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CONSTANTS FOR HARMONIC MAPPINGS

Sook Heui Jun*

Abstract. In this paper, we obtain some coefficient estimates of

harmonic, orientation-preserving, univalent mappings defined on ∆ =

{z : |z| > 1}.

1. Introduction

Let Σ be the set of all complex-valued, harmonic, orientation-

preserving, univalent mappings

(1.1) f(z) = h(z) + g(z) + Alog|z|

of ∆ = {z : |z| > 1}, where

h(z) = z +
∞
∑

k=1

akz
−k and g(z) =

∞
∑

k=1

bkz
−k

are analytic in ∆ and A ∈ C.

Hengartner and Schober [2] used the representation (1.1) to obtain

some coefficient estimates and distortion theorems. Some coefficient

bounds for f ∈ Σ are also obtained by Jun [3].

Our purpose is to continue the investigation of this class Σ. Thus

we obtain some coefficient bounds of f ∈ Σ by using properties of the

analytic function h− g.
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2. Some coefficient bounds

Let S be the class of functions f̃(z) = z +
∑

∞

n=0 cnz
−n that are

analytic and univalent for |z| > 1.

Lemma 2.1. ([4]) Let F be a subset of S, and let F be subordinate

to a function G ∈ S. If a functional λ : F → R assumes its maximum

at F ∈ F , then the associated functional ψ : H → R defined by

ψ(f̃) = λ( f̃
ω′(∞) ◦ ω) on H = {f̃ ∈ S : f̃

ω′(∞) ◦ ω ∈ F} assumes its

maximum at K = ω′(∞)G, where ω = G−1 ◦ F. In addition, the two

maxima are equal.

Proof. F is subordinate to a function G ∈ S; that is, F (∆) ⊂ G(∆)

and F (∞) = G(∞) = ∞. Thus ω is univalent in ∆, maps ∆ into

∆, and ω(∞) = ∞. The function K belongs to H since G ◦ ω =

F ∈ F . Furthermore, since λ assumes its maximum at F , it follows

that ψ(f̃) ≤ λ(F ) = λ(G ◦ ω) = ψ(ω′(∞)G). That is, ψ assumes its

maximum over H at K = ω′(∞)G, and two maxima are equal. �

Lemma 2.2. Assume that f̃(z) = z +
∑

∞

n=1 cnz
−n, F (z) = z +

∑

∞

n=1Bnz
−n, and K(z) = z +

∑

∞

n=1Cnz
−n belong to S and that

F = K
ω′(∞) ◦ ω. Then

f̃

ω′(∞)
◦ ω(z) = z +

∞
∑

n=1

βnz
−n

where

β1 =
c1

ω′(∞)2
+B1 −

C1

ω′(∞)2
,

β4 =
c4

ω′(∞)5
− 2(B1 −

C1

ω′(∞)2
)

c2
ω′(∞)3

− (B2 −
C2

ω′(∞)3
)

c1
ω′(∞)2

+B4 +
B2C1

ω′(∞)2
+

2B1C2

ω′(∞)3
− C4 + 3C1C2

ω′(∞)5
.

Proof. The result is obtained by the straightforward calculation,

as desired. �
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Theorem 2.3. Let f ∈ Σ. If h− g with a1 − b1 real is univalent

and if t ≥ 1, then

(2.1) Re{(a4 − b4) − (3t2 − 2)(a2 − b2) + 2t3(a1 − b1)} ≤ 2t3.

Proof. Let f̃(z) = h(z)− g(z) = z+
∑

∞

n=1 cnz
−n, where cn = an −

bn. Then f̃(z) ∈ S. If c1 ≥ 0, then Kubota [5] proved that Re{c4} ≤
2
5 + 729

163840 . Equality occurs for a function F (z) = z +
∑

∞

n=1Bnz
−n

where B1 = 27
128 , B2 = − 27

256 , B3 = − 243
65536 , B4 = 2

5 + 729
163840 . More

specifically, w = F (z) satisfies the differential equation

(

w − 3

8

) (

w +
3

4

)1/2
dw

dz
= z−7/2

(

z5 − 27

256
z3 +

27

256
z2 − 1

)

.

In order to determine F (1), we integrate this differential equation over

a path from z = −1 to z = 1. A corresponding path runs from w =

−3/4 to w = F (1). The result is the equation 2
5X

5 − 3
4X

3 = 121
320 for

X =
√

F (1) + 3
4 . It follows from elementary calculus that this equa-

tion has only one real solution, and it is located at X = 1.47329 · · · .
This implies that F (1) = 1.42060 · · · . For our purposes it is impor-

tant only that F (1) > 3/4 so that the function F is subordinate to

G(z) = c(z + 1/z) for 0 < c ≤ 3/8. It will be convenient to set

t = 3/(8c) and restrict t ≥ 1. Apply Lemma 2.1 and use the notation

of Lemma 2.2, then we have Re{β4} ≤ B4 if β1 ≥ 0. Since C1 = 1 and

C2 = C3 = C4 = 0, this inequality reduces to (2.1). The constraint

β1 ≥ 0 becomes c1 ≥ 1− 3
2 t

2. However, if c1 < 1− 3
2 t

2, then the trivial

estimates |c4| ≤ 1/2 and |c2| ≤ 1/
√

2 from the area theorem imply

Re{c4 − (3t2 − 2)c2 + 2t3c1} ≤ 1

2
+

√
2(

3

2
t2 − 1) − 3t5 + 2t3.

The polynomial 1
2 +

√
2(3

2 t
2 − 1) − 3t5 is negative at t = 1 and de-

creasing for t ≥ 1. Therefore

Re{(a4 − b4) − (3t2 − 2)(a2 − b2) + 2t3(a1 − b1)} ≤ 2t3
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holds for all real a1 − b1. �

Corollary 2.4. Let f ∈ Σ. If h−g with a1−b1 real is univalent,

then

Re{(a4 − b4) + 4(a1 − b1)} ≤ 4.

Proof. The inequality (2.1) in Theorem 2.3 is sharp for K(z) = z+

1/z.When t = 1, it reduces to Re{(a4−b4)−(a2−b2)+2(a1−b1)} ≤ 2

whenever a1 − b1 is real. Add this to the inequality Re{(a2 − b2) +

2(a1−b1)} ≤ 2 [1] which is obtained by Garabedian and Schiffer, then

we get

Re{(a4 − b4) + 4(a1 − b1)} ≤ 4,

as desired. �

A set E ⊂ C is said to be starlike with respect to a point w0 ∈ E if

the linear segment joining w0 to every other point w ∈ E lies entirely

in E.

The following result was proved by Pommerenke [6].

Theorem 2.5. ([6]) Let S∗ = {f̃ ∈ S : f̃(∆)c is starlike with

respect to the origin}. Then the nth coefficient of every function in

S∗ satisfies |cn| ≤ 2/(n+ 1), with equality only for the function

f̃(z) = {k(z−n−1)}−1/(n+1) = z − 2

n+ 1
z−n + · · · ,

and its rotations, n = 1, 2, . . . , where k is the Koebe function.

Theorem 2.6. For each f ∈ Σ with univalent starlike h − g, we

have

|an − bn| ≤
2

(n + 1)
.

Proof. f̃(z) = h(z) − g(z) ∈ S∗. Thus we have estimates by Theo-

rem 2.5. �
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