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TWO-WEIGHT NORM ESTIMATES FOR SQUARE
FUNCTIONS ASSOCIATED TO FRACTIONAL
SCHRODINGER OPERATORS WITH HARDY POTENTIAL

TONGXIN KANG AND YANG ZOU

ABSTRACT. Let d € N and a € (0,min{2,d}). For any a € [a*, c0), the
fractional Schrédinger operator L, is defined by

Lo = (=A)? +alz| 7%,

_2%T((d+a)/4)?

T((d—a)/4)?
inequalities associated with £, and two-weight norm estimates for several
square functions associated with L.

where a* := . In this paper, we study two-weight Sobolev

1. Introduction

Let d € N and o € (0,min{2,d}). For any a € [a*,00), the fractional
Schrodinger operator £, is defined by

(11) £a — (_A)oc/2 + a|$|fa7
where
(1.2) a* = 7w

I((d—a)/4)?
Here, the constant a* is derived from the sharp constant in the following Hardy-
type inequality

—« 1 (AP [e%e}
/ 2|~ u(z) Pde < —— / €|*[a(e)Pdz, ue CP(RY,
Rd a R

where % denotes the Fourier transform of u. Here and thereafter, C°(R9)
denotes the set of all infinitely differentiable functions on R with compact
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support. Hence, the restriction a € [a*,00) guarantees the nonnegativity of
the operator £,. Assume that p € (1,00), w € Ay(R™) with some ¢ € [1, 00).
Here and thereafter, A;(R™) denotes the Muckenhoupt weight class (see, for
instance, [19, Chapter 7] or [30, Chapter V] for its definition). We now recall
the following parameterization in [17],

I(2)r(42)

r(4=3=2)r(3)’
and ¥, 4(0) := 0. Indeed, it was proved in [17] that the function ¥, 4 is
continuous and strictly decreasing in ¢ € (—a, (d — «)/2] with

W q(8) = —2° 5 € (~a,(d—a)/2\{0},

SIS

d—>—a

lim U, 4(6) =00 and ¥, 4 <d;a) =a".

Therefore, for any a € [a*,00), we define

(1.3) o= \Il;ld(a),
so that o € (—a, (d — «)/2]. Moreover, for a given constant 6 € R, we define
d
14 dg ' = ————
(14) 7 min{6, 0}’

in particular, d/0 := oo.
The operator —L, generates a semigroup which is denoted by {e *4};~, we
also consider the semigroup {e™* \/Z}DO defined via the subordination formula

du

u

_tr u?e “e 4u£
(1.5) “fly \F/ “fly)—

For any m, K € [0,00), we define several square functions associated with £,
by setting, for any f € L?(R%) and x € R?,

1) )= | [ (eVE) " s dt} ,

t

00 seat)= | [ (VE)" e e ] ‘ﬂ ,

(18)  Surfl) = / [ [0vE) e ] ‘iﬁiﬂ ,

NJ=

(L9 Suuf(e) = /OOO/B(M)’(t\/ﬁj)me_mf(y)‘a dydt} |

tl"rﬂ

(NI

t

(1L10)  gr.pf(y) = _/OOO P (0)F (V) etV () dt] ,
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(L11)  grnfly) = [ / h ‘“] ,

[/f/m,@ o7 e 28]
and

(1.13) Gruf(e [/ /BW% (tf) L b )‘ :ﬁdt}

In this article, motivated by the recent work of Bui and Bui [5] on the
weighted Sobolev inequality and the weighted boundedness of the square func-
tion associated to L, we study two-weight Sobolev inequalities associated with
L, and two-weight norm estimates for several square functions associated with
L.

Let p € [1,00) and w € A (R™) with some ¢ € [1,00). Recall that the
weighted Lebesgue space LP(R?) is defined by setting

LP(RY) := {f is measurable on R?: Il Lr ey < oo},

11l e may = |fPw dz
Ra

In particular, when w = 1, the weighted spaces LP.(R%) is just, respectively,
the classical Lebesgue space LP(RY). For any given z € R? and 7 € (0, 00), let
B(z,r) ={yeR?: |y —z| <r}.

For any given a,b € R, we use the notations aAb := min{a, b} and aVb :=
max{a,b}. For any given € R? and any given measurable subset E C R?,
let dist (x, E) := inf{|z — y| : y € E}. Meanwhile, for any measurable subsets
E, F CR? let

)2 (V) e ()

W=

where

dist (B, F) :=inf{|lz —y|:x € E,y € F}
and diam (F) := sup{|lz —y| : z,y € E}.

Now, we state the main results of this article.

Theorem 1.1. Let d € N, a € (0,2Ad), and s € (0,2]. Assume further that
a € [a*,00) with a* being as in (1.2) and o is defined by (1.3).

(i) Let d, <po <p < qo < dyyass2 With dy and dy4qs/2 being as in (1.4),
w e AdL/(Rd) N RH,, (R?) with so € ((2)",00], and

-1

P
/} = sup [wadx} b[v ~(G5) /dm] ’ < 00,
A%(Rd) BCRY | JUB B

H
A
3
Z
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where the surpremum is taken over all balls B of R?. Then there exists a

positive constant C, depending on d, p, s, [w]a , re), and [W]RHSO (rd), Such
A

that, for any f € C*(R?),

(1.14) ‘(—A)“/“f’

< CHﬁé/Qf‘

LE(RY) LE(RY)
(ii) Let d, < po < p < qo < W .= d with d, being as in (1.4),
w e Ad/ (R%) NRH i, (RY), W' € RH, (RY) with s € ((%‘,’)',oo], and
P
[wl_p/m(lp =) ]] .

Ap (R1)
5

Then there exists a positive constant C, depending on d, p, s, [w]a , &4,
df

[w]RH(d.)l(Rd), and [wl_p/]RHSO(Rd), such that, for any f € CX(R%),
P

(1.15) H S/2f(

<cfiard

LE(R?) LP(R)

We point out that the special case of Theorem 1.1 has been proved in [24]
for the case o := 2, in [18] for the case p = 2, in [28] for the case general p but
with @ > 0, and in [6] for the case a > a*. Furthermore, the case of w = v for
Theorem 1.1 has been proved in [5]. Therefore, Theorem 1.1 is an extension of
those results obtained in [5,6,18,28] to the case of two-weight.

We prove Theorem 1.1 by borrowing some ideas from [6, Theorem 1.1] and
[31, Theorem 2.14].

Theorem 1.2. Let m € [0,00), d € N, and o be as in (1.3). Then, for any
given p € (d.,dy), and any v € A%(Rd) N RH(di)/(Rd), where dy is as in
(1.4), there exists a positive constantdC such that, for any f € LP(R?),
(1) 11Sm.a fll ey < Cllsma fllpegay s
(ﬁ) ”Sm,Pf”L{j(Rd < C ”Sm,Pf”ij(Rd) ’
(iii) Hsm,Pf”Lg(Rd) < C ||Sm7Hf||L?3(Rd)'
Theorem 1.3. Let m, K € [0,00), d € N, a € (0,2Ad), and o be as in (1.3).
Then, for given any p € (d,dy+a) and any v € Ad R N RH(dUM) /(RY)
with dy4o € (2,00), where dy+o and d, are as in (1.4) there exists a positive
constant C such that, for any f € LE2(R?),
() C Wsmrz.i Fll o ey < Ngmin Flgee) < C lsmzun fllpogee
(i) C ||Sm+2 PfHLP (R) = < Igm, Pf”LP (Rd) = < Clsmaa, PfHLP (R4)
(111) ”GK H.f”LP (R4) <C ||gK HfHLP(Rd) 5
(iv) |Gk, PfHL”(Rd) < Cllsk,pfll e @ay-
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We prove Theorems 1.2 and 1.3 by borrowing some ideas from [29].

The organization of this article is as follows.

In Section 2, we present the notions of the Muckenhoupt weight class and
the reverse Holder class, some properties of the Muckenhoupt weight class
and the reverse Holder class, the definition of the Hardy—Littlewood maximal
function, the weighted estimates of the maximal functions, a criteria for singular
integrals to be bounded on Lebesgue spaces, some elementary estimates and
kernel estimates, the Hardy inequality for the operator £,, and the boundedness
of square functions involving the difference t£,e~*%e — t(—A)“‘/Qe_t(_A)a/z.

In Section 3, we give the proof of Theorem 1.1. First, to prove this the-
orem, we need to prove some subtle ingredients such as the weighted Hardy
inequality related to the operator £, (see Lemma 3.1 below) and the weighted
norm inequalities for the square functions (see Lemma 3.2 below). Next, we
present the weighted good-) inequality for a pair of functions, (F, f), on R¢
satisfying the assumptions (3.11) and (3.12) (see Lemma 3.4 below) and the
two-weight boundedness criterion for a pair of functions, (F, f), on R? satisfy-
ing the assumptions (3.11) and (3.12) in the scale of weighted Lebesgue spaces
(see Lemma 3.5 below). Then we are almost ready to establish the two-weight
boundedness for Ty, s in the scale of weighted Lebesgue spaces (see Theorem
3.3 below) and the two-weight boundedness for S, . in the scale of weighted
Lebesgue spaces (see Theorem 3.6 below). Finally, we summarize what we have
proved to complete the proof of Theorem 1.1.

In Section 4, as applications of Lemma 2.9, we obtain the weighted norm
estimates related to the square functions associated with £, (see Theorems 4.3,
4.5, 4.6 and 4.8 below). In order to prove these estimates, we subtly use the
extrapolation theorem (see Lemma 4.1 below) and the change of angle formulas
(see Lemma 4.2 below). Moreover, we give an application of these estimates of
square functions to the Hardy space associated with L,.

Finally, we make some conventions on notation. Throughout the whole
article, we always denote by C' a positive constant which is independent of the
main parameters, but it may vary from line to line. The symbol f < g means
that f < Cg. If f < g and g < f, we then write f ~g. If f < Cgand g=nh
or g < h, we then write f < g ~ hor f < g < h, rather than f < g = h
or f < g < h. Forany ball B := B(zp,rp) in R", with some zp € R",
rp € (0,00), and o € (0,00), let aB := B(xp, arg); furthermore, denote the
set B(z,7) N Q by Ba(x,r) and the set (aB) N Q by aBg. For any subset
E of R™, we denote the set R" \ E by EC and its characteristic function by
1g. For any given g € [1,00], we denote by ¢’ its conjugate exponent, namely,
% + % = 1. For any w € A,(R™) with some p € [1,00) and any measurable set
E C R", let w(E) := [,w(x)dz. In addition, for any f € L'(E), we denote
the integral [} |f(z)|w(z) dz simply by [ |f|wdz and, when |E| < oo, we use
the notation f, f dx := ﬁ I [ () da.
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2. Preliminaries

In this section, we recall the notions of the Muckenhoupt weight class and
the reverse Holder class, some properties of the Muckenhoupt weight class
and the reverse Holder class, the definition of the Hardy—Littlewood maximal
function, a boundedness criteria for singular integrals on Lebesgue spaces, the
Hardy inequality for the operator L,, and the boundedness of square functions
involving the difference tL,e~te — t(—A)*/2e=H=2)"",

We first recall the concepts of both the Muckenhoupt weight class and the
reverse Holder class as follows (see, for instance, [14,19,30]).

Definition 2.1. Let ¢ € [1,00). A non-negative and locally integrable function
w on R% s called an A, (R?) weight, denoted by w € A,(R™), if, when ¢ € (1, c0),

q—1
[W]Aq(Rd) = sup (JC wdx) <J[ w a1 dx) < 00,
BCR"® B B

[W]A, (ray = sup (J[ wdm) {esssup [w(y)]l} < 00,
Bcre \JB yeB

where the suprema are taken over all balls B of R%. Moreover, let

A®Y) = | A,®RY.

pE[l,00)

and

Let s € (1,00]. A non-negative and locally integrable function w on R? is
said to belong to the reverse Hélder class RH4(R?), denoted by w € RH,(R?),
if, when s € (1, 00),

1 -1
[W]rH, ) = sup (JC w?® d;zc) (fwda:) < 00,
BCRY \JB B

~1
[W]RH. (Re) = SUp {esssup w(y)] (Jiuudx) < 00,

BCR4 yeB

and

where the suprema are taken over all balls B of R%.

For the Muckenhoupt weight class and the reverse Holder class, we have the
following properties which are well known (see, for instance, [14,19,30]).

Lemma 2.2. (i) we A,(RY) if and only if w' P € Ay (RY).
(i) A;(RY) C A,(RY) C A,(R?) for any given 1 < p < g < oo.
(iil) RHw(R?) C RH,(R?) C RH,(R?) for any given 1 < p < q < oo.
(iv) If w € Ap(R?) with p € (1,00), then there exists a q € (1,p) such that
w € Ay(RY).
(v) If w € RH,(RY) for some q € (1,00), then there exists a p € (g,0)
such that w € RH,(R?).

(vi) A (Rd) = Upe[Loo) Ap(Rd) = UqE(LOO] RHq(Rd)'
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(vil) Let 1 < pg <p < qo < oo. Then
we Ap (RY) N RHw ) (RY) < W ed, RN RH )/(Rd).

90
(viii) Let p € [1,00) and q € (1,00]. If w € A,(RY) N RH,(R?), then there
exists a positive constant C such that, for any ball B C R? and any
measurable subset E of B,

|E|} w(E) PEq =
|B| w(B) |B|

where, for any measurable subset E C R?,

w(E) := / w(x) dx.
E
In particular, Lemma 2.2(viii) implies that, if w € A,(RY) for some p €

[1,00), then, for any ball B € R? and ) € (1, 00),
(2.1) w(AB) < [w]y gy APw (B) .

Moreover, we observe that, under some assumptions, we can compare the
average of any given function f with respect to the measure given by a weight
v € Ax(RY).

Remark 2.3. Let 0 < p < ¢ < oo. Assume that v € A~(Rd). Then there exists

a positive constant C such that, for any given f € LIOC( 4), a ball B C RY,

and j € N,
(Jgj(B) |f(x)” dm) <C <Jgj(3) ()| v(z) dx)

Here and thereafter, S;(B) := (2/71B)\(2/B) for any j € N and Sy(B) := 2B.

Q E\»ﬂ

Meanwhile, for any given r € (0, 00), the Hardy—Littlewood maximal func-
tion M, is deﬁned by, for any f € Ll _(RY) and x € R?,

1 ; 1/r
M, ) = sup <B| /B ) dy) ,

where the supremum is taken over all balls B that contain the given point x.
When r := 1, we simply write M instead of M.

Then, we have the following weighted boundedness for the Hardy-Littlewood
maximal function M, (see, for instance, [14,19]).

Lemma 2.4. Let r € (0,00), p € (r,00), and w € A,/ (R?). Then there exists
a positive constant C, depending only on r, p, and [W}Ap/r(Rd), such that, for
any f € LE(RY),

M fll e ey < CFll e (ray -



1574 T. KANG AND Y. ZOU

Next, we recall a criteria for singular integrals to be bounded on the space
LP(RY) with p € (1,2), which plays an important role in the proof of the
boundedness of the square functions (see, for instance, [2,5,6]).

Proposition 2.5. Let 1 < py < qo < o0 and T be a linearizable operator.
Suppose that T is bounded on L% (RY). Suppose further that there exists a
family of operators {A;}i=o salisfying that, for any j > 2, any ball B :=
(rp,rB) CRY, and any function f supported in B,

1/q0 1/Qo
(f |T<1—ATB>f|"“dx> < a(j) (f fl‘”dm)
5;(B) B
1/‘10 1/p0
(f IArqu"dﬂ?) < a(j) (f Iflp"dw) .
5;(B) B

J
If Z;iz a(j)294 < oo, then T is bounded on LP (RY) for any p € (po,qo) and
we A%(Rd) N RH a0y (RY).

and

The elementary estimates stated in Lemmas 2.6, 2.7, and 2.8 below can be
found in [5,6]. We omit the details here.

Lemma 2.6. Let d € N and k € (—oo,d). Then there exists a positive constant
C such that, for any t € (0, 00),

/ <t> dr < Ct?.
B(0,t) ||

Lemma 2.7. Let d € N and o € (0,2 A d). For any given € € (0,00), there
exists a positive constant C such that, for any t € (0,00) and x € R,

1 [t 4|z —y e
Lo (5 t)  wse

Lemma 2.8. Let d € N and o € (0,2 A d). For any given € € (0,00), there
exists a positive constant C' such that, for any t € (0,00) and x € RY,

1 tl/a_’_|x_y| —d—e
/ (tl/a> |f(y)ldy < CMf(x).
R

4 1/

In what follows, for a given constant § € R, we use Dy(z,t) to denote
(1+ %)9 for any t € (0,00) and 2 € R%; namely,

(2.2) Do(z,t) = (1 + t|1::|a)0

Then we have the following conclusion which was established in [5, 6].
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Lemma 2.9. Let {T;}s~o be a family of linear operators on L*(RY). Assume
that, for anyt € (0,00), Ty is defined by, for any f € L*>(R?) and almost every
x € RY,

Ti5(e) = [ T F)ds

Here, the kernel function Ty(-,-) satisfies the following condition: there exist
positive constants C, ¢ and 0, n € R such that, for any t € (0,00) and x, y €

RA\{0},

—d—a

Da(l‘,t)Dn(Z/vt)’

—d/o tl/a + |‘T — y|
Ty(x.y)| < 0 (t/>

where Dy and Ds are as in (2.2). Assume further that d;, < p < q < dp,
where d,, and dy are as in (1.4). Then, for any ball B := B(zp,rg) C RY, any
t € (0,00), any j €N, and any f € LP(R?) supported in B,

1/q N d/p o
q < B _B
(Jij(B) 21 dx) <¢C [(tl/a> v (tl/a> ]
tl/a d/q 2j’f’B —d—a 1/p
Z'B P
(2.3) % <1+ %B) (1+ tl/a) (Ji'f dx)

and, for any f € LP(R?) supported in S;(B),

1/q ; d/p ; d
2]7'3 2]7“3
q
(fgmfl dm) <C[<t1/a> v(tw”
. —d— 1/p
tl/a d/q 2‘77"B> d—a
2.4 x |1+ 1+ —+ JC Pdx .
2 (i) (i) (v

Moreover, we have the following pointwise estimates for the heat kernels of
the fractional Schrédinger operator £, (see, for instance, [3,4,12,23,28]).

Lemma 2.10. Letd € N, a € (0,2 d), a € [a*, 00) with a* being as in (1.2),
and let o be as in (1.3). Assume that {p:}i>0 are the kernels associated to the
heat semigroup {e~**};~o. Then there exist positive constants C' and ¢ such
that, for any t € (0,00) and z, y € R1\{0},

/o 4 e =g\ "
tl/«a ’

pe(z,y) < Ct_d/O‘DU(x,t)Dg(y,t) (

where D, is as in (2.2).

Proposition 2.11. Let d € N, a € (0,2 A d), a € [a*,00) with a* being as
in (1.2), and o be as in (1.3). Then, for any s € (0,00) and p € (d,,d,)
with dy being as in (1.4), (tL,)* et is uniformly bounded on LP(R?) for any
t € (0,00).

Proposition 2.11 was established by Bui and D’Ancona in [6].
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Proposition 2.12. Let d € N, a € (0,2 A d), a € [a*,00) with a* being as in
(1.2), and o be as in (1.3). For any s € R with s € (1+2[0V (o/a)],00), there
exists a positive constant C(yy, depending on s, such that, for anyt € (0, 00)
and z, y € RH\{0},

—d—
t1/°‘+lx—y|> “

|pt,s(737 y)| < C(s)ti(s+d/a)D0(xa t)Ds(y,t) < /a

where py, s(+,+) denotes the associated kernel of L™, and D, is as in (2.2).

Next, we recall the Hardy inequality associated with the operator £, estab-
lished in [28, Proposition 1.2].

Lemma 2.13. Let d € N, a € (0,2 A d), a € [a*,00) with a* being as in
(1.2), and o be as in (1.3). Suppose that sa/2 € (0,d). Then, for any given
p € (dy,dytsa)2), there exists a positive constant C' such that, for any f €
Ce(RY),
—as/2
[l 4]
We also need the following boundedness of square functions involving the

difference tL, et — t(—A)o‘/ze*t(*A)a/z, which was first proved by Merz [28,
Proposition 5.2] (see also [5,6]).

<CH£“’/2 ‘
@) S JOf

Lr(Rd)

Lemma 2.14. Let d € N, a € (0,2 A d), a € [a*,00) with a* being as in
(1.2), and o be as in (1.3). Assume that p € (d;,,dy450/2) and w € A%(Rd) N

RH(d(U/p),(Rd), where dy and dgqsq)2 are as in (1.4). Then there exists a
positive constant C, depending only on p, [w]a , (re), and [w}RH( 4 /(R4 such
dg P

that, for any f € C(R?),
[eS) 1/2
—s —tLa _ 4f_ ANO/2,—t(—A)/? 2 ﬂ
{/0 t (tﬁae H—A)/2e )f‘ -
f

| . |sa/2

LE (RY)

(25) <C H

LE (R) .

Moreover, we recall that the special case of Theorem 1.1 has been proved in
[24] for the case o = 2, in [18] for the case p = 2, in [28] for the case general p
but with ¢ > 0, and in [6] for the case a > a* (see Lemma 2.15 below).

Lemma 2.15. Letd € N, a € (0,2Ad) and s € (0,2]. Assume that a € [a*, 00)
with a* being as in (1.2) and o is as in (1.3). Then there exists a positive
constant C, depending on p and d, such that, for any f € C°(R?),

(1) Zfﬁ:l\/o <p< m with % =00, then

(—ayerag

<CH,CS/2 ’
sy <€l

Lp(R4) ;
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e\ . . d d
(11) Zf1<p<00w2thm<p<m, then

|

< oH(-A)as/‘*f]

Lp(Rd) —

Lp(Rd)

We point out that the main reason for the restriction a > 0 in [28] is the
essential use of the spectral multiplier theorem from [20], which requires a
suitable polynomial decay on the heat kernel. We note indeed that when a < 0,
the kernel of £, fails to enjoy the Poisson upper bound, which would ensure
a polynomial decay. In order to overcome the weak decay of the kernel, T. A.
Bui and P. D’Ancona employ a new approach in [6]. This approach is quite
similar to the method in [7]. The method in [7] was built upon the following
heat kernel estimate,

(2,72
< Ct 36D fl oy

for any measurable subsets E,F C R%, any f € LP(F), and suitable 1 < p <
g < oo. For both approaches in [7] and [24], the exponential term plays an
essential role in the above estimate. However, this type of estimate fails to be
true in the case that o < 2 (see [5,6]). To deal with this obstructions, Bui
and D’Ancona [6] proved the LP — L? off-diagonal estimates on balls and their
corresponding annuli.

Furthermore, the case of w = v for Theorem 1.1 has been proved in [5]; see
Lemma 2.16 below.

Lemma 2.16. Letd € N, a € (0,2Ad), and s € (0,2]. Assume thata € [a*, 00)
with a* being as in (1.2) and o is as in (1.3).
(i) Assume further that p € (d,, dyyqs/2) and

we Az (ra ﬂRH(M (R,

)

where dy and dyysq/2 are as in (1.4). Then there exists a positive constant

C, depending on d, p, [w]a , re), and [W]gy , ranys, B such that, for any
a7 (Jotassz,,

feC&E®y),

o

(ii) Let d := W, Assume that p € (d.,,d) and

< CHLf/Qf’

LY (RY) LE(RY)
d . d
wedg (R )ﬂRH(%),(R )

with d, being as in (1.4). Then there exists a positive constant C, depending
ond, p, [Wla, ®e), and [Wrny ; (re), such that, for any f € C>(RY),
ar (;)/

o

i1

< oH(-A)as/‘*f]

LE®rE) ™

L (RY)
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Therefore, Theorem 1.1 can be considered as extensions of those obtained
in [5,6,18,28] to the case of two-weight.

As in [5], using the LP — L7 off-diagonal estimates on balls and their corre-
sponding annuli obtained by T. A. Bui and P. D’Ancona in [6], together with
some tools from harmonic analysis, such as the properties of Muckenhoupt
weights, and the Minkowski integral inequality, we can obtain the weighted
Sobolev norm estimates related to the generalized Hardy operator.

3. Two-weight Sobolev inequalities associated with L,

In this section, we give the proof of Theorem 1.1. The proof of Theorem 1.1
relies on some subtle ingredients, such as the weighted Hardy inequality related
to the operator £, and the weighted inequalities for the square function. We
first establish the following weighted Hardy inequality.

Lemma 3.1. Let d €N, a € (0,2Ad), a € [a*,00) with a* being as in (1.2),

and o be as in (1.3). Suppose further that s € (0,00) satisfies sa/2 € (0,d),

p € (dy,dytsas2), andw € AdL; (RY) ﬂRH(dem)/(Rd), where dg and dg 4 5q/2
o —

are as in (1.4). Then there exists a positive constant C, depending only on p,

s, d, [Wla , &), and [W]ggH , (re), such that, for any f € C®(RY),
a5

otsa/2
(—Eal2y

1172272

< CH[,Z/Zf’

LE (RY) LE(RY)

Proof. Let sa/2€(0,d), pe(d,,,dyysa/2), and weAdL;(Rd)ﬁRH( doseasa),

p

(RY).
To show this lemma, it suffices to prove that, for any g € C>(R%),

(3.1) 1172272572

sz S 190z

Define the linear operator Ty, s by setting, for any f € C>°(R?) and x € RY,
(32) Tro.sf (@) = la| ™" L2 f ().

By (iv) and (v) of Lemma 2.2, we find that there exist d, < pg < p < qo <

dy4sa /2 such that w € AL(Rd)mRH(m)/(Rd). Fix a ball B := B(xg,rg) C R?
PO P

and m € (d/a+ 1,400), and let

Ay i=1— (I — e_rgﬁa)m.

To show (3.1) via applying Proposition 2.5, it suffices to prove that, for any
4 > 2 and any function f supported in B,

1/40 1/q0
(3.3) (f Tp o (T = Ay, f| dx) < 9-(d+a) (f L] dx)
S;(B) B
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1/fI0 1/170
Ay £ dx) g 27 (el ( f | f|Pe dm) :
) B

We first prove the inequality (3.3). From the formula

1 o0 dt
—s/2 _ ts/? —tLy £
o2 F(8/2)/0 eteef &,

and

(3.4) ( fs .

J

and the fact that
o m
I Ay = (1=e785)7
it follows that

1 e o mdt
_ — /2 |—as, —tL, _ ,—r5La
(35) T, s(I—Ap)f T(s/2) /0 =] 7% (I e ) i -

Then, applying the Minkowski inequality to (3.5), we obtain that

N G

L0 (S;(B))
1 > o m dt
< ts/2 H L |—as  —tL, I — —r5Lla ‘ bt
F(8/2)/o [ ( ‘ ) f Lao(S;(B)) t
dt

1 rE o m
< ts/2 H L |—as —tL, (I _ —rBﬁa) ‘
F(8/2)/o -7 ‘ / L9 (S;(B)) t

1 /OO e e m
tS/2H|" as, tLy (I*G rB£a> f‘
F(S/Q) TS
(36) = E1 —|—E2

For the term E;, we have that

dt

+ _
Loo(s;(B)) t

"B s/2 —as _—tL, dt
Ei < /0 t52 | |7 fHL‘IO(Sj(B)) +
mooerg . s (iR dt
(37) O A Y
2 J, (85(B))

Since the associated kernel of the linear operator
F@) s Ja| 0 e HRTBICa f ()

is |a:|_as/2pt+;W% (x,y) for each k € {0, 1, ..., m}, it follows, from Lemma
2.10, that the kernel |x|_a‘“/2pt+kr% (z,y) is dominated by

—d—a
—as —d/a ayl/« —
2| ~/% Dy (, t+kr$) Do (y, t+kr%) (¢ + krsy) =Y/ | Ltkrs) "tz —y]
(vkr5)
S (t+kraB)_aS/2 Do+as/2(‘rat+kr%)Da(y7t+kr%)

—d o hr) O oy ] 74T
X (t 4 kry) [—( oy
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Therefore, by this, Lemma 2.9, and the fact that, for any ¢ € (0,r%), t +krg ~

r%, we find that
i —d—a 1/q0
1/dq0 ,—s/2 2’rp JC
<|2B] ¢/ 2B w g
L0 (S;(B)) ~ | | (tl/a> (tl/o‘) ( B‘f| x

and, for any k € {1, 2, ..., m},

H| X |_as/26_t£“f

H |- |7as/2ef(t+krg)£a

1/q
< |2jB|1/qn 7njgsa/22fj(d+04) (JC | £]90 dx) 0-
Lao(S;(B)) b

From this and (3.7), we deduce that

i o 1/a0 Ve
E, < |2B] (f HE dr)
B
o . —d—a <
"B s rgN\d [ 2rg dt "B s/2,.—50/25—j(d+a) dt
L7 G Gre) G [ g

) . 1/q 1/q0
(3.8) g27idre) |2ip| T (JC | f]% da:) .
B

Now, we estimate the term E5. By the facts that

o m 7] T
(I _ e_TBLa> — / .. / ﬁ;ne_(51+"'+3wl)£a dg"
0 0

where ds := ds; - - - ds,,, and the associated kernel to the linear operator

f(x) — |Z’|7as/2 eftlla (I . 67r§§[;a)m f(;L')

/ / Pf+sl+ A+ S ,m (Ivy) ds,

Proposition 2.12, and the fact that ¢t + sy + -+ + s, ~ ¢t when ¢ > r% and
€ (0,r%] for i € {1, ..., m}, we conclude that |z|~*/2
is dominated by

X

is

Pttsittsm,m (T, Y)

_ tl/a _ -
|$| s/ t_mDU(x7t)Da(y’t)t_d/a |: ;): y|:|

—d—
e + |z —yl]

SO D g, ) Doy, 1) (E+ ’“’%)_d/a[ /e

From this and Lemma 2.9, it follows that
H| . ‘—as/Qe—(t—Hcr%),Ca (I _ e—r%/;,,,)m ‘

L0 (5;(B))

d/qo 1/a \ /0 1/q0
< |2]B’1/q0t (s/2+m) <t1/a> a <1 + ;r > (1 iljf) (f | f|e da:) ,
B
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which further implies that

1
j 1/q0 w /40
E; < |2/ B]| |f|% da
B
X/oo ’raB m(TB )d/tIo - tl/a d/qo 1+2j'rB —d—a dt
re \ 1 /e 2irg /e t
1
J 1/q0 qo /20
<[2B| £ da
B
/2a1r30 T% m ( rg )d/qo - tl/a d/qo - 2jTB —d—a dt
X = — _ i -
re t tl/e 2irg tl/e t
i |0 “ 1/q0
+ |27 B| | f|% dx
B
e % ™ rg \4/0 /o /40 2rp —d-a dt
% t (1/a) 1 j 1+ 1/ i
2aipa \ 1t t 2rp t t
) Yao p2%0% roaN™ 0 Cdjge (29 \ T dt
1/q0 0 T 7 r
< (£ 11 as) / (%) ()™ ()
) 1/90 oo a\ m d/a0 tl/u‘ d/qo o —d—a dt
y 1/q0 q0 T73 T‘i B dt
+‘2/B| (ﬁ‘f‘ dl‘) /ga.m-g ( t (tl/a) (21”’3) <t1/°‘> t

. . 1/ 1/q0
e s (£
B

By this, (3.8), and (3.6), we find that (3.3) holds true.
Next, we show (3.4). Since

Ay = (-1 (’Z)e—’“"%‘a

k=1

+

where (ZL) = k!(rzlik)!, it follows, from Lemma 2.10, that the kernel of A, is

dominated by

g+ |z y|>da

Da’(ma TB)Do(y,TB)TBid (
B

Therefore, applying (2.3) in Lemma 2.9 and similar to the proof of (3.3), we
prove (3.4). The details are omitted here. This finishes the proof of Lemma
3.1. O

Let v € (0,00). Now, we consider the following square function that, for any
f € L*R?) and z € R4,

(3.9) Send@) = ([ ety et s ) "

t
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We remark that, by the functional calculus theory in [27], we find that the
square function Sg, - is bounded on L?(R%). Moreover, the weighted LP(R%)
boundedness of S, ~ was given by Bui and Bui in [5].

Lemma 3.2. Let d € N, v € (0,00), a € (0,2 A d), a € [a*,00) with a*
being as in (1.2), and o be as in (1.3). Assume further that p € (d,,d,) and
w € A%(Rd) N RH(L(,),(Rd), where d, s as in (1.4). Then there exists a

positive constant C, depending on p, d, [w]a , &), and [W]gy , (=e), such
i o

(
that, for any f € LP(R%),

O™ F g ety < IS0 Fll ity < Ol ey
As a consequence, for any given s € (0,2], p € (d,d,), w € AdL/(Rd) N

RH(L‘,),(Rd), and any f € CX(RY),

> —s —tLy 2@ 1z
|</Ot [tLoe " f] t)

where C' is a positive constant independent of f.

< C\
LY (RY)

L]

LE (RY)

Theorem 3.3. Let T, s be as in (3.2) with s € (0,00) being as in Lemma 3.1,
deN, a € (0,2Nd), a € [a*,00) with a* being as in (1.2), o be as in (1.3), and
q € (d,,dyis0/2), where do and dyys0/2 are as in (1.4). Assume further that
d, <po < q<qo<dyqass, the weights w and v satisfy that w € RH(R?)
with some t € ((4})’,00], and

g
(3.10) {w,vlf(%)} == sup [wadx} b[ v~ dx] "<,
A%(Rd) BCRY | JUB B

where the surpremum is taken over all balls B of R%. Then Ty, s is bounded
from Li(R?) to L4 (RY), and there exists a positive constant C, depending on
q, d, s, and (W] gp, re), such that, for any f € Li(RY),

1 Teo, s 1Ly gey < CIIS

Before proving Theorem 3.3, we need some conclusions which was proved in
Yang and Yang [31].

LE(RD)*

Lemma 3.4. Let v € [0,1), p1,p2,p3 € (0,00] satisfy ps > p1 V p2, and
F,f € L (RY). Assume that, for any ball B of RY, there exist two measurable

loc

functions Fp and Rp on B such that |F| < |Fg|+ |Rg| on B,

(3.11) ( Ji Ryl d:z:)l/ps <O {IMUSP) @]+ (M, (117) (22)]7% |

with the usual modification made when ps = 0o, and

1/P1 1 s
(8.12) (JCBIFBIM@ < MSP) @I F + oMy (1) (22)]
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for any x1,z0 € B, where C1,Csy, and € are positive constants independent of
the functions F, f,Rp, Fp, and B. Assume further that w € RH4(R?) with
some s € (1,00], and a € (1, }’;—‘1‘). Then there exists a positive constant By €
[1,00), depending only on Cy, Cs, n, p1, p2, p3, a, and [w]rm. (RY), such
that, for any given 8 € [By, 00), there exist an gy € (0,00) and a ko € (0,1),
depending only on Ci, Ca, n, p1, p2, p3, @, [WlrH, @), and B, such that, if
e €10,€0) and k € (0, ko), then, for any X € (0,00),
_(s=1a ) P2

(3.13) w(B(AN) <8~ w(EO) +w ({z e R M, (11P) (2) > ()7 }),

where, for any given A € (0, 00),
E(\) = {z eR": M(|F") (z) > A} .

Recall that a function @ : [0,00) — [0, 00) is called a Young function if ® is
continuous, convex, strictly increasing, ®(0) = 0, and @ — oo ast — 0o (see,
for instance, [13]). Moreover, it is said that a Young function ® is doubling if
there exists a positive constant C' such that, for any ¢ € [0, 00), ®(2t) < CP(¢t).

Let ® be a Young function and B a ball in R™. For any f € L _(R"), the

loc
normalized Luzembourg norm || f||e, 5 of f on B is defined by setting

| flle, B = inf{)\e (0, 00) : fg@ <f(;)|) dz < 1}.

Let p € (1,00), B be a ball in R", and ®(¢t) := t? for any ¢t € [0,00). Then ® is
a Young function and, for any f € L] (R"),

1flle5 = (Ji |f|pdx)” = 11flp. 5.

Lemma 3.5. Let p1,p2,p3 € (0,00] satisfy ps € (p1Vp2,00), q € (p1Vp2,p3),
® be a doubling Young function satisfying

0o [,(2) st
t p2 dt
14 —
(3.14) /c lq)(t)] ; < 00

for some constant ¢ € (0,00), and F, f € L}, _(RY). Assume that the weights w

loc

and v satisfy that w € RH4(R?) with some s € ((E),oc], and

(3.15) sup (J{: wdm) Hv_%2
BCRI \JB

where the supremum, is taken over all balls B in R®. Assume further that F and
f satisfy (3.11) and (3.12) with v = 0 and some € € (0,00) such that (3.13)
holds true. Then there exists a positive constant C, independent of F and f,
such that

4
P2

< 00,
®,B

1Fllrs gay < C |l f]

Next, we show Theorem 3.3 by using Lemmas 3.4 and 3.5.

LE(R) -
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Proof of Theorem 8.3. Assume that B := B(xp,7g), with xz € R? and 75 €
(0,00), is a ball of RY, m > d/ag) + 1, and f € L®(RY). Let F := T¢, s(f),
Fp =T, (I —e "85a)"(f), and Rp := Ty, o[ — (I — e "B%a)™](f). Then
|F| < ‘FB| + |RB| on B.

Now, let d, < p < po < qo < ¢ < dyysa/2, Where p, ¢ € (1,00). By (3.10),
we conclude that (3.14) and (3.15) hold true for ®(¢) := ) pp = py = p,
and p3 = q.

To show Theorem 3.3, by Lemma 3.5, it suffices to prove that, for any
f € C*(RY) and any z; € B,

o) (£ FB|ﬁdx>1/ﬁs§gl<j><£H13|f|ﬁdx)l/ﬁ M (7P (@),

where 3777 | 91(j) $ 1, and, for any z, € B,

(3.17) (fg |RB|qda:)1/q Sigz(j) <J€3 #17 da:)l/ps w117 @)

where 377 ) g2(j) < 1.
To obtain (3.16), we first have

B 1/p N m P 1/p
(J[ |FB|pdx> - [JC Tz s (1= e7785) " ()] dx]
B
o m P 1/p
(3.18) < Z [Jf Tz s (1= e785)" (53) dx] ,
where, for any j € N, f; := fXSj(B). By the formula

r£-s/2 1 /Oo 45/2—tLa dt
@ I'(s/2) Jo t’

and the fact that .
I Ay = (1=e785) 7

we conclude that

Teo o (1= Avy) fi(2) = —

o a s \™ dt
$/2| | —as ,—tLg J—e " L ) W
F(S/?) /0 t |‘T‘ € ( e " ) f](x) t .

Applying the Minkowski inequality to (3.18), we obtain that
ap \™M
HTgms (I—e’TB “) Fill .
L?(B

1 > RN dt
755/2 H |—as —tL, T — —r5Lla ‘ _

r(s/2)/0 -7 ( ¢ ) Till ooy
1 "B N dt
ts/2 H L |—as —tL, <I _ —rBﬁa) ‘ o
e ‘ Tilloey
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1
T /
=:F; +Fs.

For the term Fy, we find that

dt

S o m
t5/2 H| . ‘—ase—tﬁa (I _ e—rBLa) fj‘ ) o
L?P(B) t

«@
B

i s/2 —as _—tL, dt

F1S/0 t*/ |||‘ € fjHLﬁ(B)?
O[T o dt
3.19 n / ts/zH _ —ocse—(t-i-krB)Laf_‘ dt
) kz::l 0 . HiLesy t

Since the associated kernel of the linear operator

F(x) o fa] 08 Pem (HRTRI o £ ()

is |x|’as/2pt+kr% (x,y) for each k € {0,1,...,m}, it follows, from Lemma 2.10,

that the kernel \x|’a5/2pt+kraB (z,y) is dominated by

—d/a rot ey |o— —d-a
Clal =%/ Dy a1 kry) Do (y, ) (¢ + ko)~ [t
S (t+ k)" Dyyasya(@,t + krd) Doy, t + krfy) (¢ + krg)
X [(t+kr%)1/“+\x—y|]‘d‘“
(t+krg)t/« )
Therefore, applying Lemma 2.9, we conclude that
L |—as/2 —tL, ‘
H' | € Ji L?(B)
; d e —d—a 1/p
< Pz (218 (2T foipld
~ tl/a tl/a S,(B) J
, a 1/p
< |B‘1/i)t_s/2 (M> (J[ |f|10dx>
~ tl/a J
5;(B)
and, for any k € {1,2,...,m} and ¢t € (0,7%),
1/p
H| . |—as/2e—(t+kr§)£afj‘ ) < |B|1/ﬁr§sa/22jd2—j(d+a) JC |fj|;5 dr
Lr(B) S;(B)

1/p
~ By e (JC lfj|”dx> ,
S5(B)

which, combined with (3.19), further implies that

1/p o ) _ o

_ _ B [ 9J “dt "B s Cdt

s IBr (f 'fﬂ"pdﬁ”> U (G) S+ [ e /22%}
S;(B) 0 0

J
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1/p
<279 |B|"/? (fs (B)Ifjlpd:zr) :

J
Next, we estimate Fy. Using the facts that

“ m 7] 97
(I —_ e_rB‘Ca) — / .. / Ezq'e_(sl"‘"""sm)ﬁadg”
0 0

where ds := ds; - - - ds,,, and the associated kernel to the linear operator

F) = Jaf oo/t (1= e7rBE) " f(a)

ry rE
/ t / |x|7as/2pt+51+~-+sm,m($vy) dga
0 0

from Proposition 2.12 and the fact that ¢t +s1 + -+ s, ~ t for t > r% and
s; € (0,7%] for any i € {1,...,m}, we deduce that |x|=*/%p; ¢, 4.6, m(T,y)
is dominated by

is

1/ 4 |z — | >

ol D Dyt

1/ e =y
tl/«a :

SECPEMD Lo, ) Doy, ) (¢ 4+ k)~ (

Then, applying Lemma 2.9, we find that
H| | 2 (k) L (I - efrgca)mfj’

L#(B)

~ ; d/p 1/ay U/P ; —d—a
1 — 2 2rp t 2irp 5
< |B|YP ¢ (s/24m) ( e ) <1+§) (1+ Ta ;. 1517 da

From this, we deduce that

1/p
Fs 5 |B|"? <J€ - fj|de>

y /OO (7«%)7” (erB)d/p (1+151/C¥>d/ﬁ <1+ 2jTB)—d—(x @
re \ 1 tl/« B i/« t
<|B"? ( £ o dm) " [ (%B)‘”” (t”a)””” (m)“ dt
5,(B) ra \ ¢ ti/e rB ti/e t
1/p
|fjpd56> :

< oo |g\/P JC

S;(B)
In combination with the estimates of F; and F5, we complete the proof of
(3.16).

1/p
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Next, we prove inequality (3.17). By Lemma 2.13, we find that

(ngqux) =( T, A r<>|qu)l/q

B 1/q
(L oy eato )
00 1/q
EUS (s, 181 =) d”“)
1/q

Applying (3.4) to (3.20), we conclude that

1/g /4
Rp|? d > 2| A, (£)| d
(f, st as <;<J€~j<3) A ()] x)
00 1/p 1
4/d9~(d+a)s p p ;
<3 (fras) " s () ]

which completes the proof of (3.17).

From (3.16) and (3.17), it follows that (3.11) and (3.12) hold true for p; =
p2 :=p, p3 := @, and € := 0. Thus, applying Lemma 3.5, we finish the proof of
Theorem 3.3. O

N

A

(3.20)

A

e

We now prove the two-weight boundedness of S¢,,, in the scale of weighted
Lebesgue spaces.

Theorem 3.6. Let v € (0,00), S¢, - be as in (3.9), d € N, a € (0,2 A d),
a € [a*,00) with a* being as in (1.2), o be as in (1.3), and q € (d,dy) with d,
being as in (1.4). Assume further that d, < py < q < qo < dy and the weights
w and v satisfy that w € RH4(R?) with some s € ((£2)",00] and,

q
q \/ q / PO
(3.21) {w,vlf(%)} ‘= sup [chdx} bf vt~ (5e) dm] < 00,
A%(Rd) BCRe LJUB B

where the surpremum is taken over all balls B of RY. Then S¢, ~ is bounded
from Li(R?) to LI (R?), and there exists a positive constant C' such that, for
any f € L{(RY),

T e T
As a consequence, for any s € (0,2] and p € (d,,d),

(/ 0 |tLae e £ dt)
0

L9 (R4 Li(R?)
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Proof. Assume that B := B (rp,7g), with zp € R? and rp € (0,00), is a ball
of R, m > d/a+ 1, and f € CX(RY).
Let F := S£a7q/(f),

Fp =S¢, (1=e735)" (1),
and m
Rp =S¢, - [I - (I - e*’“%‘ia) } ).

Then |F| < |Fg|+ |Rgl on B. Let d < p < po < g < ¢ < dy, where
D, q € (1,00). By (3.21), we conclude that (3.14) and (3.15) hold true for
a0/ _ _
o(t) ==t py =po:=p, and p3 == q.
To show Theorem 3.6, by Lemma 3.5, it suffices to prove that, for any
f € C*(RY) and any z; € B,

) (f1mr ) < > 00)(f,,., 1) P M el

where 377 | ¢1(j) < 1, and for any x5 € B,

Byl

529 (f o) < 292(3') (firra) " < [P ]
where Z;’;l g2(j) s 1.

We prove (3.22) by considering the following two cases.
Case 1. p < 2. In this case, by the Holder inequality, we have

(Ji |Fp|” dz>1/” _ (Ji ‘sﬁw (I _ wggﬂ)m (f)‘p dx)l/p
(f lseas (1=e5=) " 0] dx>l/2.

Thus, it remains to show that, for any z; € B,

bi . (1-e78%:) "0 dw] e M) )

We observe that
. m 9 1/2
[f [Scay (T=e7785)" () dx}
B

< g:l [fB ‘Sﬁam (I— e—rgca)m (fj)‘z dxr/za

where, for any j € N, f; := fxs,(5).- Meanwhile, note that, for every g €
L?(R%) and s € (0, ),

il

A

o0
/ Litle ™ egdr = Loe Fayg,
t
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which, combined with Proposition 2.11, implies that

el < [ 150l oy

By this, we conclude that

>0 ) ?
{/0 H(tﬁa)’y 67t£ﬂg||i/2(B) t}

* = +1,-7La [|2 *dt v
l/o tv</t ezt te g2, dr) t]
oS 1/2
[/ “(Tﬁa)erle_TCagQ dT] -
0

L2(B) T
From now on, let v > 1+ 2[0V (¢/a)]. For j = 0, from the L?(R%)-
boundedness of S, , and A, , we deduce that, for any z; € B,

(fg ‘Sﬁuw (I - e_r%E"')m (fo)‘2 alx)l/2 < {M <|f‘p) (331)} e

For j > 1, applying the Minkowski inequality, we find that

£ fsewn (1-e5e)" ] ]

’ N i dt 1/2
B (/ (L) e % (1 = Ary) £ 120 )

IN

IN

1/2

A

o 1/2
_ "B _ 2 dt
< |B|7Y/? </0 (t£a)7 €=t (I—ATB)fjHLz(B) t)
1/2
—1/2 * Y _—tLq 2 dt
+ |B| H(t‘ca) e (I_ATB)fjHLz(B) ?
T
=: E; + Es.
Since

(tLa) e (I = Apy) = (tLa)7 e Ee (T — e )™
Z(il)k <T]::L) (tﬁa)v e—(t+kr;§)£a
k=0

= (tLa)" e PP £ ) "(—1)F (’Z) (tLy)Y e (HHhrE)La,
k=1

it follows, from Proposition 2.12 with v > 1 + 2[0 V (¢/«)] and the fact that
t+krg ~r% for any ¢ € (0,7%) and k > 1, that the kernel of (t£,)Ye (I —
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A;) is dominated by

tl/a + ‘x _y|>—d—a

Ct' Dy (, t) Dy (y, t)t =0+ ( /e

rp+ e —yl\ "
rB '

- OED, (2,15 Dy (3,15 (1)~ /) (

Consequently, applying (2.4) in Lemma 2.9, we infer that
B2 0La) e (1= Ary) Fi o

; d d/2 , —d—a 1/p
277’3> ( tl/a> < 2JrB> JC .
- = 14— 1+ =—= NP dx

<t1/a B /o 5,(B) |fy\
- 1/p
¢ j\dod/2 ) —d—a 5
= (27)%2%% (14 27) | f;]? dx
B S;(B)

. . Cd— 1/p
2]7”3 d 23’/“3 d-a B /P
tl/a tl/a S,(B) |fJ| dx

L\ 1/p
+ (Q) 2-Ja f | f;|P dz ,
"B S;(B)

which further implies that

1/p
El < 27ja JC |fj‘ﬁ dx .
S;(B)

Next, we estimate Es. Note first that

m T T
@ -
(I _ e_TB‘CG) = / .. / Egle_(sl"' +sm)La dS,
0 0

where d§:= dsy - - - ds,,. Therefore,

H(t[ia)7 e e (1= Ay) fJ‘HLz(B)

R
<[
0 0

From this, Proposition 2.12, and the fact that ¢t + sy + -+ + s, ~ t for any
tery,00)and s; € (0,r%] with i € {1,...,m}, we deduce that

[BI7Y2 [[(tLa)" ™4 (1 = Avy) Fill 12 )

ro re A d/2 1/o i —d—a 1/p
B B 27 t 23 _
s/ / fM< 17”3) <1+ > <1+ 17”3) f |f;|P dz ds
0 0 {1/ B {1/ 5;(B)

N

A

t7£a7+me—(t+51+"'+57n)£a fj ‘

ds.
L3(B)

/2
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a\m j /2 1/ d/2 1 —d—« 1/p
r% 27rp t 27rp JC _
O 14— 14—~ 1P d ,
(F) () (+55) (e5m) (£, e
which further implies that
o soa\™ j d/2 1/a
B 2rp t
ms [ (7)) () (%)
< [ ()" ()" ()
~ e t tl/a B

1/p
< 9—i(d/2+a) f |fj|i) dz
S;(B)

as m > d/a + 1. By the estimates of E; and E;, we conclude that, for any
r1 € B,

/2

i —d—a 1/p
QJTB) J( 5 dt
1+ filP dx —
( tl/a < S,(B) ‘ J | ) t

1/p

; —d—a«
27y - dt
( ; /5) f 2
¢ 5;(B) ¢

m 9 1/2
f [seen (1=emser)" o o] < P .
B
Case 2. p > 2. In this case, applying the Minkowski inequality, we obtain
that
o m B 1/p
H S,y (1= e7785)" () dx}
B

o0 m 2 1/2
< |B|—1/2 |:/ H(tca)’Y e—tﬁa (I _ e—rBLQ) f]‘ dt:|
0

Lp(B) t

1/2
2 @ /
L?P(B) t

> 5 1/2
N e O W

< |BI7V? VOT% H(tﬁa)V e the (I_ efrgﬁ(L)mfj’

(B) t

1/p 1/p
<9ie ( Jf TG da:) }oita/ze) < f £ l7 dx) .
S;(B) S;(B)

The remainder proof in the case of p > 2 is similar to that in the case of p < 2,
and we omit the details. In combination with the estimates in both Cases 1
and 2, we then finish the proof of (3.22).

Next, we prove that (3.23). Using Lemma 3.2 and (3.4), by suitable modifi-
cation for the proof of (3.17), we can show that, for any x5 € B,

~ 1/q ~ 1/q
(f Ry|? das) _ [f 10 3 Ary (£)|7 de
B B
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: U |;| s 1) ] N

1/q
— | Aps (f T

1/
[ 24 A ()] dx]
5;(B)

1/p 1
id/Tg~(a+a)i (Jg |f|”d$> < [M(IFP) (2]

which completes the proof of (3.23).

Then, from (3.22) and (3.23), it follows that (3.11) and (3.12) hold true for
p1 = p2 =P, p3 := ¢, and € := 0. Thus, applying Lemma 3.5, we finish the
proof of Theorem 3.6. O

A

A

gk HM8

j=1

Finally, we are turning to the proof of Theorem 1.1.

Proof of Theorem 1.1. By the functional calculus associated with £,, we have
that, for any g € L (R%) N L#(RY),

~ 2y —2tL, dt
[ @@)de = [ [ 0007 e @) T o

~2t 4t Then applying the Hélder inequality, we find that

<|[L [ e e st § as

< /Rd/o |(t£a)7 e—tﬁaf(@ (tﬁa)v e_wc"g(x)’ %dm
$/ Sﬁa}yf(l’)Sﬁw,yg(x) dz.
R

Furthermore, for any ¢ € (po, qo), we have ¢’ € (¢{,pj). Assume that

{ - <1q'><1<§,’)’>]
w , U 0 < 00,
A o (R9)

%

and w'~7 € RH,, (R?) with 5o € ((Z—l,)’,oo]. Then, from Theorem 3.6, we
deduce that

where ¢(q) 1= foo t¥e

f x)dx

1520290 ay S W9llper ey

which further implies that

[ Secnf@)Sc. @) do 5 16l 1929150, e
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< 18eefligen ol -
vl—q
As a consequence, we obtain that

”fHLq (R4) ~ < 1Se.., ‘Yf”Lq (R9) *

Fix 0 < s <2 and d, < p < dsa/240- Then, by Theorems 3.3 and 3.6 and
Lemma 2.14, we conclude that

as/4 ’
‘ (A / LE(R4)
0o 1/2
< ‘{ | eayeearryf dt}
0 ! LE (RY)
o0 N 2 gt /2
U
0 L (7)
dt
([ )”
0 L5 (R9)
: S L T T .
|$|SO‘/2 L7 (Rd) a LP(R4) LP(R4)
Conversely, for any d, < p < m, we find that
dt v
ez ( I )
LO®R4) ™ o
B LE(RY)
H oza/4 ’
LERY)’
This finishes the proof of Theorem 1.1. O

4. Vertical square functions associated with £,

In this section, we first recall the extrapolation theorem and the change
of angle formula. Then we establish the weighted norm estimates related to
vertical square functions for the operator £,. Using these estimates of vertical
square functions, we then obtain an application to new Hardy spaces associated
with L.

4.1. Extrapolation and change of angle

In this subsection, we recall the extrapolation theorem and the change of
angle formulas, which were proved by Chen, Martell, and Prisuelos Arribas in
[11].

Lemma 4.1. Let F be a given family of pairs (f,g) of non-negative and not
identically zero measurable functions.
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(i) Suppose that, for some fized exponent py € [1,00), any weight v €
APO(Rd)} and G/fLy (fa g) € ]:;

/ f(z)Pov(z)dx < C(u,po)/ g(x)Pov(z) dx.
R4 Rd
Then, for any p € (1,00), any v € AP(Rd), and any (f,q) € F,
f@Pela)do < Cluyy [ g(oPo(a)do,
Rd

Ra

where C(, ) is a positive constant independent of f and g.
(ii) Suppose that, for some fized exponent gy € [1,00), any weight v €
RHqé(Rd), and any (f,g) € F,

f(:b)%v(x) dx < C(quo)/ g(m)%v(x) dx.
R R
Then, for any q € (1,00), any v € RH,(R?), and any (f,g) € F,
1 1
f@)to(e) o < Clo [ gle)ola)da.
R R
where C(, 4) 8 a positive constant independent of f and g.

(iii) Suppose that, for some fived exponent ry € (0,00), any v € As(RY),
and any (f,g) € F,

[ 1@rla) e < Cuy [ gl u(a)an

g
Rd

Then, for any r € (0,00), any v € Ao (R?), and any (f,g) € F,

[ Harva)ds < Cn [ ata)v(o)de.

R4
where C(, ) s a positive constant independent of f and g.
(iv) Suppose that, for some fized 0 < py < p < qo < 00, any v € Ar (RY) N
PO
RH(q?o)l(RdL and any (fa g) € ]:;

[ fa@po@) de < iy / gla)re(e) do.

Then, for any q € (po,qo), any v € Ao (R?) ﬂRH(Lo)/(Rd) , and any
ro q
(f.9) € F,

. J(@)lv(x)de < Cy g /Rd g(x)tv(x) dz,

where C(, q) s a positive constant independent of f and g.
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Lemma 4.2. Let r € (1,00) and v € RH,(R?). Then, for any q € (1,7),

B€(0,1), and t € (0,00), there exists a positive constant C' such that, for any
measurable function h on Rffl =R? x (0, 00),

dy z
/Rd (»/B(x,ﬁt) |h(y,t)| |B(y76t)|> U(x) o
) L ' v\T)ar
/Rd (/;(x,t) |h(y’t)| B(yvt)|> ( )d .

4.2. Weighted norm estimates related to vertical square functions

Q=

< cpili-

In this subsection, we prove weighted norm estimates related to several ver-
tical square functions associated with £, which further implies the two-weight
boundedness for vertical square functions.

By Lemma 4.2, we are now to show the following conclusions.

Theorem 4.3. Let d € N, B := B(x,t) with (z,t) € RT = R? x (0,00),
and o be as in (1.3). Then, for any given p € (d.,00) and any v € Aﬁ(Rd)

with d, being as in (1.4), there exists a positive constant C' such that, f(;T any
feLy(rY),
||Sm,Hf||L5(Rd) S C ||Sm,Hf||L€(Rd) )

where Sy, g and Sy, g are as in (1.7) and (1.9), respectively.

Proof. Let p € (d,,00) and v € AdL, (R%). Then there exists a constant po such

that d/. < pp < min{2,p} and v € APL (R%). To show Theorem 4.3, by Lemma
0
4.1(i), it suffices to prove that, for any vy € A= (R?) and f € L2 (R?),
ro

(4.1) 1Sm,#1fll Lz (gay S ISm,a fll2 (gay -

Let vy € A%(Rd), fe L2 (RY), and F(y,t) := (t/La)™f(y) for any (y,t) €
0
R‘fl. Applying (2.1), (2.4), and Remark 2.3, we find that, for any z € R9,

> _ 2 dydt] ?
Soaf@ x| [T | ferermaf Y
0 JBtd)
0 oo p ldt %
. 0 pro
ol i
jz:; { 0 B(z,2i+1t9) t

> . ° t2 2 dt %
<> 27 [/ JC ) ‘6_75“F(y,t)‘ dVo(y)]
o 0 JB@2it1ta) t

1

> . o0 12 2 2

syl [T festr | Wt
i 0 JB(2tin) vo(B(y, 201t )) t

2
e”TEF (y,1)
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which further implies that

”SM,HfHLgO (R4)

S| [T Ll
Rd
< 2”{/ /
o, 2 dt z
< { [ [ et ron) tdm)(y)} ~ sl ry-
R JO vo

This finishes the proof of (4.1) and hence of Theorem 4.3. o

[N

2 dvg(z dt
crgal [ )
B(y,2i+1¢%) vo(B(y, 27 +1tw)) t

1
. 2 dt]?2
ot La (% ﬂt) ’ dVo(y)t}

Lemma 4.4. Letd €N, 0 < pg <2< gy < 00, T € [q0/2,00), vg € A= (R4 N
PO

RH,./(R%), a € [1,00), and u € (0,1/4). Then there exist positive constants Cy
and Cy such that, for any measurable function F' on Riﬂ,

2 2 qydt 2
L[ eeermn] 2w
Rd B(x,(at) &) t(at)«
2 3
+2 q d a0 dt
A R e e ROk
R4 (z,(at)a) ((l'lf)F t
1
1 1 oo dt 2
< Cput i) (/ / F(y,t>|2vo<y>dy) .
re Jo t

Proof. We fix vg, po, qo, T, a, and u as in Lemma 4.4, and let

L
R JO B(z,(at)e)

Then, by the Jenssen inequality and the Fubini theorem, we conclude that

2 3
e t o o dt
(42) Ixg / / / ) eféﬁ“F(y, t)‘ 7y2d dvo(z)—| =:1L
0 Jri \JB(a,(at) ) (at)= ¢

Then, from (2.1), (2.4), Lemma 4.2 with 8 := (2/u)a < 1, and q := =L, we
deduce that

2 3
o) 2 a0 d a0 dt
=L Lt Era]” 2]
0 Jre (52%2) 7 2 Va)®) (at)=

1

2 2 dydt ?
e L F(y,1)| yduo<x>>

t(at) =
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1

2 3
L t2 q a0
<Uc2xd ir 2qo / / JC eimﬁaF(y:t) Ody dVO(I)@
v | JBe e ) t

2 (L

ir 2
<ue r qU

(4.3)  x Y2 / / [f 2
Zj: 0 JR? |VB(z, (27 345) @)

Moreover, notice that, for any = € R?,

2 P 20 dt
6_“E”F(y7t)‘ Ddy} dVo(x)t} :

1
PO

+2 Po
£ e Eerwe ] s My (F ) @)
B(a,27+1(34) )

Then, from the boundedness of M, on L?(vg) [recall that vg € A= (R?), see
ro
Lemma 2.4], the Fubini theorem, and (4.3), it follows that

1

3

1< ud a7 {// t° —vo( )dy} ,
R4

which, combined with (4.2), implies that the conclusion of Lemma 4.4 holds
true. O

Theorem 4.5. Let d € N, B := B(x,t) with (z,t) € R and o be as in
(1.3). Then, for any given p € (d,,d,) and any v € A ( )ORH da ) (RY)

with d, being as in (1.4), there exist a positive constant C’ such that, for any
feLyrY),

||Sm,Pf||Lg(Rd) <c ||Sm,PfHL5(Rd) )
where Sy, p and Sy, p are as in (1.6) and (1.8), respectively.

Proof. To show Theorem 4.5, by Lemma 4.1(iv), it suffices to show that, for
any vg € A%/ RN RH(di)/(Rd) and f € L2 (RY),
Lo 2

(44) ||Sm7Pf||L%O(Rd) < ||Sm,Pf||L12) (R4) -

Now, we prove (4.4). Let vy € Adz RYHNRH (42’ /(RY) and f € L2 (R?). Since
vy € Adl/ (Rd)ﬂRH(di)/ (R%), it follows that there exist pg, go € (1,00) such that
o 2
dy' <po<p<qo<d, with go >2, py <2, and vg € A2 (RN RH(%O)/(RCI).
PO

Changing the variable ¢ into 2¢, applying the subordination formula (1.5)
and the Minkowski integral inequality, we find that

i, du . du
(4.5) ||Sm,Pf||L2 (R4) < / uEI(u)— —|—/ uie_uI(u)— =:E; + Eo,
vo 0 u % u
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1

where, for any u € (0, 00),
+ m 2 2
e~ HLle (t V. Ea) e tVEf(y) dydé duo(ac)] )

B l/w/o /B(m (20)3) t(2t)%

Since vg € A2 (Rd) NRH oy /(RY), then, it follows, from Lemma 4.4 with

= (tVE) e VR (),

we deduce that, for any u € (0,1/4),

— .—
a:=2,and r:= 9,

o[ LI el o] <
R4 v

Therefore,

To,d
1au
(4.6) E; < / u?— [Ism,pfll 12 (Re) S ISm,pfll L2 (R4) -
0 u v vo

To estimate Es, applying Remark 2.3, (2.4) [recall that vg € A 2 (R?)], and the
PO
Fubini theorem, we obtain that

o d
—j _ . au
E2$ 2 9—ja u96 u
- 1 u
j 1

’ UR /ooo (Ji(z,zm(mg) (+v/2) " et Ve p )
< ; 277« [/R /ooo Ji(m_,ﬂ o3
R L TevE) evm | f,

< HvaPf”L%O(]Rd) 3

1

dy) g @dyo( )] )

(1VE)" etV 1) ) Y|

1
2

dvo(x)%duo(y)} ’

(@291 (2)%)

which, combined with (4.5) and (4.6), implies that (4.4) holds true. This
finishes the proof of Theorem 4.5. O

In addition, applying the subordination formula (1.5) and changing the vari-
able t into 2 y/ut, we find that

(4.7) Sm.pf(x) < /Oooultme d?usm wf(@) < smuf(x).

By the boundedness of the (—A)% £, we have following conclusions.

Theorem 4.6. Let d € N, a € (0,2Ad), B := B(z,t) with (z,t) € Riﬂ, and
o be as in (1.3). Then, for any p € (d.,dota) With detq € (2,00), m € [2,00),
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(Rd) N RH( dot o )/
there exist positive constants Cy and Cy such that, for any f € LE(R?),

and any v € A (R?), where d, and d,1o are as in (1.4),

_pP_
do’
Cfl ||Sm,Pf||Lg(Rd) < HgmszfHng(Rd) <G ||Sm,PfHLg(Rd)
and
Cy " IS, f1

where Spm.p, Sm.H ; m, P, 0nd gm u are as in (1.6), (1.7), (1.10), and (1.11),
respectively.

L2(R4) < ”gme,HfHLg(Rd) <y ”Sm,HfHng(Rd) )

Proof. To show Theorem 4.6, by Lemma 4.1(iv), it suffices to prove that, for
any f € L?>(R%) and any vg € A2 (RY)NRH 4, .. )/(Rd),
af

(===

(4.8) ||Sm,Hf||L50 (R4) < ||gm—2,Hf||L;z)0 (Re) < ”vaHfHL?,O (R4)
and
(4.9) ||Sm,PfHL1;0 (R4) S Hgm—Z,PfHLg/O (Rd) S Hsm,PfHLgO(Rd) :

Next, we prove (4.8) and (4.9). Let f € L%(R%) and F(y,t) := e~ Lo f(y)
VI d+1
or e V¥£a f(y) for any (y,t) € R{T.
Applying the Fubini theorem and Lemma 2.16, we find that

/ /OO 2 (—A)? (t \/,/.T[L)Trk2 F(y,t)ritdyo(y)
e’ m 2

:/ / (—A)E Lt (t\/ﬁa) F(y,t)‘ dVo(y)%
OOo R4 .

[ VEY Fwaf ane
0 R4

which, further implies that (4.8) and (4.9) hold true. This finishes the proof of
Theorem 4.6. o

Since L, = (=A)*/2 4 a|z| ™, it follows that
tQ(—A)a/Qe_t2£“ — 2L et Le a\x|7at26_t2£a.

By Proposition 2.12 and suitable modification to the proof of Theorem 3.1, we
conclude that the kernel of t2(—A)*/2e~t*£a is dominated by

—2d/a t2/e 4 |z —yl e 2 2
ct <H> Dyal,82)Dy (y,12).
Hence, if d. < p < ¢ < dyta, then, the kernel of tg(—A)“/Qe_t%“ satisfies
Lemma 2.9.

Thus, by using the same ideas as that used in the proof of Theorem 4.3, we
have following conclusion.
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Theorem 4.7. Let d € N, a € (0,2Ad), and o be as in (1.3). Then, for

any given p € (d,dytqa) With dyyo € (2,00), and any v € A%(Rd) N
RH 4

( U+o¢>

constant C such that, for any f € LE(RY),

/(RY), where dy and dyyo are as in (1.4), there exists a positive

HGK,Hf”Lg(Rd) <C ”gK,Hf”Lg(Rd) )
where g g and G g are as in (1.11) and (1.13), respectively.

Theorem 4.8. Letd € N, a € (0,2Ad), B := B(x,t) with (x,t) € R‘Hl and o
be as in (1.3). Then, for any given p € (d.,dyto) With dyta € (2, oo) and any
UNS Ad/ (R%) ﬂRH( dogec /(RY), where d, and dy+o are as in (1.4), there exists

a positive constant C such that, for any f € LP(R?),
HGK,PfHLP (R4) = <C HSK PfHLP (R9) »
where s p and Gk p are as in (1.6) and (1.12), respectively.

Proof. To prove Theorem 4.8, by Lemma 4.1(iv), it suffices to show that, for
any given vy € A2 (Rd) N RH(dUJra) /(R%) and any f € L2 (R?),

(4.10) ||GK’Pf||L%O(Rd) S ||SK,Pf||Lg (RY) -

Now, we prove (4.10). Since vy € A N RH (dotay /(R%), it follows

2 (RY)
that there exist pg, o € (1,00) such tha d < po <p < q < dotqa, With
qo > 2 and py < 2, and vy € A= (RN RH a0y (R 4). Changing the variable ¢
PO
5),

2
into 2t applying the subordination formula (1
inequality, we find that

and the Minkowski integral

1

1 d o d
(411) Gr.pflz e s/ u%n(u)l+/ ubemu(w) & = 111+ 1V,
vo 0 U i u

where, for any v € (0, 00),

[eS] t2
- ./Rd./o ./B(x,(zr,)%) @(

Since vy € A (RY) ﬂRH(%O)/(Rd)7 then, it follows, from by Lemma 4.4 with
PO

= (t VL) e VE f(y),

we deduce that, for any v € (0,1/4),

2
et (1) V) dngduom}

a:=2,and r:= L,

[/R/ ‘t‘ﬁ I 'dyo ] = llsse.p iz, ey -
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Therefore,

i ,d
3 4adu
(4.12) 1T < /0 W sl oy < Isp Sl ey

To estimate IV, applying Remark 2.3 [recall that vy € A (R?)] and the
PO
Fubini theorem, we conclude that

_.du
wle =

o)
1 u
1

ey f
J
> K Po % dt 2
<L vE) e Em )| a] " Fan)
R4 JO B(z,2i+1(2t)a) ;
< 2-ie / /°o JC
zj: |:Rd o JB@2+ien?)

) oo K 2 dt
<Y 2 // ’(t Z.) e_tmf(y)‘f , dvole) S duo(y)
r re Jo B(z,29+1(2t) %) t

3 ||SK,Pf||LgO(Rd) )

1

(t \/fa) Kt mf(y)r dyo(y)%dvo (x)}

which, combined with (4.11) and (4.12), implies that (4.10) holds true. This
finishes the proof of Theorem 4.8. O

Proofs of Theorems 1.2 and 1.3. By (4.7), and Theorems 4.3, 4.6, 4.7, and 4.8,
we find that the conclusions of Theorems 1.2 and 1.3 hold true. O

Remark 4.9. By Theorems 1.2 and 1.3, and Lemma 3.2, we obtain that S,, #,

Sm.p and s, p are bounded on LP(R?) for any p € (d,,d,) and any v €

AdL;(Rd) N RH(LC,)/(Rd). Moreover, we obtain that g, g, gm.r, Gk m and
o P

G p are bounded on LE(R?) for any p € (d),dy+q) and any v € Az R N

RH(dm)/(Rd) with dyiq € (2,00).

Next, we consider the reverse conclusion. For a locally square integrable
function f on Rflﬁl, let

dydt \ ?
Siw): = (fﬁqui |f(y,t)|2 tli{i) ’
Vi = | [1rwor §
0

From [1, Proposition 2.3], we deduce that the following conclusion holds
true.
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Lemma 4.10. For any given p € (0,2) and any w € RH(g)/(Rd), there exists
P

a positive constant C, depending on p and w, such that, for any locally square
integrable function f on Riﬂ,

HVfHLﬁ(Rd) <C ”SfHLg(Rd) ’
Theorem 4.11. For any given p € (0,2) and any v € RH(g)/(Rd), there exists
a positive constant C, depending on p and v, such that, for any f € L2(R?),

(4~13) ”Sm,HfHLg(Rd) <C HSm,HfHLﬁ(Rd) ’
||Sm,Pf||L§;(Rd) <C HSm,PfHij(]Rd) )

(4.14) lgx.m fllperay < CNGE S Lo gay

and

||gK,Pf||L?3(Rd) <C HGK,Pf”Lg(Rd) :

Remark 4.12. In summary, from Lemma 3.2, Theorems 1.2, 1.3, and 4.11, it
follows that

(4.15) ||Sm,HfHLg(Rd) ~ ||Sm,Hf||L§j(Rd) ~ Hf”L{j(Rd) )

”Sm,PfHL{j(Rd) ~ ”Sm,Pf”ij(Rd) S ”f”Lg(Rd) )
and
(4.16) 11 oy ~ Gt oy ~ 1 e
for any p € (d/,2) and any v € A%(Rd) N RH(g)/(Rd).
A p
For m € [0, 00), let the operator T := S, g, S, P, S, Ps &m, Hy &m, Py G, H,

or G, p. Then, by Theorems 3.6, 1.2, and 1.3, we conclude that the following
conclusion holds true.

Theorem 4.13. Let d € N, a € (0,2 A d), a € [a*,00) with a* being as in
(1.2), o be as in (1.3), and q € (d.,do10) with dy and dy4q being as in (1.4).
Assume further that d., < py < ¢ < go < dgta, and the weights w and v satisfy
that w € RH4(RY) N A%(Rd) with some s € ((4})’,00], and

o _q
{w,vlf(%)} = sup [wadx} b[ v (56) dm] ’ < 00,
A%(Rd) BCRY | JUB B

where the surpremum is taken over all balls B of RY. For any m € [0,00), let
T :=Sm.b, Sm,P, Sm.P> 8m.H: &m, Py Gm.u, or Gy p. Then T is bounded
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from Li(R?) to LI (RY), and there exists a positive constant C' such that, for
any f € LIED, [T 1] 13 g0y <

4.3. Applications

S(RY)

In this subsection, we define the new Hardy space associate with the operator
L. Using the weighted norm estimates for square functions obtained in Section
4.2, we further obtain that the operators sy, 7 and g, g are bounded from the
new Hardy space to LP(R?) and the equivalence between the new Hardy space
and the Lebesgue space LP(RY).

For each M, K € [0,00) and p € (0,00), define

DSM7P = {f S LQ(Rd) : SM,Hf S LP(Rd)}
and
DGK,p = {f € LQ(Rd) : GK7Hf S LP(Rd)},
where Sk g and Gk g are as in (1.9) and (1.13), respectively.
Definition 4.14. Assume that M, K € [0,00), and p € (0,00). Then the
Hardy spaces H Za’ Sar (R%) and H Zm G (R?) associated to L, are, respectively,

defined as the completion of the space Dg,,,, and Dg,. , with respect to the
quasi-norms

1F Wl 2

We recall that the molecular characterization of the Hardy space H Zm Sur (R%)
was established by Bui and Nader [10]. In recent years, the study on the real-
variable theory of Hardy spaces associated with different differential operators
has aroused great interests (see, for instance, [8,9,15,16,21,22, 25, 26]).

By (4.13), (4.14), (4.15), (4.16), and Definition 4.14, we have the following
conclusion.

Theorem 4.15. Let M, K € [0,0), d € N, a € [a*,00) with a* being as in
(1.2), and o be as in (1.3).

(i) For any given p € (d',2) with d, being as in (1.4) and any f € L*(RY),
Hf”Hﬁaj (R4) ™~ ||f||LP (R4) and Hf”H” wap®D Y £l e (R4) where the
positive equwalence constants are mdependent of f. Thus, for any given

€ (d,,2), the spaces H} g (RY) and H} o (R?) are equivalent
with LP(RY).

(i) For any given p € (0,d.] with d, being as in (1.4) and any f € L*(R%),
there exists a positive constant C' such that, for any f € Hz Sar (R%),
||SM HfHLT’(Rd < C||f||HP o Spy ®E) and for any f € HZ GK(Rd):
lgr mfllr@ey < C||f||Hp o (B9 where sy g and gk g are as in
(1.6) and (1.11), respectwelg’J
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