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THE ZETA-DETERMINANTS OF HARMONIC
OSCILLATORS ON R?

KyouncgawAa KiMm

ABSTRACT. In this paper we discuss the zeta-determinants of har-
monic oscillators having general quadratic potentials defined on R2.
By using change of variables we reduce the harmonic oscillators hav-
ing general quadratic potentials to the standard harmonic oscillators
and compute their spectra and eigenfunctions. We then discuss their
zeta functions and zeta-determinants. In some special cases we com-
pute the zeta-determinants of harmonic oscillators concretely by us-
ing the Riemann zeta function, Hurwitz zeta function and Gamma
function.

1. Introduction

The zeta-determinant of a differential operator is a global spectral in-
variant, which is a natural extension of the usual determinant of a linear
map or a matrix acting on a finite dimensional vector space. The zeta-
determinant is defined by the spectral zeta function associated to a dif-
ferential operator, which plays an important role in geometry, topology
and mathematical physics (cf. [2] and [3]). In this paper we discuss the
zeta-determinants of harmonic oscillators having general quadratic po-
tentials defined on R?. The harmonic oscillators are Laplacians equipped
with quadratic potentials, which are used quite often in mathematics
and physics including functional analysis and quantum mechanics. It
is a well known fact that the harmonic oscillators have discrete point
spectra. By using change of variables we reduce the harmonic oscillators
with general quadratic potentials to the standard harmonic oscillators
and compute their spectra and eigenfunctions. We then discuss the spec-
tral zeta function consisting of the eigenvalues of the harmonic oscillators
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and discuss their zeta determinants. Finally we compute, in some spe-
cial cases, the zeta-determinants concretely by using the Riemann zeta
function, Hurwitz zeta function and Gamma function.

We begin with the definition of the Harmonic oscillators. The har-
monic oscillators of one variable H : S(R) — S(R) is defined by

2

d 22
(1.1) H = o ta (a € RT),

where S(R) is the Schwartz space on R. In Section 2 we are going
to review some basic spectral properties of the harmonic oscillator H
including their spectra and eigenfunctions. In Section 3 we are going to
consider the harmonic oscillators of the form

H ( 62+ 22)+( 82+ “>+ +< 82+ “)
" x3 i 3 2 Dz, )
where aq,- -+ ,a, € RT and discuss their spectra and eigenfunctions.

We then discuss harmonic oscillators with general quadratic forms on
R"™. Using change of variables we reduce them to the standard harmonic
oscillators and compute their spectra in terms of the eigenvalues of the
symmetric matrices associated to the quadratic forms. Finally, in Sec-
tion 4 we review the definition of the zeta-determinant and show how
it generalizes the usual determinant of a linear map acting on a finite
dimensional vector space. We then discuss the zeta-determinants of the
harmonic oscillators defined on R? of the following type

0? 0?
H(a,b) = —(@ + 8_y2> + (a®2® +b**) (a, b>0).

When b = a and a = 5, b = %, we compute the zeta-determinant
of H(a,b) explicitly by using the Riemann zeta function, Hurwitz zeta
function and Gamma function We finally discuss the zeta-determinant
of H(a,b) when a,b € Rt — {n? | n € N} but so far we didn’t find an

explicit description of the zeta-determinant of H(a,b).

2. Harmonic oscillators of one variable

In this section we are going to introduce harmonic oscillators of one
variable acting on the Schwartz space and investigate their spectral
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structures. Using the materials in this section we are going to compute
the eigenvalues and eigenfunctions of harmonic oscillators of n variables
in the next section.

We first define a few concepts. Let S(R) be the Schwartz space on R.
The creation operator A and annihilation operator AT : S(R) — S(R)
are defined, for a > 0, by

d d
A=ar— — Al = —
ax I axr + I

Let H be the Harmonic oscillator defined in (1.1). The function v, €
S(R) is called the ground state of H if

Afyyg =0, [ ¢l = 1.
For k > 1, we define a function ¢, € S(R) by

1
(2ka)?

and call ¢, the ezxcited state of H. Then we have the following result,
which are well known.

(2.1) Uy =

Ay

LEMMA 2.1. Let H be a Harmonic oscillator defined in (1.1) and
A, A" be the creation operator and annihilation operator, respectively.
Then we have the following equalities.

(1) AA' = H —a, ATA= H + a,
(2) [Af, 4] = 26,
(3) [H, A] = 2aA, [H, AT| = —2aA', where [A, B| = AB — BA.

Proof. Let 1 be a function in S(R). Then

Amw):<m—£30m+iyw

d2
= a’2® —i—ax—w—— w—

d d?
= a’2® +axd—w—aw—ax—w—dx2

_ ( _a—j—Z) () = (H - a)(),

which shows AAT = (H — a). Similarly, we can show ATA = (H + a),
which completes the proof of the statement (1). Since [AT, A] = ATA —
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AAT we have [AT, A] = H +a — (H — a) = 2a, which shows the equality
(2). Let ¢ be a function in S(R). Then

(HA = AH)(¢)

d? d d d?
(- ) (o= ) 0 (o= ) (- ) 0
(o) oo £9)- (o) - )

d d
=~ 20 200 =20 (0 - ) (6) = 204(0)

which shows [H, A] = 2aA. Similarly,
g _ 9l 206 — i
(HA"— ATH)(¢) = —Qa%gb —2a°x¢p = —2aA'(¢),

which completes the proof of the lemma. m

LEMMA 2.2. Let ¢y, € S(R) be the excited state of H defined in
(2.1). Then vy, is the normalized eigenfunction of H such that Hy, =
(2k + )avyy and |[y]| = 1 for all k > 0.

Proof. To prove this theorem, we apply the mathematical induction
and the statement (3) in Lemma 2.1. First we show that Hiyy = (2k +
1)aty. For k = 0, by the statement (1) in Lemma 2.1., AAT = H — q,
AATpy = (H—a)ihy. Since ATtpy = 0, we get Hipg = arpg. Now for k = 1,

Hy, = HﬁA@Z)Q: L HA’QZ)QZL(AH—FQCLA)’(/JO
a)z

_ (AHg + 2aAy) = (21 (a A + 2aAv))

(2a a)?

N

1
= =3a Ay = 3ay).
20)! Yo U

We now assume that it is true for kK = m — 1. Then
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1 1

H m = H T A m—1 — 1 HA m—
v (2ma)z Y (2ma)? o
1 1
= AH A m—1 = T 1 AH m— A m—
(2ma)% ( +20A) Y- (2ma)2 (AH Y1 + 2adim-1)
= {@m— Dadin, + 2040, )
(2ma)?z
= 1 —(2m + 1)aAv, 1 = (2m + 1)a),,.
2ma)z

The induction shows that Hiy, = (2k+1)ay), holds for all nonnegative
integers k, and hence 1)y, is an eigenfunction of H with eigenvalue (2k +
1)a. By the same way, we show that |[¢x]| = 1 for all £ > 0. Indeed,
it is true for £ = 0 because of the definition of the ground state. If we
assume that it is true for K = m — 1, then

1 1

2
m = ms Ym/) — 1A m—a—1A m—
nll = mstn) = (o A s At )
1 1
= —— (A1, A1) = —— (AT Athry 1, Y
2ma< wm 1, wm 1> 2ma< wm 1,¢m 1>
1 1
= —((H _ 1) = —(Hp,_ _ _
2ma<( +a),¢}m la,le)m 1> 2ma< ¢m 1+a¢m la,le)m 1>
1
= 2ma<(2m — Dam—1 + a1, ¥m-1)
1
= %<2mawmflawmfl> = <wm717wm71> = mefluz =1
Hence by induction [[1)x|| = 1 for all nonnegative integers k, which
completes the proof of the lemma. O

Remark : 1f we denote by P :=span < v; | i =1,2,3,--- >, it can be
shown that P is dense in L?(R) and hence there is no more eigenvalues
than we obtained in the above theorem. We refer to [1] for the proof of
this fact.

Now we consider the eigenvalues and eigenfunctions of an n-dimensional
harmonic oscillator.
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THEOREM 2.1. Let H, : S(R") — S(R™) be an n-dimensional har-
monic oscillator defined by

o 0? 0?
Hn:( 3 2+a1x2)+< p 2+a2x§>+---+(—axn+anazi),

where ay, - - ,a, € RT and let ¢, (x;) be the eigenfunction of—aa—;g—l—aix%

with the eigenvalue \,. Then the eigenfunctions and eigenva]ue.; of H,
are

77Z)/€1 (I1)¢k2(x2) ne '¢k7L (xn) and )‘k1 + )‘kz + o+ )‘knv
respectively, where Ay, = (2k; +1)y/a; (ki =0,1,2,---).

Proof. For k; € {0} UZ™, we note that

82
<—W + a;x; ) Uk (2:) = Ay U, ().

Then
Hp (¢, (fcl)% (@2) -+ Uk, (Tn))

-3 { (g ) vt )

- Z{Ak1¢k1 (x1)¢k2 (1‘2) U wk"(l‘n)}

i=1
= ()\kl + )‘kz +ooet )\kn)wkl (xl)wlw (1‘2) g, (l’n),

which shows that ¢y, (z1)Vk,(z2) - - - g, (x,) is an eigenfunction of H,
with eigenvalue Ay, + Ap, + -+ + Ag,. This completes the proof of the
theorem. O

3. Harmonic oscillators of n variables

In this section we introduce harmonic oscillators with quadratic po-
tentials and investigate their eigenvalues and eigenfunctions.

THEOREM 3.1. Let q(x1,x9, -+ ,2,) be a quadratic polynomial of n
variables. Let

0? 0? 0?
H:_(a_x%_’_a_z%_’_ +%)+Q($17x27 7:ETZ)

n
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be a harmonic oscillator with quadratic polynomial q(x1, o, ,Ty).
Then there exist a harmonic oscillator

~ 0? 0? 9 0?
H:( 8X2+)\1X>+< 8X2+)\2X>+ -+( 8X2+/\X>
and a linear map ¢ such that the following diagram

SR™),, — S(R"),,

1k

commutes.

Proof. Suppose q(z1,x2, - ,2,) = szzl a;;x;xj, where A = (a;;) is
an n X n real symmetric matrix. Let Ay, Ao, -+, A, be the eigenvalues
of A with corresponding mutually orthogonal eigenvectors vy, vy, -« - , vy,
where \; € R and ||v;|| = 1. Put U = [vy,v9,- -+ ,v,]. Then

M O - 0
U AU = O Ao | =vrav
Do
Setting D = U7t AU, we get
n 1
Zaz‘sz‘%’:(xl v o @ ) (uiy ) D(ugi) xQ
ij=1 ,

= )\1 (unxl + U9 Ty + - - - + unlxn)Q

+ )\Q(UHSL’l + U9oTg + -+ - + Un2$n>2

Fo o An(Uin @1+ UonTa + -+ U ).

Now we put X; = uy;x1 + ugjre + - - - + uyx, and define H by

H = 82 +MX2) + > A X2) 4 7 + )\, X2
Ll axz T Coxz T 7? gx2 "o )
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We also define a linear map ¢ as follows.

¢ : S(Rn)Xl,X2,-",Xn — S(Rn)zl,xz,---,z by

n

J(X1, Xo, oo, X)) — f (Z UK T, D UkpTh, - ,Zuknl"k) :
k=1 k=1 k=1

Then we claim that H = ¢~ o H o ¢. By definition of ¢ and H, we have

H¢(f(X13X27"' 7Xn))

= H (f(z U1 Tk, Z Uk Ty ,Z uknxk)>
k=1 k=1

k=1
82 n n n
= —@f(g U1 T, E Upa Ty - " E UknTk)
L g=1 k=1 k=1
82 n n n
= —@ (E U1 T, E Uk2Tly * * E Ulmﬂik)
2 k=1 k=1 k=1
82 n n n
- wf( E U1 T E U2T s ) E )
nook=1 k=1 k=1
n n n n
+O agrm) fOwaTe, Y ugetp, e, Y Ukn i)
1,j=1 k=1 k=1 k=1

First of all, for x;, we get
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52 [ Z Up1 T, Z UkaTr, 5 ) ulma:k)]
1 k=1 k=1
0 of _
= % [uua—)(l(; Uk1 Tk, kz:; UpaThy** kz:;u]ml‘k)
—Hm%(z Uk1 Tk, Z UpaTh, " " Z Uk Tr;)
2 k=1 k=1 k=1
+-- Ulnaayf(z UE1 Tk, Zumxk, I Z u;m:ck)]
1 k=1
= Z uy, 8X2 Z U1 Tk, Z U2 T, * ,Zuknxk)

Tok=1

+ ) 2ulpu1q8X Ix, Zuklmk,zumxk, ) k).
k=1

n(n—1)
1<p#q<—

We note that u?, + u3, + -+ +u?, =1 for each k. Since (v;,v;) =0
for each i # j, we have uy;u1j 4 ugiugj + - - - + Upiupn; = 0, which leads to
the following equalities

=1 m k=1 k=1 k=1
n n n n n
o*f
2
= E : [E : mr Q(E Uk1 Lk, E Uk2 Tk, > E uknxk>
0X
m=1 [Lr=1 T k=1 k=1 k=1
n n n
2 i /
+ UpnpUimg oo IX 0N, ( uklxk, UpaTp, 5 Y UpnTk)
1<p#q< ™ k=1 k=1

= [8)(2 Zuk1$k7zuk2xka ,Zuknxk)] .

m=1 m =1 k=1
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Finally, we get the following result:
w [(H¢)f(X17X27 T 7Xn)]

n 2 n n n
=¥ [Z {_55(2 f(z uklxkyzumxk’ o 7Zuknxk>}
mo =1 k=1 k=1

m=1

+) (az’jzifj)f(z Uk T, Z UkpTk, ey ) Uimivk)]
k=1 k=1 k=1

,j=1

n

n
8X2 E Up1 T, E Up2Ty * ) E Uknxk)
m k=1
n
2
+/\mxmf(§ U1 Tk, g UpaTh, " "+ E UknTk)
=1 =1 =1
n n n
Hf(g U1 T, E UpaTg, - * E Ukn Tk ),
k=1 k=1 1

which shows that the given diagram commutes and completes the proof
of the theorem. O

m=1

Finally we investigate eigenvalues and eigenfunctions of harmonic os-
cillators with quadratic potentials. Let A = ( A ) be a positive definite,
symmetric matrix and

0? 0? 0?

H=—|—4+—+-- 4+ —| + , Lo, Ty
(8x% 03 @x;) a1, 22,5 )

be a harmonic oscillator with a quadratic polynomial of n variables act-

ing on S(R") where q(x1, 22, -+ ,z,) = Y1, ajjv;z;. By Theorem 3.1,

we can find the harmonic oscillator

- o? 52 o2
= (o)« (o) s ()
such that the diagram in Theorem 3.1 commutes.

_ THEOREM 3.2. The eigenvalues of H are equal to the eigenvalues of
H. In fact, if 1 is an eigenfunction of H with eigenvalue \, then ¢(1)) is
an eigenfunction of H with the same eigenvalue \.

Proof. Let &(XI,XQ, -+, X,) be an eigenfunction of H with eigen-
value A. Putting (x1, 29, -+ ,x,) = o(V(Xy, Xo, -+, X,,)), then we
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have
Hp=¢oHodp ' opoy=¢oHor=p\p) = \ph = \.

This shows that ¢ is an eigenfunction of H with eigenvalue X if and

only if ¢(v) is a eigenfunction of H with the same eigenvalue A, which
completes the proof of the theorem. n

4. The zeta-determinant of H(a,b)

In this section we are going to compute the zeta-determinants of 2-
dimensional harmonic oscillators by using the Riemann zeta function,
Hurwitz zeta function and Gamma function. First of all, let us review
the zeta-determinants of linear operators acting on infinite dimensional
vector spaces by using zeta functions. To give a motivation we first
consider a linear operator T acting on an n-dimensional vector space.
Suppose that Aq,---, Ay are positive eigenvalues of 7. Then the deter-
minant of 7" is given by

det(T) = Mg+ A
For z € C, we define the zeta function associated to T' by
CT(Z) =N+ AR
Then (7(z) is an entire function and the derivative is given by
Cr(2) = —(log Ay)e 8™ — (log Ag)e #18* — ... — (log A, )e *1o8 M,

Now we get (7(0) = —logdet(T'). Finally, we can rewrite the determi-
nant of T" by

det(T) = e=r(0),
This fact gives a way of generalizing the determinant of an operator

acting on a finite dimensional vector space to the determinant of an
operator acting on infinite dimensional vector space.

DEFINITION 4.1. Let T, be a linear operator acting on an infinite
dimensional vector space with a discrete spectrum {\; | i =1,2,3,--- }.
Suppose that

(r.(z) = Z A7, Rez> 0
i=1
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has an analytic continuation to the whole complex plane having a regular
value at z = 0. Then we define the zeta-determinant Det(Ty,) of To, by

It is known that the zeta-determinants of 1-dimensional harmonic
oscillator H is always v/2, where H = —% +a?z? (a > 0) (cf. [6]).
In other words, zeta-determinant does not depend on a.
the case for harmonic oscillators defined on R™, n > 2. We will see the
reason in Theorem 4.1. Before that, we test this fact with the following

example. Let us put

G = (

where a,b are positive real numbers.

Kyounghwa Kim

Det(Ty) = e 10

82 2 2
—@+a$

)<(

+ bzy2> ,

We define the Riemann (

function Cr(s) and Hurwitz ( function (r(s,a) as follows.

o0

Cr(s) =

n=1

Cr(s,a) = Z

n=0

It is a well-known fact ([4]) that

(4.1)

Cr(0,a) = % —a,

b
(n+a)*

CJ/Q(O’ Oé) = log

a#0,—1,-2 .

and the zeta-determinants of H(a,a) is 12 °8(20)+CR(=1),

+ a 3a 5a (2k — 1)a

a 2a da 6a 2ka

3a 4a 6a 8a 2(k+1)a
(2k —1)a | 2ka |2(k+1)a | 2(k + 2)a 2(2k — 1)a

Table 1

This is not

['«)
log Vor

THEOREM 4.1. The eigenvalues of H(a,a) are given in the Table 1
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Proof. For n € N, the multiplicities of eigenvalue 2(2n—1)a of H(a, a)
are equal to n. Indeed, the spectrum of H(a,a) is given by
{2a,4a,4a,--- , 2an,--- ,2an-- -},
—_———
n times

which implies
CH@a)(s) = 2,2 n(2an)™° = ﬁ Do = (Q(IL)SCR(S —1).
Differentiating with respect to s, we obtain
C}I(a’a)(s) = —(2a)"*log2alr(s — 1) + (2a) *Cx(s — 1).
Putting s = 0 and using (4.1),

1
Ci(a(0) = —log 2aCr(—1) + (r(=1) = 5 log 2a + (p(=1),

which completes the proof of the theorem. n

According to the above theorem, the zeta-determinant of H(a, a) does
depend on the parameter a. Moreover, the zeta-determinant of H(a,b)
does depend on the parameters a and b (see Theorem 4.2).

Remark : The exact value of (j(—1) was not known yet. However, in
[5] we can see an approximation of (j(—1).

We next consider H(%,32). The eigenvalues of H(%,3%) are given in
Table 2.

+ 50 a 2a (2k —1)3a
a 2a 3a 4a (k+1)a
2a 5a 6a Ta (k+4)a
(2k—1)3a | (3k —1)a | 3ka | Bk +1)a|--- |22k — 1)a
Table 2

From Table 2, for n € N, the multiplicities of eigenvalues (3n —
1)a,3na, (3n + 1)a of H(%, 3—2“) are equal to n. Indeed, the spectrum

2
of H(%,3%) is given by

{2a, 3a,4a, 5a,6a,7a,--- , (3n — 1)a,3na, (3n + 1)a,--- }.
——— —— N _

g

1 time 2 times n times
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Therefore

Cugam(s) = > A"

i ESpec(H(% 7‘1))

ZnBan ~|—Z (3an + a) s~|—§:n+1 )(3an + 2a)~*
n=0

n=1 =
1 =, 3an > 3an + 3a
_3_<Z )S+Z(3an+a i (3an + 2a)* )

n= n:O
Z (3an + 2a

n=

8

o0

1 o0
_3_<Z Ban Tt :0 Ban—l—a

n=1 n

_l’_
_nzg(?mm%—a Z 3an+2a )

n=

11 & S L i 1
"~ 3a \as! ns—1 (3a)5 — (n—i—%)s (3a)® (n+ 2)s

Putting s = 0 and using (4.1), we have

CH( 30,)(0) = % (CR(—I) + CR(O, %) + CR(O, 1)) _ _E

a
272 3

from which we can also see that (z (30 (0) does not depend on a. Dif-
ferentiating CH(%%)(S) with respect to s, we have

§H (s) =3{—a*logalr(s—1)+a>Cx(s—1)
+(3a)"*log 3alr(s, %) — (3a) (s, %)

—(3a)"*log 3alr(s, %) + (3a)~*Cx(s, %) 1

EJ
22
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Putting s = 0 and using (4.1), we get

Shg, ) (0)

1 1 1
=3 {=logalr(—1) + Cxr(—1) + log 3ar(0, §) — (x(0, 5)

2

2
- log 3a§R<O’ g) + C&(Ov g)}

20

= {Ch(~1) ~loga(Ca(~1) + Ca(0, ) — Ch(0. 3))

—log 3(Cr(0, %) — Crl(0, %)) + (R(0, g) = C&(0, %)}
6
)

1.1 5)
= g{glog?) + Eloga + (R(—1) + log

Finally, we obtain zeta-determinant of H (%, 3) as follows.

2
Det H(gj3_a) _ 6*%{%10g3+1%10ga+(ﬁ£(71)+10g;Eg;}
22
1
N
_ 3badhedED (F_<§>) N
I'(3)

We next consider the harmonic oscillator H (a, b), where a, b € R —
{n?*n € N}. Then simple computation shows that the multiplicities of
eigenvalues of H(a,b) are equal to 1 and Theorem 2.1 implies that the
spectrum of H(a,b) is given by

{(2k — 1)a+ (20 — 1)b | k,1 € N}.

Using the Mellin transform (cf. [4]), the zeta function (e (s) associ-
ated to H(a,b) is given as follows.
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Crp)(s) = Z Z{(% —Da+ (20— 1)b} "
— 15 1 —t(2k—1)a —t(2l—1)bdt
g ey
1 —at —bt
= — / e R
L'(s) Jo 1 —e20t] — 20
1 (a+b)
- — / —— dt
I'(s) Jo (2t —1)(e* — 1)

S 1 (a+b)
s—1
Ds+D) Jy | (@ =D -1

s 0 (a+b)
— / A dt.
Cs+1) )y~ (@ =1)(e - 1)

We split Crra,p)(s) into Cf, 4 () and (i, 4 (s) as follows.

1 (a+b)t
P e it

gl*{(a,b)(s) F(s+1 fO

Hok s— elatb)t
H(a,b)(s) = F(s+1) f1 t 1(e2at—1)(e2bt—1)dt'

Differentiating (37, , (s) at s = 0, we have

/ _d [e'e) -1 (a+b)t
ﬁ(a,b)(o) - %L*O T SS_H fl t° (62atil)(e2bt_1)dt
— (a+b)t
= [t ey dt

which shows that (377, ;) (0) is well defined. We next investigate Cy, 5 (5)-
Using Taylor series and the fact Y02 e =1 — 14 0(e7t), we get

0o 00
§ e~ t(2n—1)a _ eatE :6—2ant

n=1 n=1

1 1 1 1
~ (14+at+=a?®+ a3+ ... — _Z
< +a —|—2a +6a + 2at 2

1 a a*,
= ———t——t*+ 0
2at 4 6 +0),
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which leads to

Z e—t(Qk—l)a Z 6—t(21—1)b
k=1 =1
1 a a® 1 b b?
~ et =P+ O ) [ o= — -t — P+ O
<2at4 6+()>(2bt4 6+()
11 b a

Now, we apply the above result to CI*{(ayb)(s). Then

Crr(ap)(8)

P 1 e(a—i—b)t
s—1
= —/ t dt
Ts+1) )y (20— 1) —1)

R Y
I'(s+1) Jo 4abt? 8ab
1 (a+b)t 1 1 2 2
+;/ 51 ¢ (11 o+ dt
I'(s+1)J, (€20t — 1)(e?* — 1) dab t? 8ab
s L R a4 L, !
S I(s+1) \ dab | s —2 0 8ab [s |,

s /1 - €(a+b)t 1 1 0,2 + b2
b= |t (== - dt
T(s+1)J, (e2at — 1)(e?t — 1) dab t? 8ab

1 s 1 a2+ 1
"~ dabs —2T(s+1) 8ab T'(s+1)

N s /1 ts—l €(a+b)t B Ll B a? +bQ "
L(s+1) Jo (€20t — 1) (et — 1) 4ab t? 8ab '
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Differentiating at s = 0, we have

Cir(an (0)
1 (s=2)(s+1) —s{(s = 2)I"(s + 1) +T'(s + 1)}
S 1w (= 925+ 1) —

B a?+ 0 -T"(s+1)
8ab T2(s+1)

s=0
L4
ds |,

s 1 ) platb)t
- ts_
T+ /0 {(ezat “1)(e — 1)
1 2(1) a4+ -I(1)

1 1 a4+
@@ﬁ— %b)}ﬁ
T dab(—2)2r2(1)  8ab I2%(1)

1 1 6(OLer)t 1 1 6L2 + b2
+ / - (== - dt
o bl (e?t —1)(e?t —1) dabt? 8ab

1 a’® + b?
-~ 8ab Sab i

+/11 e(a—f—b)t B Ll B a2+62 "
o bl (e?t —1)(e?t —1) 4ab t? 8ab

{(@® +0*)y +1}
Sab

1 1 e(a—i—b)t 1 1 a? 4 b2
o NERRRITA
o bl (e?® —1)(e?t —1) 4ab t? 8ab

where v = —I"(1) is the Euler constant (cf. [4]).
Finally, we obtain

C}I(a,b)(o) = ;}(ab (0) + C}}*(/a b)( )
_ {(a®4+b2)y+1}
- 8ab
11 elatd)t 11 a2+4b?
+fo T {(e2at71)(e2bt71) B (M_Q " " 8ab )}dt
+ 7 %dt

which yields the following theorem.



Zeta-determinants 147
THEOREM 4.2. For the harmonic oscillator H(a,b) with a, b € R —
{n?In € N}, we have
Det H(a,b) = e Cttan(©
where

a?4b2
Citan(® — Lot

11 ela+b)t (11 a?4p?
+ fo T {(e2at71)(e2bt71) (Mﬁ 8ab dt

o0 1 elatbd)t

e2at,1) (e2bt ,1)
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