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ZERO BASED INVARIANT SUBSPACES AND FRINGE
OPERATORS OVER THE BIDISK

KEer Ji IzucHi, Kou HEI [zucHI, AND YUKO 1ZUCHI

ABSTRACT. Let M be an invariant subspace of H? over the bidisk. Asso-
ciated with M, we have the fringe operator FzM on MoOwM. It is studied
the Fredholmness of FM for (generalized) zero based invariant subspaces
M. Also ker FM and ker (FM)* are described.

1. Introduction

Let H? = H?(D?) be the Hardy space over the bidisk D? with two variables
z,w. We write ||f|| the Hardy space norm of f € H2. We denote by T}, T,, the
multiplication operators on H? by z,w. A nonzero closed subspace M of H?
is said to be invariant if T,M C M and T,,M C M. The structure of invariant
subspaces of H? is fairly complicated and at this moment it seems to be out of
reach (see [1, 3, 6, 7]). We have

o0
M= uw"(M cwM),
n=0
so the space M &wM contains many informations of an invariant subspace M.
In [7], Yang studied the operator FM on M © wM defined by

FMf=PycwuT-f, fe€MowM,

where P, is the orthogonal projection from H? onto A C H?, and he called
FM the fringe operator of M.
Let N = H?>© M. We set

QM) =M6 (zM+wM) and Q(N)=No (TIN +TEN).
We have Q(M) # {0},
(1.1) QM)={feM:T;feN,T;f € N}
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and
(1.2) Q(N)={feN:T.f € M,T,f € M}.

It is known that Q(N ) may be an empty set. Generally, we do not know
whether zM 4+ wM is closed or not. In [7], Yang pointed out that zM 4+ wM is
closed if and only if FM has closed range. Let H* = H>(D?) be the space of
bounded analytic functions on D? with the supremum norm |- ||oo. In [7], Yang
also showed that if there is h € M N H satisfying h(0,0) # 0, then zM +wM
is closed and Q(M) = C - Pp1. A bounded linear operator T on a separable
Hilbert space is called Fredholm if T has closed range, dimker7T < oo and
dimker T* < oo (see [2]). In this case, ind T’ = dimker T' — dim ker 7 is called
the Fredholm index of T'. The Fredholmness is one of the important subjects
in operator theory. In [7], Yang pointed out that

ker FM = wQ(N) and ker (FM)* = Q(M).
Hence if FM is Fredholm, then ind FM = dim Q(N) — dim Q(M).
We shall study the following questions in this paper.

(Q1) How to prove the closedness of zM + wM?
(Q2) How to describe the elements in Q(M)?
(Q3) How to describe the elements in Q(N)?
It is difficult to answer these questions completely. In this paper, we study these

questions for the zero based invariant subspaces of H2. Let E be a nonvoid
subset D? and

I(E)y={f€H*:f=0 on E}.

Then I(E) is an invariant subspace and I(F) is called a zero based invariant
subspace for E. We may assume that I(E) # {0} and

E=ZI(E)):={XeD*: f(\) =0 for every f € I(E)}.

In Section 2, we shall study the above questions for I(E). We shall answer
(Q3) for M = I(E).

Let M be an invariant subspace of H? with M C I(E) and Z(M) = E. We
write N={0,1,2,...} and

iD= T ) e N,
where DOD™ = D™ D7DV = D and DYDY = 1. For each A € E, let
Ay (N) = {(n,m) e N’ : (DD} f)(A) = 0 for every f € M}.
Since Z(M) = E, (0,0) € Ap(A) & N? for every A € E. We have

I(E) = ﬂ {feH?*: (DD} f)(A) =0 for every (n,m) € Army(\)}.
AEE
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Let

M= () {fe€H?: (DD f)(N) =0 for every (n,m) € Apr(M)}.
AeE

Then M is an invariant subspace. Since Argy(A) € An(A) for every X € E, we
have that M ¢ M C I(F) and E C Z(M) C Z(M) = E. Hence Z(M) = E.
Since I(F) = I(FE), as a generalization of a zero based invariant subspace I(FE)

we assume that M = M.
Let

My = ﬂ {feH?*: (DD} f)(A) =0 for every (n,m) € An (M)}
AeE\{(0,0)}

Then My is an invariant subspace, M = M cC My, and if (0,0) ¢ E, then
M= My. In this paper, My plays an important role. In Section 3, we shall
study questions (Q1), (Q2) and (Q3).

In Section 4, we shall study the special cases. Let A = {(a,a) : a € D}. Then
I(A) = [z —w], where [L] is the smallest invariant subspace containing L C H?2.
Let M be an invariant subspace satisfying that M G [z —w], Z(M) = A, M =
M and My = [z — w]. We shall show that FM is Fredholm and ind FM = —1.
We shall also describe Q(N) and Q(M) completely.

We have a conjecture that if dim Q(M) < oo, then FM is Fredholm and
ind F = —1. Our results in this paper support that this conjecture is true
(see [4, 5, 7, 8, 9, 10, 11]).

2. Zero based invariant subspaces

Let M be an invariant subspace of H? and N = H2 & M. In [7], Yang
pointed out the following facts.

Lemma 2.1. ker FM = wQ(N) and ker (FM)* = Q(M).
Lemma 2.2. zM + wM is closed if and only if FM has closed range.

Lemma 2.3. If there is h € M N H*™ satisfying h(0,0) # 0, then zM + wM
is closed and Q(M) = C - Py1.

Actually he showed that zM+wM = MN(zH?+wH?) under the assumption
in Lemma 2.3. Using the same idea, we have the following.

Proposition 2.4. If there is h € M N H* satisfying h(0,0) # 0, then FM s
Fredholm and ind FZM =-—1.

Proof. We shall show Q(N) = {0}. We may assume that (0,0) = 1 and write
h =1+ zhy(z) + why for some hq(z),ha € H®. Let f € Q(N). We have

f=f(h—zhi(z) —wha) = fh— zfhi(z) — wfha.
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By (1.2), zf € M and wf € M. So zfh1(z) + wfha € M. Since h € MNH®™,
we have fh € M, so by the above we have f € M. Since f L M, we have
f=0. Thus Q(N) = {0}. By Lemmas 2.1-2.3, we get the assertion. O

The following is a well known fact.

Lemma 2.5. Let M be an invariant subspace of H?. Then QM) # {0}.
Moreover dim Q([f]) = 1 for every nonzero f in H>.

Let E be a nonvoid subset of D?. We assume that

I(E)# {0} and Z(I(E))=E.
We write
N(E) = H?*S I(E).

Lemma 2.6. Suppose that (0,0) ¢ E. Then Q(N(E)) = {0}.
Proof. Let f € Q(N(E)). By (1.2), (az + bw)f € I(E) for every a,b € C.

Since (0,0) ¢ E, we have f =0 on E, so f € I(E). Since f L I(E), we get
F=o0. 0

Similarly, we have the following.

Lemma 2.7. Suppose that (0,0) € E and E # {(0,0)}. If I(E) contains all
f € H? satisfying f =0 on E\ {(0,0)}, then Q(N(E)) = {0}.

Proof. Let f € Q(N(E)). By (1.2), (az+bw)f € I(E) for every a,b € C. Then
f=0on E\ {(0,0)}. By the assumption, we have f € I(F). Since f L I(F),
we get f = 0. O
Proposition 2.8. Suppose that (0,0) € E and E # {(0,0)}. If there is f € H?
such that f =0 on E\ {(0,0)} and £(0,0) # 0, then
Q(N(E)) =C-(f = Piy f) # {0}
Proof. Since f ¢ I(E), f — Pyg)f # 0 and f — Prpyf € N(E). Since f =0
on E\ {(0,0)}, we have
2(f = Py f), w(f — Prpyf) € I(E).

By (1.2), f = Pyp)f € UN(E)). ~

We may assume that f(0,0) = 1. Let g € Q(N(E)) and g # 0. As the proof
of Lemma 2.7, g = 0 on E \ {(0,0)} and ¢(0,0) # 0. We may assume that
9(0,0) = 1. Hence (f — Py f) —g € I(E). Since (f — Prs)f) — g € DN (E)),
we get g = f — Prp)f. O
Example 2.9. Let o € D with « # 0 and

E= {(Oa 0)’ (Oa a), (O‘a 0)’ (a’ a)}
We write by (2) = (2 — @) /(1 — @z). One may checks that I(E) = zb,(2)H? +
who (W)H?. Let f = bo(2)bo(w). Then f(0,a) = f(a,0) = f(a,a) = 0 and
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f(0,0) = a? # 0, so by Proposition 2.8 dim Q(N(E)) = 1. We have f L I(E)
and Q(N(E))=C- f. O

In the same way as the one by Yang [7], we may prove the following.

Theorem 2.10. Suppose that (0,0) € E and E # {(0,0)}. If there is h € H*®
satisfying h =0 on E\ {(0,0)} and h(0,0) # 0, then zI(E) + wI(E) is closed
and QI(E)) = C- Pypyz + C - Pygyw. Moreover FI®) is Fredholm and
ind /) = 1.
Proof. We may assume that h(0,0) = 1. Then there are hy(z) and hg in H*®
such that h =1+ zhy(z) + whe. We write
Ho={fcH*: fL1,fLzf1luw}

We shall show that
(2.1) zI(E)+wI(E) =I(E)N Hp.

Let f € I(E) N Hy. We have

f=Fh—=zfh(z) —wfhs.
Since f € I(E), we have z fhi(z)+wfhs € 2I(E)+wI(E). Since Hy = 2> H?+
2wH? +w?H?, we may write f = 22f1 4+ zw fo +w? f3 for some fi, fo, f3 € H?.
Since h =0 on E'\ {(0,0)}, we have that zfih, wfah, wfsh € I(E). Hence
fh=z(zfih+wfoh) +w(wfsh) € zI(E) + wl(E),

so f € zI(E) +wI(E). Thus we get I(E) N Hy C zI(E) +wI(E).

Let g € zI(E) + wI(FE). Then g = zg; + wgs for some g1, g2 € I(F). Since
(0,0) € E, I(E) C zH? + wH?. Hence for each i = 1,2, g; = 2g;1 + wg; 2 for
some ¢; 1, ¢9i2 € H?. We have

g=2"g11+ 2w(g12 + g21) + w'g22 € Hy.
Thus zI(E)4+wI(E) C I(E)N Hy, so we get (2.1). Since Hy is closed, zI(E) +
wl(F) is closed.

Since zh,wh € I(E) and h(0,0) = 1, we have Pygyz # 0 and Py gyw # 0.
Let g € I(E)© (C- Pygyz +C- Prgyw). Then g 1 1,9 L z and g 1 w. Hence
g € Hy, so g € I(E)N Hy. Thus by (2.1),

Since Prpyz, Prpyw L 2I(E) +wl(E), we have
I(E) = (21(E) + wI(E)) ® (C- Pygyz + C- Pypyw).
Hence
Since Prgyz L wh and Prgyw L wh, we have C - Pygyz # C - Prgyw. Hence
dim Q(I(E)) = 2.
By Lemmas 2.1, 2.2 and Proposition 2.8, we conclude the assertion. (I
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Let A = {(a,a) : a € D}. Then I(A) = [z — w]. It is known that g
Fredholm and ind F: z[sz] = —1 (see [7]). The following is a generalization of
this fact.

Theorem 2.11. Let ¢(z) be an inner function with ¢(0) = 0 and g € H™®
with g # 0. Then EP@=w o Bredholm and ind FI¥® 9 — _1

Proof. Put M = [¢(2) — wg]. We shall show that
(2.2) 2M +wM = M N (2(2)H?* + wH?).
Since M C ¢(z)H? +wH?, we have

2M +wM C M N (20(2)H* + wH?).

Let f € M N (zp(2)H? + wH?). We may write f = 2¢(2)f1 + wfa for some
f1, f2 € H?. Put h = ¢(2) — wg. Then M = [h] and

(2.3) f=z(h+wg)fi +wfs = zhfi +w(zgfi + f2).
Since h € M N H*, we have hf; € M. Hence zhf; € zM and
w(zgfi+ f2) = f —zhf1 € M,

so there is a sequence of polynomials {p, }, such that

(p(2) — wg)pn = hpn = w(zgf1 + f2)
in H? as n — oo. Putting w = 0, we have ||¢(2)pn(z,0)|| = 0, so ||pn(2,0)|| —
0. Hence

Hh(pn - pn(za O)) - w(ngl + fQ)H

< |[hpn —w(zgfi + f2)|| + [[hlloollpn (2, 0)]
— 0 asn — oo.

Since p,, — pn(z,0) = wq,, for some polynomial g, we have
h(pn — pn(2,0)) = whygy, € wlh] = wM.
Hence w(zgf1 + f2) € wM. Therefore by (2.3), f € zM + wM. Thus we get
(2.2).
Since z¢(2)H? + wH? is closed, by (2.2) zM + wM is closed. By Lemma
2.2, FM has closed range. Let f € Q(N). Then wf € M. Similarly as the last
paragraph, we have wf € wM, so f € M. Hence f = 0. By Lemma 2.1, we

have ker FM = {0}. By Lemma 2.5, we have dim Q(M) = 1, so by Lemma 2.1
we have dimker (FM)* = 1. Thus we get the assertion. O

Corollary 2.12. Let h € H> satisfy |h(e??,0)] > & > 0 for almost every
e? € OD. Then Fz[h] 1s Fredholm and ind Fz[h] = —1.
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Proof. We may write h = hy(z) + whe for some hy(z),hy € H*. If h1(0) # 0,
then by Proposition 2.4 we have the assertion. So we assume that hy(0) = 0.
Let h1(z) = ¢(z) f(z) be an inner-outer factorization of hi(z). We have ¢(0) =
0. By the assumption, f(z) is invertible in H*>°. Then we have

(7] = [f(2)(p(2) + wf ™ (2)h2)] = [p(2) +wf ™! (2)ha]-
If hy = 0, then [h] = p(2)H?, so we get the assertion. If hy # 0, then by
Theorem 2.11 we get the assertion. ([

Example 2.13. By Theorem 2.11, for the following M we have that FM is
Fredholm and ind FM = —1;

M=[z—w, M=|[z-w)?, M=][*-uw’.
3. Generalizations

Let M be an invariant subspace of H? satisfying that M C I(FE) and Z(M) =
E. We have Ajgy(A) C Ap(N) for every A € E,
(3.1) T:{0,2"w™ : (n,m) € Ay (N} C {0,2"w™ : (n,m) € Ay (N)}
and
(3.2) T5{0,z"w™ : (n,m) € Ay (N)} C {0,2"w™ : (n,m) € Ay (M)}
We recall that

(33) M= () {feH*: (DIDJf)A) =0 for every (n,m) € Apr())}.
ANEE

Then M C M C I(E) and E C Z(M) C Z(M) = E. Hence Z(M) = E. Since

I(E) = I(FE), as a generalization of zero based invariant subspaces we assume
that

(3.4) M =M.

Put N = H2& M. We shall study about Q(N), (M) and the Fredholmness
of FM under the above situation.

Lemma 3.1. If (0,0) ¢ E, then Q(N) = {0}.

Proof. Let f € Q(N). By (1.2), (az 4+ bw)f € M for every a,b € C. Since
(0,0) ¢ E, (DZD f)(A) = 0 for every A € E and (n,m) € Ap(A). By (3.3)
and (3.4), we have f € M. Since M L Q(N), we have f = 0. O

Lemma 3.2. Suppose that M C z"w™H? for some (n,m) € N? with (n,m) #
(0,0). If f € Q(N), then f € z"w™H?.

Proof. Let f € Q(N) Suppose that f ¢ 2"w™H?. Then we may write f =
f1 @ fa for some f; € z"w™H? and f, € H? © z"w™H?. Since fy # 0, either
2f ¢ 2"w™H? or wf ¢ z"w™H?. So either zf ¢ M or wf ¢ M. By (1.2),
f ¢ Q(N). This is a contradiction. Thus we get f € z"w™H2. O
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Corollary 3.3. Suppose that M C 2"w™H? for some (n,m) € N? with
(n,m) # (0,0). Let Ny = H> ©Z"w™M. Then Q(N) = 2"w™Q(Ny).

By Corollary 3.3, to study Q(N) we may assume that M ¢ zH? and M ¢
wH?.

Lemma 3.4. Suppose that (0,0) € E, M ¢ zH? and M ¢ wH?. Then there
are m1,May ..., Nk, M1, Ma,...,mr € N such that 0 < ny < ng < --- < Ny,
0<mp <mp_1<---<mq and

k
Ap(0,0) = U {(n,m) ENQ:OSngnj,Ogmgmj}.
=1

Proof. Since M ¢ zH? and M ¢ wH?, (n,0) ¢ Apn(0,0) and (0,m) ¢
A (0,0) for some n,m € N. By (3.1) and (3.2), we get the assertion. O

Suppose that (0,0) € E and E # {(0,0)}. Let
My= () {feH*:(DIDJf)(A) =0 for every (n,m) € Apr(N)}.
AeEN{(0,0)}
Then by (3.3) and (3.4), we have M C M.

Lemma 3.5. Suppose that (0,0) € E and E # {(0,0)}. If M = My, then
Q(N) ={0}.

Proof. Let g € (NZ(N) Then (az 4+ bw)g € M for every a,b € C, so g € My. By
the assumption, we have g € M. Thus we get the assertion. (I

We may rewrite Ay (0,0) as follows;
(3.5) Ap(0,0) = {(n,m) € N*: z"w™ L M}.

Lemma 3.6. Suppose that (0,0) € E, E # {(0,0)}, M ¢ 2H? and M ¢ wH?>.
If M # My, then Q(N) # {0}.

Proof. Take fo € My© M with fo # 0. By (3.3) and (3.4), (D DJ £5)(0,0) # 0
for some (7,7) € Apn(0,0). Here we use the notations given in Lemma 3.4.
Since ziw? [ fo, there is (s,t) € N? such that z™w™ [ z%w!fy for some
1<(l<k,
2™ L 2Tt fy and  2"w™ L 25wt fy

for every (n,m) € Ap(0,0). By (3.3) and (3.4), we have 2z*w’fy ¢ M and
25wt fo, 25wt fy € M. Let fi = z°wtfo — Pyz*wfy. Then f1 € N and
f1 # 0. Moreover we have zf1,wf1 € M. By (1.2), we have f1 € Q(N) O

Proposition 3.7. Suppose that (0,0) € E and E # {(0,0)}. Let M be an
invariant subspace of H* such that M G I(E), Z(M) = FE and M = M.
Moreover we assume that M ¢ zH?* and M ¢ wH?. Then Q(N) # {0} if and
only if MG My.
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Proof. The necessity follows from Lemma 3.5. The reverse implication follows
from Lemma 3.6. O

Under the condition M & My, we shall study about dim Q(N).

Theorem 3.8. Suppose that (0,0) € E and E # {(0,0)}. Let M be an invari-
ant subspace of H* such that M G I(E), Z(M) = E, M & My and M = M.
Moreover we assume that M ¢ zH? and M ¢ wH?. Let ny,no,...,ng,mi,
ma,...,mr € N satisfy the conditions given in Lemma 3.4. Let

Y ={(nj,m;):1<j <k} C Ay (0,0)

and
M, = {f € My: f L z"w™ for every (n,m) € AM(O,O)\E}.

Then Q(N) = My © M and 1 < dim Q(N) < k.

Proof. Since M ; My, there is f € My e M with f # 0. Since M = M,
f Lz’ for some (i,5) € Ap(0,0). By considering z*w! f for (s,t) € N2, we
have M & My C Mp.

Let h € Q(N). Then zh,wh € M. Since M = M, we have h € M. For any
(n,m) € Ap(0,0)\ X, either (n + 1,m) € Ap(0,0) or (n,m+ 1) € Ap(0,0).
If (n+1,m) € Ap(0,0), then 0 = (zh, 2" lw™) = (h, z"w™). If (n,m + 1) €
Ap(0,0), then 0 = (wh, z"w™ 1) = (h, z"w™). Hence h € M;. Thus we get
Q(N) c My & M.

Let f € My © M and (n,m) € Ap(0,0). Then f € My and (zf, z"w™) =

(f,2" tw™) = 0. Hence zf € M = M. Similarly wf € M. Hence M; © M C

Q(N). Thus we get the assertion. ]

Theorem 3.9. Suppose that (0,0) € E and E # {(0,0)}. Let M be an invari-
ant subspace of H? such that M G I(E), Z(M) = E and M = M. Moreover
we assume that M ¢ zH? and M ¢ wH?. Let ni,no,...,Nk, M1, Ma, ...,
my € N satisfy the conditions given in Lemma 3.4. If (0,0) ¢ Z(My), then
dim Q(N) = k.
Proof. By the assumption, there is fo € My such that f(0,0) = 1. For each
1 < j <k, we have (z"™w™i, z"w™i fy) # 0. By Lemma 3.4 and (3.5), we
have z™w™i fo ¢ M. Let

fi =2"w" fo — Py (2" w™ fo).
Then f; € N and f; # 0. Since M = M, it is not so difficult to show that
zfj,wf; € M for every 1 < j < k. Hence f; € Q(N) for every 1 < j < k.
Suppose that Z?Zl ¢;f; = 0 for some c1,co,...,c, € C. Since (n;,m;) €
Ap(0,0) for every 1 <i < k and fy(0,0) = 1, we have

k k
0= < E cjfj,z”iwm"> = < E cjz”jwmjfo,z"iwmi>

j=1 j=1
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= ¢; (zMw™ fo, 2" w™) = ¢;.
Therefore dim Z?Zl C- fj = k. By Theorem 3.8, we get dim Q(N) = k. O

We shall show an example satisfying conditions in Theorem 3.9.

Example 3.10. For a € D, let b, (2) = (z — a)/(1 — @z). For each £ > 1, let
¢
M = by (2)be (w) Z 2w H?
3=0

and F = Z(M). Then
E = ({a} x D) U (D x {a}) U{(0,0)},

I(E), M ¢ zH?, M ¢ wH? and M = M. Moreover we have that
ba (2)ba(w)H?, Z(Mo) = ({a} x D) U (D x {a}) and

M
My

[| HNM

4
A (0,0) = U{(i —1,0),(i—1,1),..., (i —1,6—14)}.

So in Lemma, 3.4, we have
(nlaml) = (0,6 - 1)7 (n27m2) = (176 - 2)5 sy (n€;m€) = (6 - 170)
and k = £. By Theorem 3.9, we have dim Q(N) = /. O

Example 3.11. Let M = [2(z — w), w(z — w)]. Then we have My = [z — w]
and Z(M) = Z(Mp) = {(a,a) :a €D}, M =M and Moo M =C- (z — w).

Hence Q(N) = C - (z — w) and dim Q(N) = 1. Moreover
Ap(0,0) ={(0,0),(0,1), (1,0)},
so in Lemma 3.4 we have (n1,m1) = (0, 1), (n2, m2) = (1,0) and k = 2. Hence

dmQ(N)=1<2 =k 0

In Theorem 3.8, we have dim Q(N) < k. In Example 3.11, we showed an
example of M satisfying dim Q(N) < k. In Theorem 3.9, if (0,0) ¢ Z (M),
then dim Q(N) = k. In the following, we shall show an example of M satisfying
that (0,0) € Z(Mo) and dim Q(N) = k.

Example 3.12. Let
M = {f elz—w]: fL z,zQ,w,zw,ZQw,wQ,wg}.
Then My = [z — w] and
A (0,0) = {(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(2,0), (2,1)}.

Note that (n1,m1) = (0,3), (n2, m2) = (2,1) and k = 2 in Lemma 3.4. More-
over

M = [2(2* — w?),2%(z — w), 22w(z — w), 20*(z — w), w* (z — w)]
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and M = M. In Theorem 3.8, we have ¥ = {(0,3),(2,1)} and
M = [2%(z — w), z2w(z — w), w?(z — w)].
We have
MM =C-wz*—w?)®C-(2* - 22w+ 20 — w?).
Then by Theorem 3.8, dim Q(N) = 2 = k. O

Suppose that (0,0) € E and E # {(0,0)}. Let M be an invariant subspace
of H? such that M G I(E), Z(M) = E and M = M. Moreover we assume
that M ¢ 2H? and M ¢ wH?. To describe Q(M), we set

B (0,0) = N\ A (0,0).

Let ni,ng,...,ng, my,ma,...,m; € N satisfy the conditions given in Lemma
3.4. Put

(Sl,tl) = (O,m1 + 1), (Sg,tg) = (n1 +1,mg + 1), e
(sk,tk) = (np—1 + L,mp + 1), (Skt1,trs1) = (n +1,0).
Then 0 =51 < s2 < - < Sg41, 0 =1p41 <t <---<t; and
k+1
(3.6) B (0,0) = [J{(sj + ntj +m) : (n,m) € N?}.
j=1
Let 1 <01 <02 < --- < 04 be the integers such that for each 1 < i < g there
is 1 < j <k + 1 satistying s; +¢; = 0; and

q
{(sjut)) 1< <k+1}=J{(sjut;) 1 1< j<k+ 1,85+t =0i}.

=1
Set
F:{(S],t])1§]§k+1}
and
(37) Fi:{(sj‘,t]‘)21§j§k+1,8j+tj10i}.

Then Y7 | #I'; = #I' = k + 1, where #I" denotes the number of elements in
T.

Lemma 3.13. Py z%w' # 0 and Ppz%wt € Q(M) for every 1 < j < k+ 1.
Proof. Since (sj,t;) ¢ An(0,0), we have z9w' [ M. Then Py z5w' # 0,
25wl = Pyzwh @ (25w — PyrzSiw')

and z%w' — Ppz%w' € N. Since Tyz%w', T z%w' € N, by (1.1) we have
PI\/[ZSj’LUtj € Q(M) O

Corollary 3.14. dim Zfill C- Pyzfiw' <dimQ(M).
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Example 3.15. Let
M = [2(2* + 22w + 20® + w*), w(z® + 22w + 20w® + w?)].

Then M = M, M ¢ zH? and M ¢ wH?. We have

4
B (0,0) = J ((4—4,5) +N?)
=0
and k = 4. We also have
4
Z(C Pyt it = C-2(22 4 22w + 20?4+ w?)+C - w(2® + 22w + 2w + w?)
3=0
= Q(M)
and
Q(N) =C- (2% + 22w + zw? + w?).

Theorem 3.16. Suppose that (0,0) € E and E # {(0,0)}. Let M be an
invariant subspace of H* such that M G I(E), Z(M) = E and M = M.
Moreover we assume that M ¢ zH? and M ¢ wH?. If there is h € My N H™®
satisfying h(0,0) # 0, then FM is Fredholm and ind FM = —1.

Proof. First, we shall show that

k+1
(3.8) M +wM =MnY 25w (zH? + wH?).
j=1
Let s1,s9,...,8k+1,t1,t2,...,tk+1 € N satisfy the conditions given above
Lemma 3.13. Since M C Ef;l z%iw'i H?, we have
k+1
M +wM C MnN Zzsjwtﬂ' (zH? + wH?).
j=1
Let
k+1
feMn Zzsfwtf (zH? + wH?).
j=1

We may assume that h(0,0) = 1 and write b = 1 + zh1(z) + whe for some
hi(z),ha € H*®. Then

f=7fh—zfhi(z) —wfha.
Since f € M, we have zfhy(z) + wfhs € zM + wM. We may also write

k1
="zl (2f; +wgy),  fi,9; € H”.

j=1
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We have
k+1 k+1
fh= z(z,zsfwt”'fjh) —i—w(Zzsfwtfgjh).
j=1 j=1
Since h € Mo N H*, we have f;h, g;h € My. By (3.6), we have
k+1 k+1
Z 2 iw' fih, Z 25w gih L 2" w™
Jj=1 Jj=1

for every (n,m) € Ap(0,0). Since M = M, we get

k41 k+1
Zzsfwtffjh, Zzsfwtfgjh € M.
j=1 j=1
Hence fh € zM 4+ wM, so f € zM +wM and
k41
MnN z:z:sfwtf(zH2 +wH?) C zM + wM.
j=1

Thus we get (3.8).
It is not difficult to see that Zfill 2wt (2 H?+wH?) is closed, so zM +wM
is closed. _
By Theorem 3.9, we have dimQ(N) = k. By Lemma 3.13, we also have
Py z%iwti # 0 and
ket 1
Z(C . PMzsfwtf C Q(M)
j=1
Suppose that Z?;l cjPyz%iwh = 0 for some {c]}gcill C C. Since h € My, we

have z%w' h € M = M for every 1 < j < k+ 1. Since h(0,0) = 1, for each
1 <7 <k+1 we have

k+1 k41
0= < g chMzsfwtj,zsiwtih> = g ¢; (5w 25wt h) = ¢;.
=1 =1

Hence {Pysz%w'i }fill is linearly independent, so by Corollary 3.14 k + 1 <
dim Q(M).

To show k + 1 = dim Q(M), let f € Q(M) satisfy f L Ppz%wt for every
1<j<k+1. Then f L z%wh for every 1 < j < k+ 1. Since f L 2z"w™ for
every (n,m) € Ap(0,0), we have

k+1
feMn Zzsjwtﬂ' (zH? + wH?).
j=1

By (3.8), we have f € zM +wM, so f = 0. Thus we get the assertion. O
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4. Special cases

Let A = {(a,a) : @ € D}. Then I(A) = [z —w] and Z(I(A)) = A. In this
section, we shall study invariant subspaces M of H? satisfying M ; [z — w],
Z(M) = A, M C My = [z —w] and M = M. Moreover we assume that
M ¢ zH? and M ¢ wH?. Since My = [z — w] and M = M, we have

M={felz—w]:fLz"w" for every (n,m) € Ar(0,0)}.

For each positive integer n, let

(4.1) [z —w], = ’SC (2wl — ™).
Then ”

(4.2) [z —w] = é[z—w]n

Let -

n
L, = E C- 2",
j=0

Then [z — w], C L,. We note that P, f = P._,,, f for every f € [z — w].

Since My = [z — w], Apm((a,a)) = {(0,0)} for every a € D\ {0}. By Lemma
3.4, there are ni,na, ..., Nk, my, Mo, ..., my € N satisfying that 0 < n; <ng <
e <ng, 0 < mE <mg_1 <---<mqp and

k
(4.3) Ap(0,0) = U{(n,m)€N2 :0<n<n;,0<m<m;}.
j=1

Since Z(M) = A and M & My = [z — w], we have Ap(0,0) # {(0,0)}, so
nj+m; > 1forevery 1 < j < k. Hence there are integers 1 < £ < fp < --- < 4,
such that for each 1 <7 < p there is 1 < j < k satisfying n; +m; = ¢; and

p
Y= U{(njﬂmj) 1< < k’ﬂnj + m; :gl}
i=1
Set
Y= {(nj,mj) 1< <kn;+my :fl}
Then ¥; # 0 and ; NX; = 0 for i # j. We have Y 0| #%;, = #¥ = k. Let
Y = @ C-2z"w™ and Xf= @ C. 2"w™
(77’77”)62 (nvm)ezi
Recall that Bys(0,0) = N2\ A,/(0,0) and
(Sl,tl) = (O,m1 + 1), (Sg,tg) = (n1 +1,mo + 1), ey

(skytr) = (Np—1 + 1,mp + 1), (Skg1, tror1) = (ni + 1,0).
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Then by (4.3),
k+1
(4.4) Bun(0,0) = U ((s5.t5) +N?).
j=1
Let 1 <01 <02 < --- < 04 be the integers such that for each 1 < i < g there
is 1 < j <k + 1 satistying s; +¢; = 0; and

q
{(sjity)1<j<k+1}=|J{(sjt;): 1< <k+ 155+t =0i}.
i=1
Set
I={(sj,t;): 1 <j<k+1}
and
I; :{(Sj,fj) 1< < k—l—l,Sj—f—ﬁj :O'i}.
Then Y0 #T; = #T =k + 1.
Lemma 4.1. (i) s+t > o1 for every (s,t) € Bp(0,0).
(ii) If (s,t) € Byp(0,0) and s +t = o1, then (s,t) € T'y.
(iii) For each (s1,t1) € Bym(0,0), we have
#{(s,t) € By(0,0) : s+t =81 +t1} > 2.
Proof. (i) and (ii) follow from (4.4).
(iii) Since (s1,t1) € Bam(0,0), there is f € M satisfying z5*w'* [ f. Since
f€[z—w], by (4.1) and (4.2)

s1+t1—1
M > P[sz]51+t1f = Z cj(zsri-h—],wj _ w81+t1) £0.
7=0
This shows (iii). -

Theorem 4.2. Let M be an invariant subspace of H* with M G [z — w] such
that Z(M) = A, M C My = [z — w] and M = M. Moreover we assume that
M ¢ zH? and M ¢ wH?. Let ny,na,...,ng, M1, Ma,...,m; € N satisfy the
conditions given in Lemma 3.4. Then max{k — 1,1} < dimQ(N) < k.

Proof. Let f € Q(N). By (1.2), zf,wf € M C [z — w], so f € [z — w]. Recall
that

My ={felz—w]:fLz"w™ for every (n,m) € Apn(0,0)\ Z}.
Then we have f € M;. Hence Q(N) C M;. Since zM; C M and wM; C M,
we have B
Q(N)=M; &6 M.
We have

M:@Mﬂ[z—w]n and M; :@Mlﬂ[z—w]n,
n=1 n=1
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Q(N) = @ Q(N)N [z — wlp,
Hence -
(4.5) dim Q(N) = " dim Q(N) N [z — wly,.

For 2 < i < p, there is (s,t) € Bp(0,0) such that s +¢ = ¢;. Let
Ki={(s,t) € Bu(0,0): s+t ={;}.
By Lemma 4.1(iii), we have #K; > 2. For each (n;,m;) € ¥;, let

1 -
E z2'w' € [z — wly,.
K (s,t)EK;

f] = 2™ —

It is not difficult to see that
fieMyoM=QN), (nj,m;)e,
S0 N
QN)N[z—wle, = Y, C-f;
(nj,m;)eXi
Hence _
dmQ(N)N [z —wly, = #35i, 2<i<p.
We consider two cases for 1 = 1.

Case 1. Suppose that there is (s,t) € Bps(0,0) such that s+¢ = ¢;. Similarly
as above, we have dim Q(N) N [z — w],, = #31. Hence in this case, by (4.5)

we have
p

dimQ(N) =) #%; = #¥ = k.

i=1

Case 2. Suppose that {(s,t) € Bp(0,0) : s+t =£1} = (). In this case, take

(no,mo) € Y1. Then
Q(N) N[z —wle, = Z C- (z"w™ — z"w™),
(n,m)€exn
S0
dim Q(N) N [z — w], = #51 — 1.

Hence

dim Q(N) = dim Q(N) N [z — w]y, + > dim Q(N) N [z — wl,

i
1=2

p
= #5114+ #Ni=k— 1L

=2
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By Theorem 3.8, 1 < dim Q(N) < k. Thus we get the assertion. O

Let M be an invariant subspace of H? with M C [z — w] satisfying the
conditions given in Theorem 4.2. Next, we shall study about Q(M). In [5], the
authors proved the following.

Lemma 4.3. Let M, and Mo be invariant subspaces of H? satisfying Mo ; M,
and dim (M; © M3) < co. Then FMt is a Fredholm operator if and only if so
is FM2. In this case, we have ind FM1 = ind FMz,

Corollary 4.4. Let M be an invariant subspace of H? with M C [z —w)] such
that Z(M) = A, M G My = [z — w] and M = M. Moreover we assume that
M ¢ 2H? and M ¢ wH?. Then FM is Fredholm and ind FM = —1.

Proof. By Example 2.13, F* =) is Fredholm and ind F* ") = —1. By Lemma
3.4, dim ([z — w] © M) < co. Then by Lemma 4.3, we get the assertion. O

In the proof of Theorem 4.2, we described the elements in Q(N). By Lemma
2.1 and Corollary 4.4, we have dim Q(M) = dim Q(N) + 1. We shall describe
the elements in Q(M). We shall use the same notations given above Lemma
3.13. Since M ; [z — w], we have 2 < o7. We note that n + m > o7 for
every (n,m) € Bps(0,0). Moreover if (n,m) € Bp(0,0) and n + m = o1, then
(n,m) € T'y.

Lemma 4.5. (i) #I'1 > 2 and if (n,m) € By (0,0), then n+m = oy if
and only if (n,m) € T'y.
(i)
dim Y C-Pyz¥uw =#I) - 1.
(sj:t;)€T1
(iii) For each 2 < i < ¢, we have
dim ) C-Pyz¥w' = #T;.
(s:t5)€ls

Proof. (i) By Lemma 4.1(ii) and (iii), we have #I'; > 2. The second assertion
is already pointed out above Lemma 4.5.

(ii) Take (sjy,tj,) € I'1. Since M = M, for (s,t) € I'1 we have z*w' —

z%ow'o € M and
Z C- (z8w" — z®owlo) C M.

(s,t)eTy

By (1),
Ziwh L Mo Z C- (2°w" — z%0whio)
(s,t)€Ty
for every (s;,t;) € I'1. Hence
Z C- Pyz5w' C Z C - (z°w" — z%0wtio).

(Sj,tj)erl (s,t)€F1
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Let
( Z C. _ sjowtjo)) o ( Z C. PMZSj’LUtj).
(s,t)eTy (s5,t5)€l
Then g L z%w' for every (s;,t;) € I'1, so g = 0. Hence
Z C- Py 25w Z C - (2°w" — z%0wio),
(sj,ti)€T1 (s,t)€Ty

Therefore we get (ii).
(iil) Since 2 < i, there is (s,t) € Bp(0,0) \ T such that s + ¢ = ;. Let

T ={(s.t) € By(0,0) : s+t = oy}

Then T'; ; T;. Take (s0,t0) € T, \T;. Since M = J,\Z for (s,t) € ['; we have
25wt — z%w! € M and

25wt J_M@Z(C Swh — 2%0lo)
(s,t)eF

for every (s;,t;) € I';. Hence
Z C- Pyz%wti C Z C- (25w’ — zow') C M.

(sj.t;)€l: (s,t)el;
Let
€ ( Z C- (z*w' — zs"wt")) o ( Z C- PMszwtj).
(s,t)el; (sj,t5)€L:

Then h L z%iw' for every (s;,t;) € I';. Hence
h e Z C- (5w — z%ow').
(s,t)ET\I;
This shows that

Z C - Py 25w ( Z C- (z%wt — z%0' ))6

(sj,t;)€l: (s,t)el’;
( Z C- (z*w' — zsowto)).
(s,6)ET\T
Hence
dim Y C-Pyz¥w’ = (#1; — 1) — (#(T\ i) — 1) = #T.
(sj,t5)€ly
We note that

. 1 ) o
zaw“*m Z Zw' € C- Pyz*w',  (sj,t;) €T
(s,t)ET\I'; .
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Theorem 4.6. Let M be an invariant subspace of H* with M G [z — w] such
that Z(M) = A, M C My = [z — w] and M = M. Moreover we assume
that M ¢ zH? and M ¢ wH?. Let ny,na,...,ng, M1, Ma,...,mi € N satisfy
the conditions given in Lemma 3.4 and {1 = 1r<n_i£1k n; +m;. Then we have the
<5<
following.
(i) Suppose that s +t # {1 for any (s,t) € Bp(0,0). Then
Q(M) = Z C- PMszt
(s,t)er
and dim Q(M) = k.
(ii) Suppose that there is (s,t) € Bps(0,0) such that s+t = {1. Let
g= Z 2w (z —w) € M.
(s,t)ely
Then
QM)=C-ga > C-Pyzu'
(s,t)er
and dim Q(M) =k + 1.

Proof. (i) By the proof of Theorem 4.2, we have dim Q(N) = k— 1. By Lemma
2.1 and Corollary 4.4, we have dim Q(M) = k. By Lemma 3.13,
Z C- Pyz*w' C Q(M)
(s,t)er

and

dim Z (C-PMszt:zq:dim Z C - Py 2wt
1

(s,t)erl’ i= (s,t)el;

q
=#T1—1+ ) #I; by Lemma 4.5
i=2
=#l—-1=k+1-1=k.
Thus we get (i).
(ii) In this case, by the proof of Theorem 4.2 we have dim Q(N) = k, so
dim Q(M) = k + 1. In the same way as the one in (i), we have

> € Pyztwt C QM)
(s,t)el
and
dim Y C-Pyz*w' =k
(s,t)el
By Lemma 4.5(i), #I'1 > 2. Put

(4.6) Ty = {(sj0:t5,)s (S5 tin)s - (85, 15,) } € Bar(0,0),
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where 0 < 55, < 85, < -+ < s;, and v > 2. We have o1 < s + ¢ for every
(s,t) € Bp(0,0), and for (s,t) € By (0,0), o1 = s+ ¢ if and only if (s,t) € I'y.
If s5,,, — 85, = 1, then (s;,,t;, —1) € ¥. Hence
€1§Sjn+tjn—1:0'1—1<0'1§8+t
for every (s,t) € Bar(0,0). This contradicts with the assumption of (ii). Hence
Sjps1 — Sjn = tj, —tj.., =2 for every 1 <n <+ — 1. This shows that (s;, +
1,t;, —1) € Ap(0,0) for every 1 <n <~ —1and (s, —1,¢;, +1) € Anm(0,0)
for every 2 <n <. If s;, > 1, then we have (sj, —1,t;, +1) € Ap(0,0). For,
if (s;, —1,¢j, +1) € By(0,0), then (s;, —1,¢;, +1) € I'; and this contradicts
with (4.6). Similarly if ¢;, > 1, then (s; +1,¢;, —1) € Ap(0,0).
Let

v
g= Zzsjnwtﬂ'" (z —w) € M.
n=1

We have

Y 2
Aty =)+ (500
= n=1

n=1
y
P (3 )
n=1
Since
v
M M (C . Zdl [&5) C . 2017111) DD C . wal) = ZC . (Zsjlwtjl — Z'Sjnwtjn),
n=2

we have

v
Py ( Z z%in wtfn) = 0.
n=1

Hence PyTrg = 0. Similarly PyT5g = 0. Thus by (1.1), we get g € Q(M).
Since g L z*w!, we have g | Ppr2%w! for every (s,t) € I'. Hence

C-ga® Z C- Pyz*w' C Q(M)

(s,t)er
and
dim((C-gEB Z (C-PMzswt) =k+1.
(s,t)er
Thus we get

UM)=C-go » C-Pyz*u'
(s,t)el’ O

We shall give an example satisfying M # M.
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Example 4.7. Let
M = [2* —w?, 22(z — w), 22w(z — w), 2w?(z — w), w?(z — w)].
Then Mo = [z — w], Axr(0,0) = {(0,0), (0, 1), (1,0), (1,1)} and
M:{fe[z—w]:fJ_z,fJ_zw,fJ_w}.

We have zw(z — w) € M and zw(z — w) ¢ M, so M # M. We have & =
{(1,1)}, so My = [2(z — w),w(z — w)]. We have 22 — 22w+ w? € M1 © M
and z(22 — 2zw + w?) ¢ M. Hence My © M ¢ Q(N) and compare with the
assertion of Theorem 3.8. By calculation, we have

Q(N)=C- ((2° + zw?) — (22w + w®))
and
QM) =C- (2% —w?) +C- (22* — 323w + 22%w? — 32w + 2u?).
By Example 2.13 and Lemma 4.3, FM is Fredholm and ind FM = —1.
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