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BOUNDED ANALYTIC FUNCTIONS
IN THE COMPLEX BALL 

AND THE HYPERBOLIC DISTANCE

E. G. Kwon

2
Abstract. We give an easy proof that (机z) = j二如 induces the 

bounded composition operator C© : B defined by =

1. Introduction

For a bounded holomorphic map <j)from the open unit ball B of 

Cn into the open unit disc U of C, we in this paper consider the com

position operator(爲 defined by C^f = f o(/). Historically, the study 

of composition operators on Bloch space 3 into a nice function space 

was initiated in the view point of the boundary behavior. P. Ahern 

observed that C^g E BMOA(B) for all g G S and for all monomials 

© ([1]). Then there found out several examples of homogeneous poly

nomials and conditions for © to have the property ([1], [2], [이). If we 
restrict to n — 1, then the boundedness of C© : B — BMOA can be 

characterized by the membership © G pBMOA〉where pBMOA is the 

hyperbolic BMOA class of S. Yamashita ([8], [9], [12]). In view of
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a known parallelism between the Hardy space Hp and the Yamashita 

hyperbolic Hardy class pHp)the boundedness of B —> H2p was 

characterized by the membership © € pH2p when n = 1 ([7]).

We, in this paper, consider from 13 into Q HP(B)3 where HP(B) 

is the Hardy space on the ball. Concerning the characterization of the 

boundedness of C, in terms of the growth of 饥 our objective is to give 

an application of the fact that

(1.1) 1 段(B) bounded <=》g成")•

2. Preliminaries

Let B be the open unit ball of Cn and U denote B when n = 1. Let 

S be the boundary of B. The surface area measure on S normalized 

to have total mass one will be denoted by a.

The Hardy space HP(B), 0 < p < oo, is defined to consist of those 

f holomorphic in B for which ||/恥"=lim—」. 7V/p(r, /) < co, where

\*
|/«)|pda(C))-

See (10], [4] or [5] for Hp spaces.

Let p denote the non-euclidea표 hyperbolic distance i표 U :

S) = 치。乍二研刁MF 3U.

For 0 < p < oo, 난2 hyperbolic Hardy class pHp(B) consists of those 

holomorphic maps ^): B [7 for which

sup Mp(r, p(<^)) < oo,
0<r<l

where p(©)(z) = p(0(^),O). See [13] for n = 1. Similarly, the hyper

bolic BMOA class pBMOA(B) consists of those holomorphic maps of 

B into U for which

sup sup M&、p((b o t)) < oo, 
t 0<r<l 
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where r runs through all automorphisms of B. See [8] and [12].

Concerning the problem of characterizing the boundedness of the 

composition operators, there occurred general phenomenon saying that

(2.1) : B bounded <=> (/)G p(Y)^

where p(Y) is the hyperbolic counterpart of Y in the sense that it 

consists of those bounded functions whose membership is characterized 

via hyperbolic distance p(/(z), 0) in place of euclidean distance |/(^)| 

that is used in the definition of the membership 'f G Y\ Examples of 

classes p(Y) are pHp(0 and pBMOA(B). By [7, Theorem 1] and [8, 

Theorem], (2.1) is known to be true for these classes. Noting that

Mp(r,p(©)) < oo < oo,

we obtain (1.1) by Theorem 1 in Section 3, and this says that (2.1) is 

true with

Other u교defined 교ot&tions and terminologies of this paper will follow 

the book of W. Rudin [10] and of M. Stoll [11].

3. Bloch to P| Hp pullbacks

We let be a holomorphic map from B into U. We abbreviate 

HP(B) as Hp. The following results follows directly when n = 1 from 

[기.

Theorem 1 [6]. The composition operator : B —> Q Hp is 

bounded if and only if

S) 히"。

for all p : 0 < p < oo.

Now, we give a nice application of Theorem 1 in the 교ext Section.
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4. An Example

Consider the function

F(z)= i”二决，z = Cm Z2)€ -62-

It was first considered in ［이, and the authors there proved quite com- 
plicatedly that F takes Bloch functions to Hp for all p : 0 < p < 00. 

We give a simple proof here. In view of Theorem 1, the fact can be 

verified by showing that F £ Q Since F is holomorphic in

-82, \F\ < 1, and F(<) = lim F(r() exists almost every < € S, it is
1e—>1

su£Rcie그t to prove that

/(風匸W时《)<8

for all p : p > 1. The following is easy to check :

/ \ p

dbg)

1
(4.1)

［log——

JS\ 1- k농 |2

"。"이m언")'她)

r / _ 3平 \P
妇、"g |1*2|2 一 (1一 |이2)2 丿 如(3)
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Here 14 is the normalized volume measure on U • By changing variable

⑦ = 1 + (穴히%;*.•)))the last integral is

E 爲5느名渚死

10 Jo J14-C(r)

where 

Noting that

(logz)0 

(X — 1)3/2
dx < oo

and

I (竺診必 V/2 3 —1)1/2也 <8

for p > ^, we obtain (4.1).

It was not known whether F had the Bloch-BMO pullback prop

erty ([3]). Concerning this problem, it was mentioned in [3] that the 

previously know교 methods (used by P. Ahern and W. Rudin) do not 
work for this F. See Remark (a) and (b) of [3]. In a coming paper of 

the author the problem will be settled.
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