• Title/Summary/Keyword: Hardy operator

Search Result 71, Processing Time 0.031 seconds

DUALITIES OF VARIABLE ANISOTROPIC HARDY SPACES AND BOUNDEDNESS OF SINGULAR INTEGRAL OPERATORS

  • Wang, Wenhua
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.365-384
    • /
    • 2021
  • Let A be an expansive dilation on ℝn, and p(·) : ℝn → (0, ∞) be a variable exponent function satisfying the globally log-Hölder continuous condition. Let Hp(·)A (ℝn) be the variable anisotropic Hardy space defined via the non-tangential grand maximal function. In this paper, the author obtains the boundedness of anisotropic convolutional ��-type Calderón-Zygmund operators from Hp(·)A (ℝn) to Lp(·) (ℝn) or from Hp(·)A (ℝn) to itself. In addition, the author also obtains the duality between Hp(·)A (ℝn) and the anisotropic Campanato spaces with variable exponents.

ESTIMATES FOR THE HIGHER ORDER RIESZ TRANSFORMS RELATED TO SCHRÖDINGER TYPE OPERATORS

  • Wang, Yanhui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.235-251
    • /
    • 2021
  • We consider the Schrödinger type operator ��k = (-∆)k+Vk on ℝn(n ≥ 2k + 1), where k = 1, 2 and the nonnegative potential V belongs to the reverse Hölder class RHs with n/2 < s < n. In this paper, we establish the (Lp, Lq)-boundedness of the higher order Riesz transform T��,�� = V2��∇2��-��2 (0 ≤ �� ≤ 1/2 < �� ≤ 1, �� - �� ≥ 1/2) and its adjoint operator T∗��,�� respectively. We show that T��,�� is bounded from Hardy type space $H^1_{\mathcal{L}_2}({\mathbb{R}}_n)$ into Lp2 (ℝn) and T∗��,�� is bounded from ��p1 (ℝn) into BMO type space $BMO_{\mathcal{L}_1}$ (ℝn) when �� - �� > 1/2, where $p_1={\frac{n}{4({\beta}-{\alpha})-2}}$, $p_2={\frac{n}{n-4({\beta}-{\alpha})+2}}$. Moreover, we prove that T��,�� is bounded from $BMO_{\mathcal{L}_1}({\mathbb{R}}_n)$ to itself when �� - �� = 1/2.

TWO-WEIGHT NORM ESTIMATES FOR SQUARE FUNCTIONS ASSOCIATED TO FRACTIONAL SCHRÖDINGER OPERATORS WITH HARDY POTENTIAL

  • Tongxin Kang;Yang Zou
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1567-1605
    • /
    • 2023
  • Let d ∈ ℕ and α ∈ (0, min{2, d}). For any a ∈ [a*, ∞), the fractional Schrödinger operator 𝓛a is defined by 𝓛a := (-Δ)α/2 + a|x|, where $a^*:={\frac{2^{\alpha}{\Gamma}((d+{\alpha})/4)^2}{{\Gamma}(d-{\alpha})/4)^2}}$. In this paper, we study two-weight Sobolev inequalities associated with 𝓛a and two-weight norm estimates for several square functions associated with 𝓛a.

On the Boundedness of Marcinkiewicz Integrals on Variable Exponent Herz-type Hardy Spaces

  • Heraiz, Rabah
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.2
    • /
    • pp.259-275
    • /
    • 2019
  • The aim of this paper is to prove that Marcinkiewicz integral operators are bounded from ${\dot{K}}^{{\alpha}({\cdot}),q({\cdot})}_{p({\cdot})}({\mathbb{R}}^n)$ to ${\dot{K}}^{{\alpha}({\cdot}),q({\cdot})}_{p({\cdot})}({\mathbb{R}}^n)$ when the parameters ${\alpha}({\cdot})$, $p({\cdot})$ and $q({\cdot})$ satisfies some conditions. Also, we prove the boundedness of ${\mu}$ on variable Herz-type Hardy spaces $H{\dot{K}}^{{\alpha}({\cdot}),q({\cdot})}_{p({\cdot})}({\mathbb{R}}^n)$.

ZERO BASED INVARIANT SUBSPACES AND FRINGE OPERATORS OVER THE BIDISK

  • Izuchi, Kei Ji;Izuchi, Kou Hei;Izuchi, Yuko
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.847-868
    • /
    • 2016
  • Let M be an invariant subspace of $H^2$ over the bidisk. Associated with M, we have the fringe operator $F^M_z$ on $M{\ominus}{\omega}M$. It is studied the Fredholmness of $F^M_z$ for (generalized) zero based invariant subspaces M. Also ker $F^M_z$ and ker $(F^M_z)^*$ are described.

SPECIAL ORTHONORMAL BASIS FOR L2 FUNCTIONS ON THE UNIT CIRCLE

  • Chung, Young-Bok
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.2013-2027
    • /
    • 2017
  • We compute explicitly the matrices represented by Toeplitz operators on the Hardy space over the unit circle with respect to a special orthonormal basis constructed by author in terms of their symbols. And we also find a necessary condition for the matrix generated by the product of two Toeplitz operators with respect to the basis to be a Toeplitz matrix by a direct calculation and we finally solve commuting problems of two Toeplitz operators in terms of symbols. This is a generalization of the classical results obtained regarding to the orthonormal basis consisting of the monomials.