CONSTANTS FOR HARMONIC MAPPINGS

Sook Heui Jun*

Abstract

In this paper, we obtain some coefficient estimates of harmonic, orientation-preserving, univalent mappings defined on $\Delta=$ $\{z:|z|>1\}$.

1. Introduction

Let Σ be the set of all complex-valued, harmonic, orientationpreserving, univalent mappings

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)}+A l o g|z| \tag{1.1}
\end{equation*}
$$

of $\Delta=\{z:|z|>1\}$, where

$$
h(z)=z+\sum_{k=1}^{\infty} a_{k} z^{-k} \text { and } g(z)=\sum_{k=1}^{\infty} b_{k} z^{-k}
$$

are analytic in Δ and $A \in \mathbb{C}$.
Hengartner and Schober [2] used the representation (1.1) to obtain some coefficient estimates and distortion theorems. Some coefficient bounds for $f \in \Sigma$ are also obtained by Jun [3].

Our purpose is to continue the investigation of this class Σ. Thus we obtain some coefficient bounds of $f \in \Sigma$ by using properties of the analytic function $h-g$.

[^0]
2. Some coefficient bounds

Let \mathcal{S} be the class of functions $\tilde{f}(z)=z+\sum_{n=0}^{\infty} c_{n} z^{-n}$ that are analytic and univalent for $|z|>1$.

Lemma 2.1. ([4]) Let \mathcal{F} be a subset of \mathcal{S}, and let F be subordinate to a function $G \in \mathcal{S}$. If a functional $\lambda: \mathcal{F} \rightarrow \mathbb{R}$ assumes its maximum at $F \in \mathcal{F}$, then the associated functional $\psi: \mathcal{H} \rightarrow \mathbb{R}$ defined by $\psi(\tilde{f})=\lambda\left(\frac{\tilde{f}}{\omega^{\prime}(\infty)} \circ \omega\right)$ on $\mathcal{H}=\left\{\tilde{f} \in \mathcal{S}: \frac{\tilde{f}}{\omega^{\prime}(\infty)} \circ \omega \in \mathcal{F}\right\}$ assumes its maximum at $K=\omega^{\prime}(\infty) G$, where $\omega=G^{-1} \circ F$. In addition, the two maxima are equal.

Proof. F is subordinate to a function $G \in \mathcal{S}$; that is, $F(\Delta) \subset G(\Delta)$ and $F(\infty)=G(\infty)=\infty$. Thus ω is univalent in Δ, maps Δ into Δ, and $\omega(\infty)=\infty$. The function K belongs to \mathcal{H} since $G \circ \omega=$ $F \in \mathcal{F}$. Furthermore, since λ assumes its maximum at F, it follows that $\psi(\tilde{f}) \leq \lambda(F)=\lambda(G \circ \omega)=\psi\left(\omega^{\prime}(\infty) G\right)$. That is, ψ assumes its maximum over \mathcal{H} at $K=\omega^{\prime}(\infty) G$, and two maxima are equal.

Lemma 2.2. Assume that $\tilde{f}(z)=z+\sum_{n=1}^{\infty} c_{n} z^{-n}, F(z)=z+$ $\sum_{n=1}^{\infty} B_{n} z^{-n}$, and $K(z)=z+\sum_{n=1}^{\infty} C_{n} z^{-n}$ belong to \mathcal{S} and that $F=\frac{K}{\omega^{\prime}(\infty)} \circ \omega$. Then

$$
\frac{\tilde{f}}{\omega^{\prime}(\infty)} \circ \omega(z)=z+\sum_{n=1}^{\infty} \beta_{n} z^{-n}
$$

where

$$
\begin{gathered}
\beta_{1}=\frac{c_{1}}{\omega^{\prime}(\infty)^{2}}+B_{1}-\frac{C_{1}}{\omega^{\prime}(\infty)^{2}} \\
\beta_{4}=\frac{c_{4}}{\omega^{\prime}(\infty)^{5}}-2\left(B_{1}-\frac{C_{1}}{\omega^{\prime}(\infty)^{2}}\right) \frac{c_{2}}{\omega^{\prime}(\infty)^{3}}-\left(B_{2}-\frac{C_{2}}{\omega^{\prime}(\infty)^{3}}\right) \frac{c_{1}}{\omega^{\prime}(\infty)^{2}} \\
+B_{4}+\frac{B_{2} C_{1}}{\omega^{\prime}(\infty)^{2}}+\frac{2 B_{1} C_{2}}{\omega^{\prime}(\infty)^{3}}-\frac{C_{4}+3 C_{1} C_{2}}{\omega^{\prime}(\infty)^{5}}
\end{gathered}
$$

Proof. The result is obtained by the straightforward calculation, as desired.

Theorem 2.3. Let $f \in \Sigma$. If $h-g$ with $a_{1}-b_{1}$ real is univalent and if $t \geq 1$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\left(a_{4}-b_{4}\right)-\left(3 t^{2}-2\right)\left(a_{2}-b_{2}\right)+2 t^{3}\left(a_{1}-b_{1}\right)\right\} \leq 2 t^{3} . \tag{2.1}
\end{equation*}
$$

Proof. Let $\tilde{f}(z)=h(z)-g(z)=z+\sum_{n=1}^{\infty} c_{n} z^{-n}$, where $c_{n}=a_{n}-$ b_{n}. Then $\tilde{f}(z) \in \mathcal{S}$. If $c_{1} \geq 0$, then Kubota [5] proved that $\operatorname{Re}\left\{c_{4}\right\} \leq$ $\frac{2}{5}+\frac{729}{163840}$. Equality occurs for a function $F(z)=z+\sum_{n=1}^{\infty} B_{n} z^{-n}$ where $B_{1}=\frac{27}{128}, B_{2}=-\frac{27}{256}, B_{3}=-\frac{243}{65536}, B_{4}=\frac{2}{5}+\frac{729}{163840}$. More specifically, $w=F(z)$ satisfies the differential equation

$$
\left(w-\frac{3}{8}\right)\left(w+\frac{3}{4}\right)^{1 / 2} \frac{d w}{d z}=z^{-7 / 2}\left(z^{5}-\frac{27}{256} z^{3}+\frac{27}{256} z^{2}-1\right)
$$

In order to determine $F(1)$, we integrate this differential equation over a path from $z=-1$ to $z=1$. A corresponding path runs from $w=$ $-3 / 4$ to $w=F(1)$. The result is the equation $\frac{2}{5} X^{5}-\frac{3}{4} X^{3}=\frac{121}{320}$ for $X=\sqrt{F(1)+\frac{3}{4}}$. It follows from elementary calculus that this equation has only one real solution, and it is located at $X=1.47329 \cdots$. This implies that $F(1)=1.42060 \cdots$. For our purposes it is important only that $F(1)>3 / 4$ so that the function F is subordinate to $G(z)=c(z+1 / z)$ for $0<c \leq 3 / 8$. It will be convenient to set $t=3 /(8 c)$ and restrict $t \geq 1$. Apply Lemma 2.1 and use the notation of Lemma 2.2, then we have $\operatorname{Re}\left\{\beta_{4}\right\} \leq B_{4}$ if $\beta_{1} \geq 0$. Since $C_{1}=1$ and $C_{2}=C_{3}=C_{4}=0$, this inequality reduces to (2.1). The constraint $\beta_{1} \geq 0$ becomes $c_{1} \geq 1-\frac{3}{2} t^{2}$. However, if $c_{1}<1-\frac{3}{2} t^{2}$, then the trivial estimates $\left|c_{4}\right| \leq 1 / 2$ and $\left|c_{2}\right| \leq 1 / \sqrt{2}$ from the area theorem imply

$$
\operatorname{Re}\left\{c_{4}-\left(3 t^{2}-2\right) c_{2}+2 t^{3} c_{1}\right\} \leq \frac{1}{2}+\sqrt{2}\left(\frac{3}{2} t^{2}-1\right)-3 t^{5}+2 t^{3}
$$

The polynomial $\frac{1}{2}+\sqrt{2}\left(\frac{3}{2} t^{2}-1\right)-3 t^{5}$ is negative at $t=1$ and decreasing for $t \geq 1$. Therefore

$$
\operatorname{Re}\left\{\left(a_{4}-b_{4}\right)-\left(3 t^{2}-2\right)\left(a_{2}-b_{2}\right)+2 t^{3}\left(a_{1}-b_{1}\right)\right\} \leq 2 t^{3}
$$

holds for all real $a_{1}-b_{1}$.
Corollary 2.4. Let $f \in \Sigma$. If $h-g$ with $a_{1}-b_{1}$ real is univalent, then

$$
\operatorname{Re}\left\{\left(a_{4}-b_{4}\right)+4\left(a_{1}-b_{1}\right)\right\} \leq 4
$$

Proof. The inequality (2.1) in Theorem 2.3 is sharp for $K(z)=z+$ $1 / z$. When $t=1$, it reduces to $\operatorname{Re}\left\{\left(a_{4}-b_{4}\right)-\left(a_{2}-b_{2}\right)+2\left(a_{1}-b_{1}\right)\right\} \leq 2$ whenever $a_{1}-b_{1}$ is real. Add this to the inequality $\operatorname{Re}\left\{\left(a_{2}-b_{2}\right)+\right.$ $\left.2\left(a_{1}-b_{1}\right)\right\} \leq 2[1]$ which is obtained by Garabedian and Schiffer, then we get

$$
\operatorname{Re}\left\{\left(a_{4}-b_{4}\right)+4\left(a_{1}-b_{1}\right)\right\} \leq 4
$$

as desired.
A set $E \subset \mathbb{C}$ is said to be starlike with respect to a point $w_{0} \in E$ if the linear segment joining w_{0} to every other point $w \in E$ lies entirely in E.

The following result was proved by Pommerenke [6].
Theorem 2.5. ([6]) Let $\mathcal{S}^{*}=\left\{\tilde{f} \in \mathcal{S}: \tilde{f}(\Delta)^{c}\right.$ is starlike with respect to the origin $\}$. Then the nth coefficient of every function in \mathcal{S}^{*} satisfies $\left|c_{n}\right| \leq 2 /(n+1)$, with equality only for the function

$$
\tilde{f}(z)=\left\{k\left(z^{-n-1}\right)\right\}^{-1 /(n+1)}=z-\frac{2}{n+1} z^{-n}+\cdots
$$

and its rotations, $n=1,2, \ldots$, where k is the Koebe function.
Theorem 2.6. For each $f \in \Sigma$ with univalent starlike $h-g$, we have

$$
\left|a_{n}-b_{n}\right| \leq \frac{2}{(n+1)}
$$

Proof. $\tilde{f}(z)=h(z)-g(z) \in \mathcal{S}^{*}$. Thus we have estimates by Theorem 2.5.

References

1. P. R. Garabedian and M. Schiffer, A coefficient inequality for schlicht functions, Ann. of Math. 61 (1955), 116-136.
2. W. Hengartner and G. Schober, Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), 1-31.
3. S. H. Jun, Univalent harmonic mappings on $\Delta=\{z:|z|>1\}$, Proc. Amer. Math. Soc. 119 (1993), 109-114.
4. W. E. Kirwan and G. Schober, New inequalities from old ones, Math. Z. 180 (1982), 19-40.
5. Y. Kubota, On the fourth coefficient of meromorphic univalent functions, Kōdai Math. Sem. Rep. 26 (1974-75), 267-288.
6. Ch. Pommerenke, On meromorphic starlike functions, Pacific J. Math. 13 (1963), 221-235.

*

Department of Mathematics
Seoul Women's University
Seoul 139-774, Korea
E-mail: shjun@swu.ac.kr

[^0]: This work was supported by the research fund of Nat. Sci. Inst., Seoul Women's University, 2004.

 Received by the editors on October 05, 2004.
 2000 Mathematics Subject Classifications: Primary 30C45, 30C50.
 Key words and phrases: harmonic function, univalent function.

