, 2008.
 2000 Mathematics Subject Classification. 58J05, 31B05.
 Key words and phrases. \mathcal{A}-harmonic function, p-harmonic boundary, comparison principle, maximum principle, p-extremal length, p-almost every curve.

 The first and second named authors were supported by grant No. R01-2006-000-10047$0(2008)$ from the Basic Research Program of the Korea Science \& Engineering Foundation and the second named author was also supported by the second stage of BK21 project.

