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ABSTRACT. The aim of this paper is to prove that Marcinkiewicz integral operators
are bounded from I.(;(Fj)’q(')(R") to I.(';((.'))’q(')(R”) when the parameters a(-),p(:) and g(-)
satisfies some conditions. Also, we prove the boundedness of p on variable Herz-type
Hardy spaces HKS(("))’Q(')(R").

1. Introduction and Preliminaries

Function spaces with variable exponent are being actively studied not only in
the field of real analysis but also in partial differential equations and in applied
mathematics. The theory of function spaces with variable exponents has rapidly
made progress in the last three decades.

For 0 < 8 <1, the Lipschitz space Lipg(R™) is defined as

cyeRmay |2 — Y|P

o fla) = fy
Lipg(R") = {f N flluip, ey = sup 1#z) = 7y)] <00 .
Given Q €Lipg(R™) be a homogeneous function of degree zero and

/Snf1 Q(2') do(2') =0

where 2’ = z/|z| for any @ # 0 and S"~! denotes the unit sphere in R" (n > 2)
equipped with the normalized Lebesgue measure.
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260 R. Heraiz

The Marcinkiewicz integral u is defined by

@i ([ 1 @ dt)%

0 t3

where o )
r—y
Fof (z) 1:/ ﬁf(y) dy.
e—yl<t |2 —y|
It is well known that the operator u was first defined by Stein [13] and under the
conditions above, Stein proved that u is of type (p,p) for 1 < p < 2 and of weak
type (1,1). Benedek et al. [2] showed that p of type (p,p) with 1 < p < co.
Recently, the boundedness of Marcinkiewicz integral operators u on variable
function spaces have attracted great attention (see [14, 15, 18] and their references).
The purpose of this paper is to generalize some results concerning Marcinkiewicz

integral operators p on variable Herz spaces Kg(_'))’q(')(R”) and variable Herz-type

Hardy spaces H K;‘((_'))’q(')(R”). We define the set of variable exponents by
Po (R™) := {p measurable: p(:) : R" — [¢, 0] for some ¢ > 0}.

The subset of variable exponents with range [1,00) is denoted by P(R™). For p €
Po(R™), we use the notation

p~ =ess inf p(z), p' =ess supp(x).
zER™ rER™

Definition 1.1. Let p € Po(R"). The variable exponent Lebesque space LPC)(R™)
is the class of all measurable functions f on R™ such that the modular

o) = [ 7@ ds

is finite. This space is a quasi-Banach function space equipped with the norm
. 1
Il = inf {102 00 1) 1}
If p(z) = p is constant, then LP()(R™) = LP(R™) is the classical Lebesgue space.

Definition 1.2. We say that a function g : R™ — R is locally log-Hdélder continu-
ous, if there exists a constant cjog > 0 such that
Clog

lg(z) —g(y)| < In(e + 1/]z — y|)

for all x,y € R™. If

Clog
lg(z) — g(0)] < m
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for all x € R™, then we say that g is log-Hdélder continuous at the origin (or has a
log decay at the origin). If, for some g, € R and ciog > 0, there holds

Clog

19(2) = goo| < m

for all z € R™, then we say that g is log-Hélder continuous at infinity (or has a log
decay at infinity).

As an example of a function locally log-Hélder continuous, see E. Nakai and Y.
Sawano [12, Example 1.3].

The set PE(R™) and P18(R™) consist of all exponents p € P(R™) which have a
log decay at the origin and at infinity, respectively. The set P'°8(R") is used for all
those exponents p € P(R™) which are locally log-Hélder continuous and have a log
decay at infinity, with pe := lim;| 00 p(2).

It is well known that if p € P1°8(R"™) then p’ € P'°8(R"), where p’ denotes the
conjugate exponent of p given by 1/p(-) +1/p'(-) = 1.

Definition 1.3. Let p,q € Po(R"). The mized Lebesgue-sequence space £30) (LP())
is defined on sequences of LP(")-functions by the modular

. o
QZQ(‘)(LP(‘))((f’U)’U) = Zlnf {)\v >0: Qp(')(W) <lp.

The (quasi)-norm is defined from this as usual:
. 1
H(fv)vngq(-)(m(-)) = inf {’Y >0: Q£q<~>(LP<~>)(;(fv)v) < 1} .

Since ¢T < oo, then we can replace by the simpler expression 00001 (£r)) ((fo)v) =
ol [TAZEI
v at

If E C R™ is a measurable set, then |E| stands for the (Lebesgue) measure of £

and yg denotes its characteristic function. Before giving the definition of variable
Herz spaces, let us introduce the following notations

By, := B(0,2%), Ry :=By\ By_1 and xx = xg,, k€Z.

Definition 1.4. Let p,q € Po(R") and o : R" — R with a € L>®(R™). The

inhomogeneous Herz space K;((,'))_q(') (R™) consists of all f € L’i(o'l (R™) such that

< 0.

£aC) (LP())

o = . oka(’) )
”f”Kp((,)),q(,) ||f XBo HP() + ”( ka k1

Similarly, the homogencous Herz space KS((..)M(A) (R™) is defined as the set of all
fe Ligi (R™ \ {0}) such that

< 00.
£aC) (LP())

i ot — || (gka() )
||f||K§((‘))'q()(Rn) H(Q ka ez
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The variable Herz spaces K;‘((_'))’q(') (R™) and Ks((_'))ﬂ(') (R™), were first introduced

by Izuki and Noi in [8]. In [6] the authors obtained a new equivalent norm of these
function spaces. We refer the reader to the paper [5, 16] for further results for

these function spaces. If «(-), p(-) and ¢(-) are constants, then K;((f))’p(') (R™) is the
classical Herz space K &P (R™).

The following proposition is very important for the proof of the main results in
this paper; it is from D. Drihem and F. Seghiri in [6].

Proposition 1.5. Let a € L*(R"), p,q € Po(R™). If o and q are log-Holder
continuous at infinity, then

€(140) (omy — fresdos (om
Koy (RY) = K (RY).

Additionally, if a(-) and q(-) have a log decay at the origin, then

—1 1/4(0) 0o 1/q00
«@ 0 Qoo oo
170000y = ( PONES <0>ka||z§.;> +<Z|2’“ ka|g(_)> .
Pr k=0

k=—o0

The Hardy-Littlewood maximal operator M is defined on Li by

loc

M(f)(x) = S“pwl,m /B Wl

r>0

where B(x,r) is the open ball in R™ centered at € R™ and radius r > 0. It was
shown in [4, Theorem 4.3.8] that M : LP¢) — LP() is bounded if p € P°% and
p~ > 1, see also [3, Theorem 1.2].

Let ¢ € C§° (R™) with supp ¢ C By, [p. ¢(z)dz # 0 and ¢, () =t (;) for
any t > 0. Let M_(f) be the grand maximal function of f defined by

Mo (£)(@) := sup | * f(z)].

Here we give the definition of the homogeneous Herz-type Hardy spaces H I.(;‘((.'))’q(').

Definition 1.6. Let p,q¢ € Po(R") and a : R" — R with a € L>®(R™). The
homogeneous Herz-type Hardy space HK;‘((,'))"](') (R™) is defined as the set of all
f € 8'(R™) such that M (f) € Ks((_‘))’q(') (R™) and we define

”f”HK“(')’q(') = ||Msa(f)||1‘<a<-),q(-)-
p(") p(+)

It can be shown that if «(-), p(-) and ¢(-) satisfy the conditions of Definition
1.6, then the quasi-norm ||f||, zac).a) does not depend, up to the equivalence of
p(+)
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quasi-norms, on the choice of the function ¢ and, hence, the space H K;X((f))’Q(')(R”)
is defined independently of the choice of . If p € P(R™) N POF(R™) with -5 <

o~ <at <n—2 and g € Po(R") then HK )1V (R?) = K4 IOR). T a () =
0,p() = q(-) then HK )"/ (R") and K21} (R") coincide with LP()(R™),

One recognizes immediately that if «(-), p(-) and ¢(-) are constants, then the
spaces H Kl?’q are just the usual Herz-type Hardy spaces were recently studied in
[10] and [11].

We refer the reader to the recent monograph [4, section 4.5] for further details,
historical remarks and more references on variable exponent spaces.

2. Some Technical Lemmas

In this section, we present six lemmas used to prove our main theorems in
Section 3. Recall that the expression f < g means that f < cg for some independent
constant ¢ (and non-negative functions f and g), and f ~ ¢g means f <g < f.

Lemma 2.1 plays an important role in the proof of main results; Lemma 2.2
is a Hardy-type inequality which is easy to prove; Lemma 2.3 presents the Holder
inequality in Lp(')(R"); Lemma 2.4 presents the LP()-boundedness of x ; Lemma
2.5 treats the boundedness of fractional integral on variable Lebesgue space; and
the last Lemma presents the boundedness of homogeneous function of degree zero.

Lemma 2.1.([1]) Let p € P8(R") and let R = B(0,7)\ B(0,%). If |[R| > 27",
then . )
IxXRllpe) ~ [RI7 ~ |R7=

with the implicit constants independent of r and x € R.
The left-hand side equivalence remains true for every |R| > 0 if we assume, addi-

tionally, p € PPE(R™) N P8 (R™).

Lemma 2.2.([5]) Let 0 < a < 1 and 0 < q < 0o. Let {ex},ey be a sequence of
positive real numbers, such that

||{5k}kez||eq =1 <oo.

LS k—j o — j—k
Then the sequences {5k 20 = ngka JEJ}I@GZ and {ﬂk T = ijk a’ SJ}kGZ
belong to ¢4, and

{0k} kezllpo + [Hm ezl < 1

with ¢ > 0 only depending on a and q.
Lemma 2.3.([4]) Let p € P(R™). Then for all f € LPO(R™) and g € LP'O)(R™),
fg € L*(R™) and

1£glly < 21[fllpey gl -
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264 R. Heraiz

Lemma 2.4.([9]) Let p € P°2(R"), then there exists a constant C' such that for
any f € L) (R™)
leCHpe) < Cllfllnc)-

Lemma 2.5.([17]) Suppose that py, p> € PP°¢(R"™) with p{ < 2 and p%()_p21(-) =
Then for all f € LP*() (R™), we have

’/ f(y) dy
re |- —y|" 7

Lemma 2.6.([14]) Ifa > 0,1 < s<00,0<d <s and —n+ (n—1)d/s < 7 < o0,
then

g
o

<c Hf”pl(.) :

p2 ()

1

d
/ ™10 -y dy | < ela| T 0
ly|<alz|

3. Variable Herz Estimate of Marcinkiewicz Integral Operators

L.?(Sn—l) .

In this section, we present two results concerning the Marcinkiewicz integral op-
erator . In the first, we show that p is bounded from K;‘((_'))’q(') (R™) to Ks((.'))’q“ (R™)
for a(-),p(:) and g(-) satisfies some conditions. Next, we present the boundedness
of 1 on variable Herz-type Hardy spaces Hf(;‘((_'))’q(')(R").

Motivated by [9] and [14], we generalize the boundedness for Marcinkiewicz
integral operators p to the case of variable Herz spaces ( all exponents are variables).
One of our main results can be stated as follows.

Theorem 3.1. Suppose that 0 < 7 < 1,p € PO8R") with p* < 00,Q €
L5(S"1),s > (p/)” and a € L®(R"), q € Po(R"™). If o and q have a log de-
cay at the origin such that

then p is bounded from Ka(')’q(')(R”) (or Ks(("))’q(')(R")) to KZ‘((,'))’q(')(R") (or

() o0
Ky ™ (R™)).

Remark 3.2. We would like to mention if «(-) and ¢(-) are constants, then the
statements corresponding to Theorem 3.1 can be found in Theorem 2.1 of [14].

In the following, we use ¢ as a generic positive constant, i.e. a constant whose
value may change from appearance to appearance.

Proof of Theorem 3.1. We show that

() o0 my < €1l (gny
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for all f € K;X((f))’q(') (R™). Using Proposition 1.5, we have p(f) in K;‘((_'))’q(') (R™)-
norm is equivalent to

—1 1/4q(0) 400 1/(9) oo
{ 3 gkal®a(©) ||u<f>xk|g§9;} +{sz%<q>w ||u<f>xk||,ﬁz?;c} ,

k=—o0 k=0
we write
F=Y =Yt
JEL JET
then

) q(0)Y 1/4(0)

k—2
0Dl ooy S 8 32 22O (57 (il

k=—o00 Jj=—0o0

q(0) ) 1/4(0)

. k+1
n Z 9ka(0)q(0) Z ||,U(fj)Xka(~)
k=—o0 j=k=2
| a(0) 1/2(0)
N Z 9ka(0)q(0) Z Hﬂ(fj)xknp(')
el j=k+2
00 k—2 i
N ZQkaacQOo Z HM(fj)Xk”p(‘)
k=0 j=roo
. k1 -
N ZQkaa@qoo Z ||H(fj)Xka(')
k=0 j=k=2
i - Goo \ 1/qc0
N Z2k:aooq00 Z ||N(fj)Xk“p(')
P j=k+2
= :Hy+Hy+ Hs+ Hy+ Hs + Hg.
Let us estimate H; and Hy. We consider
|| Az —y) 2&
I A = YA
0 |Jje—yl<t |z -yl

2
/ ij (y) dy

o
e—y|<t | — Y|

I

=0+ Is.
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Observe that in this case x € Ry, y € R; and j < k — 2. So we know that
|z — y| ~ |z| ~ 2*, and by mean value theorem, we have

1 1
e —y* o

clyl

(3.1) < 3
|z —yl

y (3.1), the Minkowski inequality and the generalized Holder inequality, we have

nos [ el [T
1 S i
R |2~ pall jo—y] t3
Qz —y) y|®
(3.2) S / %Uej (?MLQ dy
B |2~y | -yl
9i/2
S [, 19 -l 0]
< 27 ||fj||p(.) 12(z — ')Xj”p/(.) .

The estimation of I5 is the same as before since we never use |x — y| & |z|, then we
obtain

g2 ||fj||p(.) [z — ')Xj”p/( )
We can obtain that each term ( I3 and I3) is no more than
27 (£l 1926 =Gl -
in the other hand, by Holder inequality and Lemma 2.6, we obtain

1@ -l < 26—, Il

< 277 </R yl”" Q2 — y)lsdy> x5 llgc
S 272N L sy Il
where p%(‘) =14 % Since § € P98(R"), we have for any j

HXj”g(.) ~ HXJ’”,,/(.) |Rj‘_;
which gives
(33)  Iuliell,g) S 272 ER0G0 L Gl Tl

Estimation of H;. In this case, since k and j are negative integers, by Lemma 2.1
and since 2 € L*(S"~1), we have

N——fs—T—% k
HM(fj)Xk”p(g S 2"l o= )HfJ”p()HQ'
A O 77

Ls Sn 1)
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which gives

1 b—2 1/4(0)
H, < Z 9ka(0)q(0) Z 9(i—=k) (=5t —m—%)4(0) ||fj||f,§(_)))
k=—o0 j=—o0
—1 k—2 1/4(0)
- ¢ Z Z 9 (i —k)(n—a(0) = 555 —7—2)a(0) (Qja(o)q(o) ||fjHZ(((.J))) 7
k=—o0c0 \j=—o0
since a (0) — n + % — 2 —7 <0, then by Lemma 2.2, we have
= 1/4(0)
Hy <eq Yo 20010 550 < 1l gm a0 gy
J=—00

Estimation of Hy. We split

-1

k—2
> el = Do o+

B
|
N

j=—00 Jj=—o00 Jj=0
then H4 can be estimated by
Hj + Hj,
where
- , doo \ 1/qo
Hi = 2219%0%0 Z HM(fj)Xk”p(.)
k=0 j=—o00
and
- oo doo \ 1/000
H2 = S 2k [ S )l
k=0 j=0

Let estimate H}. We have in this case j < 0 < k. By Lemma 2.1, we obtain
k(2 —n4 247) j(n— 1 —r—n
||/l(fj)Xka(.) < k(G AT gi(n—t 0y ||fij(,)

therefore, H} is bounded by
Goo \ 1/d

o'} -1
csliIO)QQ(O) ||fj||p(.) ZQk(am+ﬁ—n+%+T)qm Z 9J(n=5—7—5t5y) ’
I= k=0

j=—o0

by embedding £9(9) < ¢>° and since ozoo—&—p% —n+5+7<0<n—-"2—-7- ﬁ,
we have

. 1/4(0)
a j 0
Hi<c| Y 200007 )20 < el fllgae a0 oy -

j=—o0
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We can estimate H? by the same argument used in the estimation of Hj if we
replace a(0), p(0) and ¢(0) by oo, Poo and g respectively, then H? is bounded by

o (k=2 | doo | /o0
Z Z 9i—k)(n—gic—7— % —ac) (23%0 ||fj||p(‘))
k=0 \j=0
[e%s} 1/qe0
< ¢ <Z2ja°°q°° 1£51 Zf)) < C||f||K:(<_->>ﬂ<'>(Rn)
k=0

Let us estimate Ho + Hs. By the (LPO) (R™), LP() (R"))-boundedness of y, we have

—1 1/4(0) 00 1/qoo
o © Qoo oo
Hy+Hs < <Z 125 x IIZ(£> +<Z|2k kal;i(.)>
k=0

k=—o0

,S ||fHK;:((.‘)),‘1('>(Rn) .

Let us estimate Hs. It is possible to prove the following estimation (similar to the
estimate for I; and I5)

(3.4) lu(fi)] < 2™ Hfij(.) 12z — ')Xj”p’(-) ’

for the detailed proof of this estimation, see [14, p.259-260]. By Holder inequality
and Lemma 2.6, the right-hand of (3.4) is bounded by

(),

J

ly[*" 1z — y)I° dy) ||Xj||.9(.) S 27k S) ||Xj||p/(.) 1€ Le(Sn—1) >

which gives

”,U(fj)Xka(.) < gk T+3)

'Hp(.) ||Xij/(.) ||Xka(,) :

We split
oo 1 o
Sl = 3
j=k+2 j=k+2 j=0

Then Hj is bounded by
) q(0) 1/4(0)
Z 2ke()a(0) Z l[1e(f5) Xk:”,,()
k=—o00 j=k+2

1 q(0) 1/4(0

+4 ) k(0@ leu Fi)xally.

k=—o0 7=0

= :H;+ Hj
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For Hi, since j and k are negative integers, we have

: ) 20y 1/a(©)

Hy S 3 | Do 2@@rstn g @ gy
k=—oo \j=k+2

Since o (0) + 555 + 7+ § > 0, by Lemma 2.2, we obtain

1 1/4(0)
a 0
H; S (Z 2¥ <°>q<°>||ka||g§.;>

k=—o0

< o()ae .
~ Hf”Kp((A))rfI( )(Rn)
For H2, since k < 0 < j, then we have

— i) (r+ 2 _nj . nk
InCxell,y < @FDTED £ 277 270
< kT TS5y 9o Hfj”p(.) 2—j($+o¢m+7-~-%)7

by Hoélder inequality in ¢! and since y :pi + Qe + 7+ % >0, we have

a(0) 1/4(0)

-1 o)
k(r42 4 _n_ . o
g | S e (e g2
k=—oc0 7=0
1 1/4(0) / o /4% o 1/9s
s (Zemo) (o) (S
k=—o00 =0 =0
1/qo0
> .
I D el V1 s
j=0

S ||fHK§(<_v)>,q<v>(Rn) ;

where n =7+ 2 + 57 > 0.

Let us estimate Hg. In this case, since k and j are non-negative integers, by (3.3)
and Lemma 2.1, we have

||/~L(fj)Xka(,) < et kD) Hfj”p(.) )

which gives

1/qs0
oo

Hg < Z Z 9(k=7)(n=7)g0 (2jaooQ<>o HfJ”;J;Eo)) 7

k=0 \j=k+2

269
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since n — v > 0, by Lemma 2.2, we obtain

- 1/q00
Hg < Zogjaooqoo I1£] Z:) <c Hf”KZ((,'))*‘Z(')(R”) ) |
J:
Remark 3.3. A non-homogeneous counterpart of Theorem 3.1 is available. Since
K;‘(("))’q(') (R") = K, 5% (R"), their proof is an immediate consequence of [14,
Theorem 2.1].

To prove the Theorem 3.6, we need the notation of atomic decomposition.

Definition 3.4. Let a € L*(R"), p € P(R"), ¢ € Po(R™) and m € Ny. A function
a is said to be a central (a(-),p(-))-atom, if

(i) suppa C B(0,7) ={z € R" : |z| < r},r > 0.
(ii) flall,y < [BO,r)[~*@/M  0<r<l

i) Nol,, < (BO=/,  r21.
(iv) [gn #Pa(z)dz =0, |B] <m.

A function a on R is said to be a central (a(-),p(-))-atom of restricted type, if
it satisfies the conditions (iii), (vi) above and suppa C B(0,r),r > 1.

If » = 2 for some k € Z in Definition 3.4, then the corresponding central
(a(),p(+))-atom is called a dyadic central («(-), p(-))-atom.

The following theorem presents the atomic decomposition characterization of
variable Herz-type Hardy spaces, see [6].
Theorem 3.5. Let o and q are be log-Holder continuous, both at the origin and at
infinity and p € POS(R") with 1 < p~ < pt < co. For any f € HK*)10) (Rn),

p()
we have -
f: Z Akaka

k=—o0

where the series converges in the sense of distributions, A\, > 0, each ay is a central
(a(+), p(+) )-atom with suppa C By, and

—1 1/4(0) 0o 1/qoo
Z k2 + Z | k] < |l fll g geecrnacr -
k=0 p()

k=—o00

Conversely, if a () > n(l — p%) and m > [aT + n(p% —1)], and if holds, then
fe HK)O (R™), and

-1 1/4(0) IS 1/q00
||f||HKa(<_»)>,q<»> ~ inf ( Z |)\k|q(0)> + (Zp\kqm) 7

k=—o0 k=0
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where the infimum is taken over all the decompositions of f as above.

In the next result we treat the boundedness of Marcinkiewicz integral operators
with homogeneous kernel on variable Herz-type Hardy spaces.

Theorem 3.6. Suppose that p1,ps € P8(R™) with pi < 2n and p%(,) — pzl(,) = %,
a € L¥R"), q1,q2 € Po(R"),Q € L5(S" 1) with s > (p})~. If a,q1 and ¢z are
log-Hélder continuous, both at the origin and at infinity such that
1
a()=n(l- pf)7q1(0) < q2(0) and (q1) < (¢2) s -
1

Then  is bounded from HK;((',))’QI(')(R") to K§2(('?)’q2(')(R").
Proof. We must show that

||I’L(f)||K§2((>;Q2()(Rn) S c ||fHHK§1(();q1()(]Rn)

for all f € HK;l(('_))’ql(') (R™). Using Theorem 3.5, we may assume that

“+o0
F=> Na

1=—00

where A; > 0 and a;’s are (« (-) ,p1 (+))- atom with suppa; C B;. Using Proposition
1.5, we have

[(f) HKE;X;w«)(Rn)

S a0 (e 1/(02)oc
« 0 o _
*{ > el u(f)xkn;zi.;} - {ng @ ] }
k=0

k=—o00

—1 k—3 O e
< Z 9ka(0)qgz(0) ( Z |\ ”N(ai)xknpz(‘))
k=—o0 =
B . q2(0) 1/a2(0)
n Z 2ka(0)q2(0) < Z |>\z| ||N(ai)xk”p2(')>
e —oo i=k—2
+oo k—3 (1) v
n 22](‘,0100((12)00 ( Z [Ad ||,U(ai)xk||p2(')>
k=0 =m0
1/(92) oo

N . (92) 00
n ZQkaoo(lh)oo ( Z |)\z| ||M(ai)Xk||p2(.)>
k=0

i=k—2
= F1—|—F2—|—F3—|—F4.

271
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Let us estimate F}. We consider

|| Qz — ’ dt
wa@l < ([T 2D a)
0 |Jje—yi<t [z =yl £
= Oz —y) ® at
.
N T
ol |Sje—yl<t [z —y

= Q1+ Qo.

Observe that in this case © € Rg, y € B; and i < k — 3. So we know that
|z — y| ~ |z| =~ 2. By (3.2), we have

Qz — H
s [ BB ) gy

n—1
=y |z —yl

by the m-order vanishing moments of a; with m > |a* —n(1 — L
1

. )}, we can sub-

1_ .
tract the Taylor expansion of |x — y|2~"™ at z, we obtain

@1

IN

Jy™ ! a0 ()] |02 J
[ireeret ai (y)] [z —y)| dy

i |l

IN

C?wm+m+&+wWH{/ lai (y)| |z —y)| dy,

i

The estimation of @5 is the same as before since we never use |z — y| = |z|, we have

(as) (@)] < @ FmmH+itm) / Ja: ()] 12 — y) dy,

as the same reason in the proof of (3.3), we get

(n=3)k9BG=k) |1 g, |

||N(ai)Xka2(.) S 27 p1(+) ||Xi||p/1(.) ||Xk||p2(.) ||Q||LS(S”*1)
S 27

(3.5) (n=5)k9B=k) |1 g, |

p1(+) ||Xi||p/1(.) ||Xk||p2(») )
where f = (1+m — 2 — 7).
On the other hand (see [7, p.350] for o = 3), we have
: d K
go [ W [ )2 b @),
Be |z —y[" > Be |z —y[" >

(3.5), (3.6) and Lemma 2.5, gives
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—(n—42 i—
l[(ai) Xl py ) 2~ (1= 2kPER g

p1() ||XBi||p/1(-) ”X’f”pz(-)

< 27 gl xly / Lyﬁiy
Be |- =y[" 2 0
< 27mkflh) Hai”pl(.) x5, Pi() ||XBk||p1(~) )
by Lemma 2.1, we have
1/4q2(0)

. b3 q2(0)
o= 3 oke(©) < > I ||p(ai)><k||p2(.)>

k=—oc0 1=—00

1/42(0)

-1 k—3 q2(0)
< ¢ Z (Z |)\i2(ik)(ﬁ(a+n/m)(0))> ,

k=—00 1=—00

since we can choose m large enough such that 8 — ot +n(1 — p%) > 0, by Lemma
1

2.2, we obtain

1 1/42(0) —1 1/41(0)
R <c ( > |>\k|‘12(0)> <c ( > |)\k|‘11(0)> < ellfll o0 mo
P

k=—o00 k=—o00

Let us estimate F5. By Lemma 2.4 and applying the size condition of a; (conditions
(ii) and (iii) in Definition 3.4), we have

1 +00 42(0) ) 1/2(0)
F2 _ Z 2ka(0)QZ(O) < Z |>\1| ||/J/(a2)Xk||p2()>
k=—o0 k=2
1 +00 42(0) ) /(0
< ¢ Z 9ka(0)g2(0) ( Z |\l |ai||p2(')>
k=—o00 =k
; - (0) 1/4q2(0)
< e Z 9ka(0)g2(0) ( Z |\ Iainz('))
k=—o0 =k
1/4g2(0)

B . q2(0)
e Z 9ka(0)g2(0) (Z |\ ||ai||p2(')>

k=—o0 =0
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- —! 42(0) Y 1/42(0)
< ey 2 (Z |)\i|2(ki)0‘(0)>
b o0 \ieh—2
S - 42(0) 1/92(0)
+c Z (Z)\i|2(’“i)a+k(a(0)a)+i(a%o))
k=—o00 \i=0

for k < 0 <4 and since &~ < min(a (0), @), we have
k(@ (0) — a”) + i(a™ — am) <0,

By Lemma 2.2, we obtain

. 1/4(0) . 1/a1(0)
h<e < > |/\k|q2(0)> <c < > |)‘k|q1(0)> = C||f|\HKa<8;q1<~>-

k=—o00 k=—o00

We can estimate F3 and F, by the same arguments used in the estimation of Fj

and F if we replace «(0), p2(0) and ¢2(0) by e, (P2)eo and (g2) ., respectively.
A combination of estimations of Fy, Fy, F3 and F,; completes the proof of The-

orem 3.6. O
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