ASYMPTOTIC BEHAVIOR OF *A*-HARMONIC FUNCTIONS AND *p*-EXTREMAL LENGTH

SEOK WOO KIM, SANG MOON LEE, AND YONG HAH LEE

ABSTRACT. We describe the asymptotic behavior of functions of the Royden *p*-algebra in terms of *p*-extremal length. We also prove that each bounded \mathcal{A} -harmonic function with finite energy on a complete Riemannian manifold is uniquely determined by the behavior of the function along *p*-almost every curve.

1. Introduction

Let Ω be an open subset of an *n*-dimensional complete Riemannian manifold M and $W^{1,p}(\Omega)$ be the Sobolev space of all functions u in $L^p(\Omega)$ whose distributional gradient ∇u also belongs to $L^p(\Omega)$, where p is a constant such that $1 . We equip <math>W^{1,p}(\Omega)$ with the norm $||u||_{1,p} = ||u||_p + ||\nabla u||_p$. We denote by $W_0^{1,p}(\Omega)$ the closure of $C_0^{\infty}(\Omega)$ in $W^{1,p}(\Omega)$. Let $\mathbf{F} : \bigcup_{x \in \Omega} T_x M \to \mathbb{R}$ be a variational kernel satisfying following conditions:

- (A1) the mapping $\mathbf{F}_x = \mathbf{F}|_{T_xM} : T_xM \to \mathbb{R}$ is strictly convex and differentiable for all x in Ω , and the mapping $x \mapsto \mathbf{F}_x(\xi)$ is measurable whenever ξ is;
- (A2) for a constant $1 , there exist constants <math>0 < C_1 \le C_2 < \infty$ such that

$$C_1|\xi|^p \le \mathbf{F}_x(\xi) \le C_2|\xi|^p$$

for all x in Ω and ξ in $T_x M$.

It is instructive to note that if $\mathcal{A}_x(\xi) = (\mathcal{A}_x^1(\xi), \mathcal{A}_x^2(\xi), \dots, \mathcal{A}_x^n(\xi))$, where $\mathcal{A}_x^i(\xi) = \frac{\partial}{\partial \xi^i} F_x(\xi)$ for each $i = 1, 2, \dots, n$, then \mathcal{A} satisfies the following properties: (See [1] and [7])

O2010 The Korean Mathematical Society

Received November 19, 2008.

 $^{2000\} Mathematics\ Subject\ Classification.\ 58J05,\ 31B05.$

Key words and phrases. A-harmonic function, p-harmonic boundary, comparison principle, maximum principle, p-extremal length, p-almost every curve.

The first and second named authors were supported by grant No. R01-2006-000-10047-0(2008) from the Basic Research Program of the Korea Science & Engineering Foundation and the second named author was also supported by the second stage of BK21 project.

(A3) the mapping $\mathcal{A}_x = \mathcal{A}|_{T_xM} : T_xM \to T_xM$ is continuous for a.e. x in Ω , and the mapping $x \mapsto \mathcal{A}_x(\xi)$ is a measurable vector field whenever ξ is;

for a.e. x in Ω and for all ξ, ξ' in $T_x M$,

- $(A4) \quad \langle \mathcal{A}_x(\xi), \xi \rangle \ge C_1 |\xi|^p;$
- (A5) $|\mathcal{A}_x(\xi)| \le C_2 |\xi|^{p-1};$
- (A6) $\langle \mathcal{A}_x(\xi) \mathcal{A}_x(\xi'), \xi \xi' \rangle > 0$ whenever $\xi \neq \xi'$.

We say that a function u in $W^{1,p}_{\text{loc}}(\Omega)$ is a solution (supersolution, respectively) of the equation

(1.1)

$$-\operatorname{div}\mathcal{A}_x(\nabla u) = 0 \ (\geq 0, \text{respectively})$$

in Ω if

$$\int_{\Omega} \langle \mathcal{A}_x(\nabla u), \nabla \phi \rangle = 0 \ (\geq 0, \text{respectively})$$

for any (nonnegative, respectively) function ϕ in $C_0^{\infty}(\Omega)$. A function v in $W_{\text{loc}}^{1,p}(\Omega)$ is called a subsolution of (1.1) in Ω if -v is a supersolution of (1.1) in Ω . We say that a function u is \mathcal{A} -harmonic (of type p) if u is a continuous solution of (1.1). In a typical case $\mathcal{A}_x(\xi) = \xi |\xi|^{p-2}$, \mathcal{A} -harmonic functions are called p-harmonic and, in particular, if p = 2, then we obtain harmonic functions. Suppose that E is a measurable set and that $u \in W_{\text{loc}}^{1,p}(\Omega)$ for an open neighborhood Ω of E. Then the variational integral

$$\mathbf{J}(u,E) = \int_E \mathbf{F}_x(\nabla u)$$

is well defined. If $\mathbf{J}(u, M) < \infty$, then we say that u has finite energy. In fact, given $f \in W^{1,p}(\Omega)$, each \mathcal{A} -harmonic function u with $u - f \in W_0^{1,p}(\Omega)$ minimizes the energy functional $J(v, \Omega)$ on the set $\{v \in W^{1,p}(\Omega) : v - f \in W_0^{1,p}(\Omega)\}$ (See [1]). A Green's function $G = G(o, \cdot)$ for \mathcal{A} on M denotes (if exists) a positive solution of the equation

(1.2)
$$-\operatorname{div}\mathcal{A}(\nabla G) = \delta_o$$

for each o in M, in the sense of distributions, i.e.,

$$\int_M \langle \mathcal{A}(\nabla G), \nabla \phi \rangle = \phi(o)$$

for any function ϕ in $C_0^{\infty}(M)$. In fact, there exists a Green's function G satisfying (1.2) if and only if M has positive p-capacity at infinity, i.e., there exists a compact subset K of M such that

$$\operatorname{Cap}_p(K,\infty,M) = \inf_u \int_M |\nabla u|^p > 0,$$

where the infimum is taken over all functions u in $C_0^{\infty}(M)$ with u = 1 on K. In particular, we say that a complete Riemannian manifold M is p-parabolic if $\operatorname{Cap}_p(K, \infty, M) = 0$ for every compact subset K of M. Otherwise, M is called p-nonparabolic. It is well known that a complete Riemannian manifold M is

p-nonparabolic if and only if M has the positive \mathcal{A} -capacity, i.e., there exists a compact subset K of M such that

$$\operatorname{Cap}_{\mathcal{A}}(K, \infty, M) = \inf_{u} \mathbf{J}(u, M) > 0,$$

where the infimum is taken over all functions u in $C_0^{\infty}(M)$ with u = 1 on K. We now introduce additional conditions on \mathbf{F} as follows:

- (A7) $\mathcal{A}_x(\lambda\xi) = \lambda |\lambda|^{p-2} \mathcal{A}_x(\xi)$ whenever $\lambda \in \mathbb{R} \setminus \{0\}$; for any ξ, ξ' in $T_x M$,
- (A8) in case $2 \le p < \infty$,

$$\mathbf{F}_x\left(\frac{\xi+\xi'}{2}\right) + \mathbf{F}_x\left(\frac{\xi-\xi'}{2}\right) \le \frac{1}{2}(\mathbf{F}_x(\xi) + \mathbf{F}_x(\xi')),$$

in case 1 ,

$$\mathbf{F}_{x}\left(\frac{\xi+\xi'}{2}\right)^{\tilde{p}} + \mathbf{F}_{x}\left(\frac{\xi-\xi'}{2}\right)^{\tilde{p}} \le \left(\frac{1}{2}(\mathbf{F}_{x}(\xi) + \mathbf{F}_{x}(\xi'))\right)^{\tilde{p}},$$

ro $\tilde{a} = 1/(n-1)$

where $\tilde{p} = 1/(p-1)$.

For $\mathbf{F}(\xi) = \frac{1}{p} |\xi|^p$, the condition (A8) is called the Clarkson inequality (See [3]).

Let $\mathcal{BD}_p(M)$ be the set of all bounded continuous functions u on a complete Riemannian manifold M whose distributional gradient ∇u belongs to $L^p(M)$. Then, by using the Minkowski inequality, it is easy to see that $\mathcal{BD}_p(M)$ forms an algebra over the real numbers with the usual addition and multiplication of functions and scalar multiplication defined pointwise. The function space $\mathcal{BD}_p(M)$ is called the Royden p-algebra of M (See [9]). We say that a sequence $\{f_n\}$ of functions in $\mathcal{BD}_p(M)$ converges to a function $f \in \mathcal{BD}_p(M)$ in the \mathcal{BD}_p -topology if

- (i) $\{f_n\}$ is uniformly bounded;
- (ii) f_n converges uniformly to f on each compact subset of M;
- (iii) $\lim_{n\to\infty} \int_M |\nabla (f_n f)|^p = 0.$

It is well known that $\mathcal{BD}_p(M)$ is complete in the \mathcal{BD}_p -topology. Let $\mathcal{BD}_{p,0}(M)$ be the closure of the set of all compactly supported smooth functions in $\mathcal{BD}_p(M)$. It is easy to see that $\mathcal{BD}_{p,0}(M)$ is not only a subalgebra but also an ideal of $\mathcal{BD}_p(M)$. We denote by $\mathcal{HBD}_{\mathcal{A}}(M)$ the subset of all bounded energy finite \mathcal{A} -harmonic functions in $\mathcal{BD}_p(M)$, where \mathcal{A} is an elliptic operator on M satisfying conditions (A1), (A2), (A7) and (A8). Adopting the arguments in [6], one can prove the following \mathcal{A} -harmonic version of the Royden decomposition theorem:

Proposition 1.1. Let \mathcal{A} be an elliptic operator on a *p*-nonparabolic complete Riemannian manifold M satisfying conditions (A1), (A2), (A7) and (A8). Then for each $f \in \mathcal{BD}_p(M)$, there exist unique $u \in \mathcal{HBD}_{\mathcal{A}}(M)$ and $g \in \mathcal{BD}_{p,0}(M)$ such that f = u + g.

For a complete Riemannian manifold M, there exists a locally compact Hausdorff space \hat{M} , called the Royden *p*-compactification of M, which contains M as an open dense subset. In particular, every function $f \in \mathcal{BD}_p(M)$ can be extended to a continuous function, denoted again by f, on \hat{M} and the class of such extended functions separates points in \hat{M} . The Royden *p*-boundary of \hat{M} is the set $\hat{M} \setminus M$ and will be denoted by $\partial \hat{M}$. Throughout the paper, for a subset Ω of M, we denote by $\overline{\Omega}$ the closure of Ω in M and $\hat{\Omega}$ the closure of Ω in \hat{M} . An important part of the Royden *p*-boundary $\partial \hat{M}$ is the *p*-harmonic boundary Δ_M defined by

$$\Delta_M = \{ \mathbf{x} \in \partial \hat{M} : f(\mathbf{x}) = 0 \text{ for all } f \in \mathcal{BD}_{p,0}(M) \}.$$

Let \mathcal{F} be a family of locally rectifiable curves in a complete Riemannian manifold M. Let us fix a real number p such that $1 . A nonnegative Borel measurable function <math>\rho: M \to \mathbb{R}$ is called admissible with respect to \mathcal{F} if $\int_{\gamma} \rho \geq 1$ for all curves γ in \mathcal{F} . The *p*-extremal length of \mathcal{F} , denoted by $\lambda_p(\mathcal{F})$, is defined as

$$\lambda_p(\mathcal{F}) = \left(\inf_{\rho} \int_M \rho^p\right)^{-1},$$

where the infimum is taken over the set of all admissible functions ρ with respect to \mathcal{F} . A property is said to hold for *p*-almost every curve in \mathcal{F} if it holds for all curves in $\mathcal{F} \setminus \mathcal{F}_0$, where \mathcal{F}_0 is a subfamily of \mathcal{F} with *p*-extremal length ∞ .

Under the above setting, the value at the p-harmonic boundary of each function of the Royden p-algebra is completely determined by its asymptotic behavior along p-almost every curve as follows:

Theorem 1.2. Let us denote \mathcal{G} to be the family of all locally rectifiable curves in a complete Riemannian manifold M joining $\overline{B}_R(o)$ to infinity of M, where $B_R(o)$ denotes a geodesic ball of radius R > 0 centered at o. Then for any function f in $\mathcal{BD}_p(M)$, the following conditions are equivalent:

- (i) $f|_{\Delta_M} = 0.$
- (ii) f converges to a constant 0 for p-almost every curve in \mathcal{G} , that is,

$$\lim f(\gamma(t)) = 0$$

along each curve γ in \mathcal{G} except a subfamily of \mathcal{G} whose p-extremal length is ∞ .

Applying the comparison principle in Lemma 2.3 together with Theorem 1.2, one can prove that each bounded \mathcal{A} -harmonic function with finite energy is uniquely determined by the behavior of the function along *p*-almost every curve as follows:

Corollary 1.3. Let \mathcal{G} be given as in Theorem 1.2. Suppose that $f, h \in \mathcal{HBD}_{\mathcal{A}}(M)$ and

$$\lim_{t \to \infty} f(\gamma(t)) = \lim_{t \to \infty} h(\gamma(t))$$

for p-almost every curve in \mathcal{G} . Then $f \equiv h$ on M.

Corollary 1.4. Let \mathcal{G} be given as in Theorem 1.2. Suppose that $h \in \mathcal{HBD}_{\mathcal{A}}(M)$ and $c \in \mathbb{R}$ with

$$\lim_{t \to \infty} h(\gamma(t)) = c$$

for p-almost every curve in \mathcal{G} . Then $h \equiv c$ on M.

2. The maximum principle and the *p*-extremal length

We now study the relation between a sort of asymptotic behavior of functions in the Royden *p*-algebra $\mathcal{BD}_p(M)$ near infinity of M and the values of the functions at the *p*-harmonic boundary Δ_M of M. We first give a characterization of the *p*-parabolicity in terms of the *p*-harmonic boundary as follows (See [6]):

Lemma 2.1. A complete Riemannian manifold M is p-parabolic if and only if the p-harmonic boundary Δ_M of M is empty.

Furthermore, there is a useful duality relation between $\mathcal{BD}_{p,0}(M)$ and Δ_M (See [6]):

Lemma 2.2. For any complete Riemannian manifold M,

$$\mathcal{BD}_{p,0}(M) = \{ f \in \mathcal{BD}_p(M) : f = 0 \text{ on } \Delta_M \}.$$

We now give the comparison principle and the maximum principle for \mathcal{A} -harmonic functions as follows:

Lemma 2.3. Let \mathcal{A} be an elliptic operator on a p-nonparabolic complete Riemannian manifold M satisfying conditions (A1), (A2), (A7) and (A8).

(C) Suppose that there exist A-harmonic functions $u, v \in \mathcal{HBD}_{\mathcal{A}}(M)$ such that

$$v \leq u \text{ on } \Delta_M$$

Then we have $v \leq u$ on M.

(M) Suppose that there exists an \mathcal{A} -harmonic function $u \in \mathcal{HBD}_{\mathcal{A}}(M)$ such that

 $a \leq u \leq b$ on Δ_M

for some constants a and b with $a \leq b$. Then we have $a \leq u \leq b$ on M.

Proof. Let us consider a function $\phi = \min\{u - v, 0\}$. Since $v \leq u$ on Δ_M , we conclude that $\phi = 0$ on Δ_M . Thus by Lemma 2.2, we conclude that ϕ belongs to $\mathcal{BD}_{p,0}(M)$. Since u and v are \mathcal{A} -harmonic on M and there is a sequence of compactly supported smooth functions converging to ϕ in $\mathcal{BD}_p(M)$, we have

$$\int_{M} \langle \mathcal{A}_{x}(\nabla u), \nabla \phi \rangle = 0$$
$$\int_{M} \langle \mathcal{A}_{x}(\nabla v), \nabla \phi \rangle = 0.$$

and

Let 1_{Ω} be the characteristic function of the set $\Omega = \{x \in M : u(x) \le v(x)\}$. Since $\nabla \phi = 1_{\Omega} \nabla (u - v)$ almost everywhere in M, we conclude that

$$\int_{\Omega} \langle \mathcal{A}_x(\nabla u) - \mathcal{A}_x(\nabla v), \nabla(u - v) \rangle = 0$$

By the condition (A6), u - v is almost everywhere constant in Ω . Since u and v are continuous, u - v is constant in Ω . Hence we have (C) from the continuity of u and v.

On the other hand, since every constant function is also \mathcal{A} -harmonic, we have (M) from (C).

We now introduce the notion of the *p*-capacity of a condenser: Let $\Omega \subset M$ be a nonempty open set and let E_1 and E_2 be mutually disjoint closed subsets of $\overline{\Omega}$. The *p*-capacity for a triple (E_1, E_2, Ω) is defined by

$$\operatorname{Cap}_p(E_1, E_2, \Omega) = \inf_v \int_{\Omega} |\nabla v|^p,$$

where the infimum is taken over all smooth functions v on $\Omega \cup E_1 \cup E_2$ such that $0 \leq v \leq 1$ on Ω , v = 0 on E_1 and v = 1 on E_2 . Such a triple (E_1, E_2, Ω) is called a condenser. For an unbounded open set $\Omega \subset M$ and a nonempty compact set $E \subset \overline{\Omega}$, we define

$$\operatorname{Cap}_p(E, \infty, \Omega) = \lim_{r \to \infty} \operatorname{Cap}_p(E, \overline{\Omega} \setminus B_r(o), \Omega),$$

where $B_r(o)$ denotes the geodesic ball of radius r > 0 centered at a fixed point oin M. It is needed to note that $\operatorname{Cap}_p(E, \overline{\Omega} \setminus B_r(o), \Omega)$ is monotone decreasing in r > 0. On the other hand, an unbounded open set $\Omega \subset M$ is called *p*-hyperbolic if there exists a nonempty compact set $E \subset \overline{\Omega}$ such that

$$\operatorname{Cap}_p(E, \infty, \Omega) > 0.$$

From the properties of the *p*-capacity, it is easy to see that any open set Ω is *p*-hyperbolic if there exists a *p*-hyperbolic subset Ω' of Ω . An unbounded open proper set $\Omega \subset M$ is called \mathcal{A} -massive if there exists a function u in $\mathcal{BD}_p(M)$ such that

$$\left\{ \begin{array}{ll} \mathcal{A}u=0 & \text{ in } \Omega;\\ u=0 & \text{ on } M\setminus \Omega;\\ \mathrm{sup}_{\Omega}u=1. \end{array} \right.$$

Such a function u is called an inner potential of Ω . In fact, for each nonconstant function u in $\mathcal{HBD}_{\mathcal{A}}(M)$, the set $\{x \in M : u(x) > c\}$ is \mathcal{A} -massive, where $\inf_{M} u < c < \sup_{M} u$. There is a useful property of \mathcal{A} -massive sets (See [4], [5] and [6]):

Lemma 2.4. Let \mathcal{A} be an elliptic operator on a complete Riemannian manifold M satisfying conditions (A1), (A2), (A7) and (A8). If Ω is \mathcal{A} -massive, then there exists a proper p-hyperbolic subset Ω_0 of Ω such that $\overline{\Omega}_0 \subset \Omega$ and a continuous function v on $\overline{\Omega}$ such that $\mathcal{A}v = 0$ in $\Omega \setminus \overline{\Omega}_0$, v = 0 on $\partial\Omega$ and v has finite energy, that is, $\mathbf{J}(v, M) < \infty$.

On the other hand, the *p*-capacity of a condenser is closely related to the *p*-extremal length of a family of curves as follows: Let Ω be an unbounded open subset of M and E be a compact set in Ω . Let $\mathcal{F}_{\Omega,E}$ be the family of all locally rectifiable curves in Ω joining E to infinity of Ω . This means that γ is a curve in $\mathcal{F}_{\Omega,E}$ if $\gamma : [\alpha, \beta) \to \Omega$ (β may be ∞) is locally rectifiable, $\gamma(\alpha)$ belongs to E, and for any compact set K of M, there exists $t_K \in [\alpha, \beta)$ such that $\gamma(t)$ does not belong to K for all $t > t_K$. Then, by results in [2], we have

(2.1)
$$\left(\lambda_p(\mathcal{F}_{\Omega,E})\right)^{-1} = \operatorname{Cap}_p(E,\infty,\Omega)$$

(See also [12] or [8]). In particular, if Ω is \mathcal{A} -massive, then by Lemma 2.4, there exists a proper *p*-hyperbolic subset Ω_0 of Ω such that $\overline{\Omega}_0 \subset \Omega$. Since Ω_0 is *p*-hyperbolic, there exists a nonempty compact subset $E \subset \overline{\Omega}_0$ such that $\operatorname{Cap}_p(E, \infty, \Omega_0) > 0$. Therefore, combining (2.1) and the monotone property of the *p*-capacity, we conclude that

(2.2)
$$\left(\lambda_p(\mathcal{F}_{\Omega,E})\right)^{-1} = \operatorname{Cap}_p(E,\infty,\Omega) > 0.$$

Let us denote \mathcal{G} to be the family of all locally rectifiable curves in M joining $\overline{B}_R(o)$ to infinity of M. For an unbounded set Ω of M, \mathcal{G}_Ω denotes the subfamily of \mathcal{G} which consists of all locally rectifiable curves in Ω joining $\overline{B}_R(o) \cap \Omega$ to infinity of Ω , where R > 0 is sufficiently large such that $\overline{B}_R(o) \cap \Omega \neq \emptyset$. From now on, \mathcal{G} and \mathcal{G}_Ω mean those appear in the above setting unless otherwise specified. In particular, if Ω is a \mathcal{A} -massive set of M, we have $\lambda_p(\mathcal{G}_\Omega) < \infty$.

In fact, the *p*-extremal length of a family of curves in an unbounded set is closely related to the *p*-harmonic boundary as follows: Let us denote $e(\gamma)$ to be the end part of a curve $\gamma \in \mathcal{G}$ in $\partial \hat{M}$, this means that $e(\gamma) = \hat{\gamma} \cap \partial \hat{M}$, where $\hat{\gamma}$ denotes the closure in \hat{M} of the image set under γ . The following lemmas give a tractable criterion for a family of curves in an unbounded set to have infinite *p*-extremal length:

Lemma 2.5. Let Ω be an unbounded open subset of M such that $\overline{B}_R(o) \cap \Omega \neq \emptyset$ for sufficiently large R > 0. Let \mathcal{G}_0 be a subfamily of \mathcal{G}_Ω and K be the closure of the set $\bigcup_{\gamma \in \mathcal{G}_0} e(\gamma)$ in $\partial \hat{M}$. Suppose that K is disjoint from $\hat{\Omega} \cap \Delta_M$. Then $\lambda_p(\mathcal{G}_0) = \infty$.

Proof. If M is p-parabolic, then $\Delta_M = \emptyset$ and $\operatorname{Cap}_p(\overline{B}_R(o), \infty, M) = 0$. Thus by (2.1), we have

$$\left(\lambda_p(\mathcal{G})\right)^{-1} = \operatorname{Cap}_p(\overline{B}_R(o), \infty, M) = 0.$$

So we may assume that M is p-nonparabolic. By the result in [11], it suffices to show that there exists a function ρ in $L^p(M)$ such that

$$\int_{\gamma} \rho = \infty \quad \text{for each curve} \quad \gamma \in \mathcal{G}_0.$$

Since K is a nonempty compact subset in $\partial M \setminus \Delta_M$, there exists a continuous function f such that $f|_K = \infty$ and $\int_M |\nabla f|^p < \infty$ (See [10], [1], and [13]). Hence the lemma follows. To be precise, from the definition of K, we have $e(\gamma) \in K$ for any curve $\gamma \in \mathcal{G}_0$. Thus we conclude that $f(\gamma) = \infty$ for any curve $\gamma \in \mathcal{G}_0$, where $f(\gamma) = \lim_{t\to\infty} f(\gamma(t))$. Then for any $\varepsilon > 0$, the function $\varepsilon |\nabla f|$ is admissible with respect to \mathcal{G}_0 . Consequently,

$$\lambda_p(\mathcal{G}_0) \ge \left(\varepsilon^p \int_M |\nabla f|^p\right)^{-1}.$$

This completes the proof.

Lemma 2.6. Let \mathcal{G}_0 be a subfamily of \mathcal{G} such that $\lambda_p(\mathcal{G}_0) = \infty$ and K be the closure of the set $\bigcup_{\gamma \in \mathcal{G} \setminus \mathcal{G}_0} e(\gamma)$ in $\partial \hat{M}$. Then K contains Δ_M .

Proof. If $\Delta_M = \emptyset$, then nothing to prove. So we may assume that $\Delta_M \neq \emptyset$. That is, M is *p*-nonparabolic. Then by (2.1), we have

$$\left(\lambda_p(\mathcal{G})\right)^{-1} = \operatorname{Cap}_p(\overline{B}_R(o), \infty, M) > 0.$$

Since $\lambda_p(\mathcal{G} \setminus \mathcal{G}_0) < \infty$, by Lemma 2.5, we have $K \cap \Delta_M \neq \emptyset$. Suppose that the lemma is not true. We may assume that $\mathbf{x} \in \Delta_M \setminus K$. Let us choose a function $f \in \mathcal{BD}_p(M)$ such that 0 < f < 1 on M and

$$\begin{cases} f(\mathbf{x}) = 1; \\ f|_{K \cap \Delta_M} = 0 \end{cases}$$

By Proposition 1.1, there exist unique $h \in \mathcal{HBD}_{\mathcal{A}}(M)$ and $g \in \mathcal{BD}_{p,0}(M)$ such that f = h + g, where \mathcal{A} is an elliptic operator on M satisfying conditions (A1), (A2), (A7) and (A8). Since g belongs to $\mathcal{BD}_{p,0}(M)$, by Lemma 2.2, g = 0 on Δ_M . From this fact together with the maximum principle, one can conclude that 0 < h < 1 on M and

$$\begin{array}{c} h(\mathbf{x}) = 1; \\ h|_{K \cap \Delta_M} = 0 \end{array}$$

Let us consider the set

$$\Omega = \{ x \in M : h(x) > 1 - \varepsilon \},\$$

where ε is a positive constant so small that $1-\varepsilon > 0$. Clearly, Ω is an \mathcal{A} -massive subset of M. Similarly arguing as (2.2), we have $\lambda_p(\mathcal{G}_{\Omega}) < \infty$. Let us denote K_1 to be the closure of the set $\bigcup_{\gamma \in \mathcal{G}_{\Omega} \setminus \mathcal{G}_0} e(\gamma)$ in $\partial \hat{M}$. Since $\lambda_p(\mathcal{G}_{\Omega} \setminus \mathcal{G}_0) < \infty$, by Lemma 2.5 again, we have $K_1 \cap \Delta_M \neq \emptyset$. Since $K_1 \cap \Delta_M$ is a subset of $K \cap \Delta_M$, we conclude that

$$h|_{K_1 \cap \Delta_M} = 0.$$

On the other hand, from the definition of Ω , we see that $h(\gamma) \ge 1 - \varepsilon$ for all curves $\gamma \in \mathcal{G}_{\Omega}$, where $h(\gamma) = \lim_{t \to \infty} h(\gamma(t))$. Hence we have

$$h|_{K_1} \ge 1 - \varepsilon$$

which is a contradiction. This completes the proof.

3. The proof of Theorem 1.2

We are ready to prove the main theorem which gives a connection between a sort of asymptotic behavior of functions in $\mathcal{BD}_p(M)$ near infinity of M and the values of the functions at Δ_M :

Proof of Theorem 1.2. Suppose that $f|_{\Delta_M} = 0$. By considering the positive part and the negative part of f separately, we may assume that $f \ge 0$. For each positive integer n, let us consider the family of curves

$$\mathcal{G}_n = \left\{ \gamma \in \mathcal{G} : f(\gamma) \ge \frac{1}{n} \right\},$$

where $f(\gamma) = \lim_{t\to\infty} f(\gamma(t))$. Since $f|_{\Delta_M} = 0$, we conclude that $K_n \cap \Delta_M = \emptyset$ for each positive integer n, where K_n is the closure of the set $\bigcup_{\gamma \in \mathcal{G}_n} e(\gamma)$ in $\partial \hat{M}$. Hence, by Lemma 2.5, one can conclude that $\lambda_p(\mathcal{G}_n) = \infty$ for each positive integer n. Then $\lim_{t\to\infty} f(\gamma(t)) = 0$ for all curves $\gamma \in \mathcal{G} \setminus \mathcal{G}_\infty$, where $\mathcal{G}_\infty = \bigcup_{n=1}^{\infty} \mathcal{G}_n$. Since $\lambda_p(\mathcal{G}_\infty) = \infty$, we have $\lim_{t\to\infty} f(\gamma(t)) = 0$ for p-almost every curve $\gamma \in \mathcal{G}$.

On the other hand, the converse follows immediately from Lemma 2.6. This completes the proof. $\hfill \Box$

References

- J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993.
- [2] J. Hesse, A p-extremal length and p-capacity equality, Ark. Mat. 13 (1975), 131-144.
- [3] E. Hewitt and K. Stormberg, *Real and Abstract Analysis*, Springer-Verlag, New York, Heidelberg, Berlin, 1965.
- [4] I. Holopainen, Rough isometries and p-harmonic functions with finite Dirichlet integral, Rev. Mat. Iberoamericana 10 (1994), no. 1, 143–176.
- [5] S. W. Kim and Y. H. Lee, Rough isometry and energy finite solutions for Schrödinger operator on Riemannian manifolds, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 4, 855–873.
- [6] Y. H. Lee, Rough isometry and energy finite solutions of elliptic equations on Riemannian manifolds, Math. Ann. 318 (2000), no. 1, 181–204.
- [7] J. Malý and W. P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, Mathematical Surveys and Monographs, 51. American Mathematical Society, Providence, RI, 1997.
- [8] S. Rickman, Quasiregular Mappings, Ergebnisse Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, 1993.
- [9] L. Sario and M. Nakai, *Classification Theory of Riemann Surfaces*, Springer Verlag, Berlin, Heidelberg, New York, 1970.
- [10] H. Tanaka, Harmonic boundaries of Riemannian manifolds, Nonlinear Anal. 14 (1990), no. 1, 55–67.
- [11] J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Math. 229 Springer-Verlag, Berlin, Heidelberg, New Yorko, 1971.
- [12] W. P. Ziemer, Extremal length and p-capacity, Michigan Math. J. 16 (1969), 43–51.
- [13] _____, Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989.

SEOK WOO KIM DEPARTMENT OF MATHEMATICS EDUCATION KONKUK UNIVERSITY SEOUL 143-701, KOREA *E-mail address:* swkim@konkuk.ac.kr

Sang Moon Lee Department of Mathematics Konkuk University Seoul 143-701, Korea *E-mail address*: upsm99@konkuk.ac.kr

Yong Hah Lee Department of Mathematics Education Ewha Womans University Seoul 120-750, Korea *E-mail address*: yonghah@ewha.ac.kr