ZERO BASED INVARIANT SUBSPACES AND FRINGE OPERATORS OVER THE BIDISK

Kei Ji Izuchi, Kou Hei Izuchi, and Yuko Izuchi

Abstract

Let M be an invariant subspace of H^{2} over the bidisk. Associated with M, we have the fringe operator F_{z}^{M} on $M \ominus w M$. It is studied the Fredholmness of F_{z}^{M} for (generalized) zero based invariant subspaces

 M. Also $\operatorname{ker} F_{z}^{M}$ and $\operatorname{ker}\left(F_{z}^{M}\right)^{*}$ are described.
1. Introduction

Let $H^{2}=H^{2}\left(\mathbb{D}^{2}\right)$ be the Hardy space over the bidisk \mathbb{D}^{2} with two variables z, w. We write $\|f\|$ the Hardy space norm of $f \in H^{2}$. We denote by T_{z}, T_{w} the multiplication operators on H^{2} by z, w. A nonzero closed subspace M of H^{2} is said to be invariant if $T_{z} M \subset M$ and $T_{w} M \subset M$. The structure of invariant subspaces of H^{2} is fairly complicated and at this moment it seems to be out of reach (see $[1,3,6,7]$). We have

$$
M=\bigoplus_{n=0}^{\infty} w^{n}(M \ominus w M)
$$

so the space $M \ominus w M$ contains many informations of an invariant subspace M. In [7], Yang studied the operator F_{z}^{M} on $M \ominus w M$ defined by

$$
F_{z}^{M} f=P_{M \ominus w M} T_{z} f, \quad f \in M \ominus w M
$$

where P_{A} is the orthogonal projection from H^{2} onto $A \subset H^{2}$, and he called F_{z}^{M} the fringe operator of M.

Let $N=H^{2} \ominus M$. We set

$$
\Omega(M)=M \ominus(z M+w M) \quad \text { and } \quad \widetilde{\Omega}(N)=N \ominus\left(T_{z}^{*} N+T_{w}^{*} N\right) .
$$

We have $\Omega(M) \neq\{0\}$,

$$
\begin{equation*}
\Omega(M)=\left\{f \in M: T_{z}^{*} f \in N, T_{w}^{*} f \in N\right\} \tag{1.1}
\end{equation*}
$$

Received May 16, 2015.
2010 Mathematics Subject Classification. Primary 47A15, 32A35; Secondary 47B35.
Key words and phrases. Hardy space over the bidisk, zero based invariant subspace, fringe operator, Fredholm operator, Fredholm index.

The first author is partially supported by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science (No.15K04895).
and

$$
\begin{equation*}
\widetilde{\Omega}(N)=\left\{f \in N: T_{z} f \in M, T_{w} f \in M\right\} \tag{1.2}
\end{equation*}
$$

It is known that $\widetilde{\Omega}(N)$ may be an empty set. Generally, we do not know whether $z M+w M$ is closed or not. In [7], Yang pointed out that $z M+w M$ is closed if and only if F_{z}^{M} has closed range. Let $H^{\infty}=H^{\infty}\left(\mathbb{D}^{2}\right)$ be the space of bounded analytic functions on \mathbb{D}^{2} with the supremum norm $\|\cdot\|_{\infty}$. In [7], Yang also showed that if there is $h \in M \cap H^{\infty}$ satisfying $h(0,0) \neq 0$, then $z M+w M$ is closed and $\Omega(M)=\mathbb{C} \cdot P_{M} 1$. A bounded linear operator T on a separable Hilbert space is called Fredholm if T has closed range, $\operatorname{dim} \operatorname{ker} T<\infty$ and $\operatorname{dim} \operatorname{ker} T^{*}<\infty$ (see [2]). In this case, $\operatorname{ind} T=\operatorname{dim} \operatorname{ker} T-\operatorname{dim} \operatorname{ker} T^{*}$ is called the Fredholm index of T. The Fredholmness is one of the important subjects in operator theory. In [7], Yang pointed out that

$$
\operatorname{ker} F_{z}^{M}=w \widetilde{\Omega}(N) \quad \text { and } \quad \operatorname{ker}\left(F_{z}^{M}\right)^{*}=\Omega(M)
$$

Hence if F_{z}^{M} is Fredholm, then ind $F_{z}^{M}=\operatorname{dim} \widetilde{\Omega}(N)-\operatorname{dim} \Omega(M)$.
We shall study the following questions in this paper.
(Q1) How to prove the closedness of $z M+w M$?
(Q2) How to describe the elements in $\Omega(M)$?
(Q3) How to describe the elements in $\widetilde{\Omega}(N)$?
It is difficult to answer these questions completely. In this paper, we study these questions for the zero based invariant subspaces of H^{2}. Let E be a nonvoid subset \mathbb{D}^{2} and

$$
I(E)=\left\{f \in H^{2}: f=0 \text { on } E\right\}
$$

Then $I(E)$ is an invariant subspace and $I(E)$ is called a zero based invariant subspace for E. We may assume that $I(E) \neq\{0\}$ and

$$
E=Z(I(E)):=\left\{\lambda \in \mathbb{D}^{2}: f(\lambda)=0 \text { for every } f \in I(E)\right\} .
$$

In Section 2, we shall study the above questions for $I(E)$. We shall answer (Q3) for $M=I(E)$.

Let M be an invariant subspace of H^{2} with $M \subset I(E)$ and $Z(M)=E$. We write $\mathbb{N}=\{0,1,2, \ldots\}$ and

$$
D_{z}^{n} D_{w}^{m}=\frac{\partial^{n}}{\partial z^{n}} \frac{\partial^{m}}{\partial w^{m}}, \quad(n, m) \in \mathbb{N}^{2}
$$

where $D_{z}^{0} D_{w}^{m}=D_{w}^{m}, D_{z}^{n} D_{w}^{0}=D_{z}^{n}$ and $D_{z}^{0} D_{w}^{0}=1$. For each $\lambda \in E$, let

$$
A_{M}(\lambda)=\left\{(n, m) \in \mathbb{N}^{2}:\left(D_{z}^{n} D_{w}^{m} f\right)(\lambda)=0 \text { for every } f \in M\right\}
$$

Since $Z(M)=E,(0,0) \in A_{M}(\lambda) \varsubsetneqq \mathbb{N}^{2}$ for every $\lambda \in E$. We have

$$
I(E)=\bigcap_{\lambda \in E}\left\{f \in H^{2}:\left(D_{z}^{n} D_{w}^{m} f\right)(\lambda)=0 \text { for every }(n, m) \in A_{I(E)}(\lambda)\right\}
$$

Let

$$
\widetilde{M}=\bigcap_{\lambda \in E}\left\{f \in H^{2}:\left(D_{z}^{n} D_{w}^{m} f\right)(\lambda)=0 \text { for every }(n, m) \in A_{M}(\lambda)\right\}
$$

Then \widetilde{M} is an invariant subspace. Since $A_{I(E)}(\lambda) \subset A_{M}(\lambda)$ for every $\lambda \in E$, we have that $M \subset \widetilde{M} \subset I(E)$ and $E \subset Z(\widetilde{M}) \subset Z(M)=E$. Hence $Z(\widetilde{M})=E$. Since $I(E)=\widetilde{I}(E)$, as a generalization of a zero based invariant subspace $I(E)$ we assume that $M=\widetilde{M}$.

Let

$$
M_{0}=\bigcap_{\lambda \in E \backslash\{(0,0)\}}\left\{f \in H^{2}:\left(D_{z}^{n} D_{w}^{m} f\right)(\lambda)=0 \text { for every }(n, m) \in A_{M}(\lambda)\right\}
$$

Then M_{0} is an invariant subspace, $M=\widetilde{M} \subset M_{0}$, and if $(0,0) \notin E$, then $\widetilde{M}=M_{0}$. In this paper, M_{0} plays an important role. In Section 3, we shall study questions (Q1), (Q2) and (Q3).

In Section 4, we shall study the special cases. Let $\Lambda=\{(a, a): a \in \mathbb{D}\}$. Then $I(\Lambda)=[z-w]$, where $[L]$ is the smallest invariant subspace containing $L \subset H^{2}$. Let M be an invariant subspace satisfying that $M \varsubsetneqq[z-w], Z(M)=\Lambda, M=$ \widetilde{M} and $M_{0}=[z-w]$. We shall show that F_{z}^{M} is Fredholm and ind $F_{z}^{M}=-1$. We shall also describe $\widetilde{\Omega}(N)$ and $\Omega(M)$ completely.

We have a conjecture that if $\operatorname{dim} \Omega(M)<\infty$, then F_{z}^{M} is Fredholm and ind $F_{z}^{M}=-1$. Our results in this paper support that this conjecture is true (see $[4,5,7,8,9,10,11]$).

2. Zero based invariant subspaces

Let M be an invariant subspace of H^{2} and $N=H^{2} \ominus M$. In [7], Yang pointed out the following facts.
Lemma 2.1. $\operatorname{ker} F_{z}^{M}=w \widetilde{\Omega}(N)$ and $\operatorname{ker}\left(F_{z}^{M}\right)^{*}=\Omega(M)$.
Lemma 2.2. $z M+w M$ is closed if and only if F_{z}^{M} has closed range.
Lemma 2.3. If there is $h \in M \cap H^{\infty}$ satisfying $h(0,0) \neq 0$, then $z M+w M$ is closed and $\Omega(M)=\mathbb{C} \cdot P_{M} 1$.

Actually he showed that $z M+w M=M \cap\left(z H^{2}+w H^{2}\right)$ under the assumption in Lemma 2.3. Using the same idea, we have the following.
Proposition 2.4. If there is $h \in M \cap H^{\infty}$ satisfying $h(0,0) \neq 0$, then F_{z}^{M} is Fredholm and ind $F_{z}^{M}=-1$.
Proof. We shall show $\widetilde{\Omega}(N)=\{0\}$. We may assume that $h(0,0)=1$ and write $h=1+z h_{1}(z)+w h_{2}$ for some $h_{1}(z), h_{2} \in H^{\infty}$. Let $f \in \widetilde{\Omega}(N)$. We have

$$
f=f\left(h-z h_{1}(z)-w h_{2}\right)=f h-z f h_{1}(z)-w f h_{2} .
$$

By (1.2), $z f \in M$ and $w f \in M$. So $z f h_{1}(z)+w f h_{2} \in M$. Since $h \in M \cap H^{\infty}$, we have $f h \in M$, so by the above we have $f \in M$. Since $f \perp M$, we have $f=0$. Thus $\widetilde{\Omega}(N)=\{0\}$. By Lemmas 2.1-2.3, we get the assertion.

The following is a well known fact.
Lemma 2.5. Let M be an invariant subspace of H^{2}. Then $\Omega(M) \neq\{0\}$. Moreover $\operatorname{dim} \Omega([f])=1$ for every nonzero f in H^{2}.

Let E be a nonvoid subset of \mathbb{D}^{2}. We assume that

$$
I(E) \neq\{0\} \quad \text { and } \quad Z(I(E))=E .
$$

We write

$$
N(E)=H^{2} \ominus I(E)
$$

Lemma 2.6. Suppose that $(0,0) \notin E$. Then $\widetilde{\Omega}(N(E))=\{0\}$.
Proof. Let $f \in \widetilde{\Omega}(N(E))$. By (1.2), $(a z+b w) f \in I(E)$ for every $a, b \in \mathbb{C}$. Since $(0,0) \notin E$, we have $f=0$ on E, so $f \in I(E)$. Since $f \perp I(E)$, we get $f=0$.

Similarly, we have the following.
Lemma 2.7. Suppose that $(0,0) \in E$ and $E \neq\{(0,0)\}$. If $I(E)$ contains all $f \in H^{2}$ satisfying $f=0$ on $E \backslash\{(0,0)\}$, then $\widetilde{\Omega}(N(E))=\{0\}$.

Proof. Let $f \in \widetilde{\Omega}(N(E))$. By (1.2), $(a z+b w) f \in I(E)$ for every $a, b \in \mathbb{C}$. Then $f=0$ on $E \backslash\{(0,0)\}$. By the assumption, we have $f \in I(E)$. Since $f \perp I(E)$, we get $f=0$.

Proposition 2.8. Suppose that $(0,0) \in E$ and $E \neq\{(0,0)\}$. If there is $f \in H^{2}$ such that $f=0$ on $E \backslash\{(0,0)\}$ and $f(0,0) \neq 0$, then

$$
\widetilde{\Omega}(N(E))=\mathbb{C} \cdot\left(f-P_{I(E)} f\right) \neq\{0\} .
$$

Proof. Since $f \notin I(E), f-P_{I(E)} f \neq 0$ and $f-P_{I(E)} f \in N(E)$. Since $f=0$ on $E \backslash\{(0,0)\}$, we have

$$
z\left(f-P_{I(E)} f\right), w\left(f-P_{I(E)} f\right) \in I(E)
$$

By (1.2), $f-P_{I(E)} f \in \widetilde{\Omega}(N(E))$.
We may assume that $f(0,0)=1$. Let $g \in \widetilde{\Omega}(N(E))$ and $g \neq 0$. As the proof of Lemma 2.7, $g=0$ on $E \backslash\{(0,0)\}$ and $g(0,0) \neq 0$. We may assume that $g(0,0)=1$. Hence $\left(f-P_{I(E)} f\right)-g \in I(E)$. Since $\left(f-P_{I(E)} f\right)-g \in \widetilde{\Omega}(N(E))$, we get $g=f-P_{I(E)} f$.
Example 2.9. Let $\alpha \in \mathbb{D}$ with $\alpha \neq 0$ and

$$
E=\{(0,0),(0, \alpha),(\alpha, 0),(\alpha, \alpha)\} .
$$

We write $b_{\alpha}(z)=(z-\alpha) /(1-\bar{\alpha} z)$. One may checks that $I(E)=z b_{\alpha}(z) H^{2}+$ $w b_{\alpha}(w) H^{2}$. Let $f=b_{\alpha}(z) b_{\alpha}(w)$. Then $f(0, \alpha)=f(\alpha, 0)=f(\alpha, \alpha)=0$ and
$f(0,0)=\alpha^{2} \neq 0$, so by Proposition $2.8 \operatorname{dim} \widetilde{\Omega}(N(E))=1$. We have $f \perp I(E)$ and $\widetilde{\Omega}(N(E))=\mathbb{C} \cdot f$.

In the same way as the one by Yang [7], we may prove the following.
Theorem 2.10. Suppose that $(0,0) \in E$ and $E \neq\{(0,0)\}$. If there is $h \in H^{\infty}$ satisfying $h=0$ on $E \backslash\{(0,0)\}$ and $h(0,0) \neq 0$, then $z I(E)+w I(E)$ is closed and $\Omega(I(E))=\mathbb{C} \cdot P_{I(E)} z+\mathbb{C} \cdot P_{I(E)} w$. Moreover $F_{z}^{I(E)}$ is Fredholm and ind $F_{z}^{I(E)}=-1$.
Proof. We may assume that $h(0,0)=1$. Then there are $h_{1}(z)$ and h_{2} in H^{∞} such that $h=1+z h_{1}(z)+w h_{2}$. We write

$$
H_{0}=\left\{f \in H^{2}: f \perp 1, f \perp z, f \perp w\right\} .
$$

We shall show that

$$
\begin{equation*}
z I(E)+w I(E)=I(E) \cap H_{0} \tag{2.1}
\end{equation*}
$$

Let $f \in I(E) \cap H_{0}$. We have

$$
f=f h-z f h_{1}(z)-w f h_{2} .
$$

Since $f \in I(E)$, we have $z f h_{1}(z)+w f h_{2} \in z I(E)+w I(E)$. Since $H_{0}=z^{2} H^{2}+$ $z w H^{2}+w^{2} H^{2}$, we may write $f=z^{2} f_{1}+z w f_{2}+w^{2} f_{3}$ for some $f_{1}, f_{2}, f_{3} \in H^{2}$. Since $h=0$ on $E \backslash\{(0,0)\}$, we have that $z f_{1} h, w f_{2} h, w f_{3} h \in I(E)$. Hence

$$
f h=z\left(z f_{1} h+w f_{2} h\right)+w\left(w f_{3} h\right) \in z I(E)+w I(E),
$$

so $f \in z I(E)+w I(E)$. Thus we get $I(E) \cap H_{0} \subset z I(E)+w I(E)$.
Let $g \in z I(E)+w I(E)$. Then $g=z g_{1}+w g_{2}$ for some $g_{1}, g_{2} \in I(E)$. Since $(0,0) \in E, I(E) \subset z H^{2}+w H^{2}$. Hence for each $i=1,2, g_{i}=z g_{i, 1}+w g_{i, 2}$ for some $g_{i, 1}, g_{i, 2} \in H^{2}$. We have

$$
g=z^{2} g_{1,1}+z w\left(g_{1,2}+g_{2,1}\right)+w^{2} g_{2,2} \in H_{0}
$$

Thus $z I(E)+w I(E) \subset I(E) \cap H_{0}$, so we get (2.1). Since H_{0} is closed, $z I(E)+$ $w I(E)$ is closed.

Since $z h, w h \in I(E)$ and $h(0,0)=1$, we have $P_{I(E)} z \neq 0$ and $P_{I(E)} w \neq 0$. Let $g \in I(E) \ominus\left(\mathbb{C} \cdot P_{I(E)} z+\mathbb{C} \cdot P_{I(E)} w\right)$. Then $g \perp 1, g \perp z$ and $g \perp w$. Hence $g \in H_{0}$, so $g \in I(E) \cap H_{0}$. Thus by (2.1),

$$
I(E) \ominus\left(\mathbb{C} \cdot P_{I(E)} z+\mathbb{C} \cdot P_{I(E)} w\right) \subset z I(E)+w I(E)
$$

Since $P_{I(E)} z, P_{I(E)} w \perp z I(E)+w I(E)$, we have

$$
I(E)=(z I(E)+w I(E)) \oplus\left(\mathbb{C} \cdot P_{I(E)} z+\mathbb{C} \cdot P_{I(E)} w\right)
$$

Hence

$$
\Omega(I(E))=\mathbb{C} \cdot P_{I(E)} z+\mathbb{C} \cdot P_{I(E)} w
$$

Since $P_{I(E)} z \perp w h$ and $P_{I(E)} w \not \perp w h$, we have $\mathbb{C} \cdot P_{I(E)} z \neq \mathbb{C} \cdot P_{I(E)} w$. Hence $\operatorname{dim} \Omega(I(E))=2$.

By Lemmas 2.1, 2.2 and Proposition 2.8, we conclude the assertion.

Let $\Lambda=\{(a, a): a \in \mathbb{D}\}$. Then $I(\Lambda)=[z-w]$. It is known that $F_{z}^{[z-w]}$ is Fredholm and ind $F_{z}^{[z-w]}=-1$ (see [7]). The following is a generalization of this fact.

Theorem 2.11. Let $\varphi(z)$ be an inner function with $\varphi(0)=0$ and $g \in H^{\infty}$ with $g \neq 0$. Then $F_{z}^{[\varphi(z)-w g]}$ is Fredholm and ind $F_{z}^{[\varphi(z)-w g]}=-1$.

Proof. Put $M=[\varphi(z)-w g]$. We shall show that

$$
\begin{equation*}
z M+w M=M \cap\left(z \varphi(z) H^{2}+w H^{2}\right) \tag{2.2}
\end{equation*}
$$

Since $M \subset \varphi(z) H^{2}+w H^{2}$, we have

$$
z M+w M \subset M \cap\left(z \varphi(z) H^{2}+w H^{2}\right)
$$

Let $f \in M \cap\left(z \varphi(z) H^{2}+w H^{2}\right)$. We may write $f=z \varphi(z) f_{1}+w f_{2}$ for some $f_{1}, f_{2} \in H^{2}$. Put $h=\varphi(z)-w g$. Then $M=[h]$ and

$$
\begin{equation*}
f=z(h+w g) f_{1}+w f_{2}=z h f_{1}+w\left(z g f_{1}+f_{2}\right) \tag{2.3}
\end{equation*}
$$

Since $h \in M \cap H^{\infty}$, we have $h f_{1} \in M$. Hence $z h f_{1} \in z M$ and

$$
w\left(z g f_{1}+f_{2}\right)=f-z h f_{1} \in M
$$

so there is a sequence of polynomials $\left\{p_{n}\right\}_{n}$ such that

$$
(\varphi(z)-w g) p_{n}=h p_{n} \rightarrow w\left(z g f_{1}+f_{2}\right)
$$

in H^{2} as $n \rightarrow \infty$. Putting $w=0$, we have $\left\|\varphi(z) p_{n}(z, 0)\right\| \rightarrow 0$, so $\left\|p_{n}(z, 0)\right\| \rightarrow$ 0 . Hence

$$
\begin{aligned}
& \left\|h\left(p_{n}-p_{n}(z, 0)\right)-w\left(z g f_{1}+f_{2}\right)\right\| \\
\leq & \left\|h p_{n}-w\left(z g f_{1}+f_{2}\right)\right\|+\|h\|_{\infty}\left\|p_{n}(z, 0)\right\| \\
\rightarrow & 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Since $p_{n}-p_{n}(z, 0)=w q_{n}$ for some polynomial q_{n}, we have

$$
h\left(p_{n}-p_{n}(z, 0)\right)=w h q_{n} \in w[h]=w M .
$$

Hence $w\left(z g f_{1}+f_{2}\right) \in w M$. Therefore by (2.3), $f \in z M+w M$. Thus we get (2.2).

Since $z \varphi(z) H^{2}+w H^{2}$ is closed, by (2.2) $z M+w M$ is closed. By Lemma 2.2, F_{z}^{M} has closed range. Let $f \in \widetilde{\Omega}(N)$. Then $w f \in M$. Similarly as the last paragraph, we have $w f \in w M$, so $f \in M$. Hence $f=0$. By Lemma 2.1, we have $\operatorname{ker} F_{z}^{M}=\{0\}$. By Lemma 2.5, we have $\operatorname{dim} \Omega(M)=1$, so by Lemma 2.1 we have $\operatorname{dim} \operatorname{ker}\left(F_{z}^{M}\right)^{*}=1$. Thus we get the assertion.

Corollary 2.12. Let $h \in H^{\infty}$ satisfy $\left|h\left(e^{i \theta}, 0\right)\right|>\delta>0$ for almost every $e^{i \theta} \in \partial \mathbb{D}$. Then $F_{z}^{[h]}$ is Fredholm and ind $F_{z}^{[h]}=-1$.

Proof. We may write $h=h_{1}(z)+w h_{2}$ for some $h_{1}(z), h_{2} \in H^{\infty}$. If $h_{1}(0) \neq 0$, then by Proposition 2.4 we have the assertion. So we assume that $h_{1}(0)=0$. Let $h_{1}(z)=\varphi(z) f(z)$ be an inner-outer factorization of $h_{1}(z)$. We have $\varphi(0)=$ 0 . By the assumption, $f(z)$ is invertible in H^{∞}. Then we have

$$
[h]=\left[f(z)\left(\varphi(z)+w f^{-1}(z) h_{2}\right)\right]=\left[\varphi(z)+w f^{-1}(z) h_{2}\right] .
$$

If $h_{2}=0$, then $[h]=\varphi(z) H^{2}$, so we get the assertion. If $h_{2} \neq 0$, then by Theorem 2.11 we get the assertion.

Example 2.13. By Theorem 2.11, for the following M we have that F_{z}^{M} is Fredholm and ind $F_{z}^{M}=-1$;

$$
M=[z-w], \quad M=\left[(z-w)^{2}\right], \quad M=\left[z^{2}-w^{3}\right] .
$$

3. Generalizations

Let M be an invariant subspace of H^{2} satisfying that $M \subset I(E)$ and $Z(M)=$ E. We have $A_{I(E)}(\lambda) \subset A_{M}(\lambda)$ for every $\lambda \in E$,

$$
\begin{equation*}
T_{z}^{*}\left\{0, z^{n} w^{m}:(n, m) \in A_{M}(\lambda)\right\} \subset\left\{0, z^{n} w^{m}:(n, m) \in A_{M}(\lambda)\right\} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{w}^{*}\left\{0, z^{n} w^{m}:(n, m) \in A_{M}(\lambda)\right\} \subset\left\{0, z^{n} w^{m}:(n, m) \in A_{M}(\lambda)\right\} . \tag{3.2}
\end{equation*}
$$

We recall that

$$
\begin{equation*}
\widetilde{M}=\bigcap_{\lambda \in E}\left\{f \in H^{2}:\left(D_{z}^{n} D_{w}^{m} f\right)(\lambda)=0 \text { for every }(n, m) \in A_{M}(\lambda)\right\} . \tag{3.3}
\end{equation*}
$$

Then $M \subset \widetilde{M} \subset I(E)$ and $E \subset Z(\widetilde{M}) \subset Z(M)=E$. Hence $Z(\widetilde{M})=E$. Since $I(E)=\widetilde{I}(E)$, as a generalization of zero based invariant subspaces we assume that

$$
\begin{equation*}
M=\widetilde{M} \tag{3.4}
\end{equation*}
$$

Put $N=H^{2} \ominus M$. We shall study about $\widetilde{\Omega}(N), \Omega(M)$ and the Fredholmness of F_{z}^{M} under the above situation.
Lemma 3.1. If $(0,0) \notin E$, then $\widetilde{\Omega}(N)=\{0\}$.
Proof. Let $f \in \widetilde{\Omega}(N)$. By (1.2), $(a z+b w) f \in M$ for every $a, b \in \mathbb{C}$. Since $(0,0) \notin E,\left(D_{z}^{n} D_{w}^{m} f\right)(\lambda)=0$ for every $\lambda \in E$ and $(n, m) \in A_{M}(\lambda)$. By (3.3) and (3.4), we have $f \in M$. Since $M \perp \widetilde{\Omega}(N)$, we have $f=0$.
Lemma 3.2. Suppose that $M \subset z^{n} w^{m} H^{2}$ for some $(n, m) \in \mathbb{N}^{2}$ with $(n, m) \neq$ $(0,0)$. If $f \in \widetilde{\Omega}(N)$, then $f \in z^{n} w^{m} H^{2}$.

Proof. Let $f \in \widetilde{\Omega}(N)$. Suppose that $f \notin z^{n} w^{m} H^{2}$. Then we may write $f=$ $f_{1} \oplus f_{2}$ for some $f_{1} \in z^{n} w^{m} H^{2}$ and $f_{2} \in H^{2} \ominus z^{n} w^{m} H^{2}$. Since $f_{2} \neq 0$, either $z f \notin z^{n} w^{m} H^{2}$ or $w f \notin z^{n} w^{m} H^{2}$. So either $z f \notin M$ or $w f \notin M$. By (1.2), $f \notin \widetilde{\Omega}(N)$. This is a contradiction. Thus we get $f \in z^{n} w^{m} H^{2}$.

Corollary 3.3. Suppose that $M \subset z^{n} w^{m} H^{2}$ for some $(n, m) \in \mathbb{N}^{2}$ with $(n, m) \neq(0,0)$. Let $N_{1}=H^{2} \ominus \bar{z}^{n} \bar{w}^{m} M$. Then $\widetilde{\Omega}(N)=z^{n} w^{m} \widetilde{\Omega}\left(N_{1}\right)$.

By Corollary 3.3 , to study $\widetilde{\Omega}(N)$ we may assume that $M \not \subset z H^{2}$ and $M \not \subset$ $w H^{2}$.

Lemma 3.4. Suppose that $(0,0) \in E, M \not \subset z H^{2}$ and $M \not \subset w H^{2}$. Then there are $n_{1}, n_{2}, \ldots, n_{k}, m_{1}, m_{2}, \ldots, m_{k} \in \mathbb{N}$ such that $0 \leq n_{1}<n_{2}<\cdots<n_{k}$, $0 \leq m_{k}<m_{k-1}<\cdots<m_{1}$ and

$$
A_{M}(0,0)=\bigcup_{j=1}^{k}\left\{(n, m) \in \mathbb{N}^{2}: 0 \leq n \leq n_{j}, 0 \leq m \leq m_{j}\right\}
$$

Proof. Since $M \not \subset z H^{2}$ and $M \not \subset w H^{2},(n, 0) \notin A_{M}(0,0)$ and $(0, m) \notin$ $A_{M}(0,0)$ for some $n, m \in \mathbb{N}$. By (3.1) and (3.2), we get the assertion.

Suppose that $(0,0) \in E$ and $E \neq\{(0,0)\}$. Let

$$
M_{0}=\bigcap_{\lambda \in E \backslash\{(0,0)\}}\left\{f \in H^{2}:\left(D_{z}^{n} D_{w}^{m} f\right)(\lambda)=0 \text { for every }(n, m) \in A_{M}(\lambda)\right\}
$$

Then by (3.3) and (3.4), we have $M \subset M_{0}$.
Lemma 3.5. Suppose that $(0,0) \in E$ and $E \neq\{(0,0)\}$. If $M=M_{0}$, then $\widetilde{\Omega}(N)=\{0\}$.

Proof. Let $g \in \widetilde{\Omega}(N)$. Then $(a z+b w) g \in M$ for every $a, b \in \mathbb{C}$, so $g \in M_{0}$. By the assumption, we have $g \in M$. Thus we get the assertion.

We may rewrite $A_{M}(0,0)$ as follows;

$$
\begin{equation*}
A_{M}(0,0)=\left\{(n, m) \in \mathbb{N}^{2}: z^{n} w^{m} \perp M\right\} \tag{3.5}
\end{equation*}
$$

Lemma 3.6. Suppose that $(0,0) \in E, E \neq\{(0,0)\}, M \not \subset z H^{2}$ and $M \not \subset w H^{2}$. If $M \neq M_{0}$, then $\widetilde{\Omega}(N) \neq\{0\}$.

Proof. Take $f_{0} \in M_{0} \ominus M$ with $f_{0} \neq 0$. By (3.3) and (3.4), $\left(D_{z}^{i} D_{w}^{j} f_{0}\right)(0,0) \neq 0$ for some $(i, j) \in A_{M}(0,0)$. Here we use the notations given in Lemma 3.4. Since $z^{i} w^{j} \not \perp f_{0}$, there is $(s, t) \in \mathbb{N}^{2}$ such that $z^{n_{\ell}} w^{m_{\ell}} \not \perp z^{s} w^{t} f_{0}$ for some $1 \leq \ell \leq k$,

$$
z^{n} w^{m} \perp z^{s+1} w^{t} f_{0} \quad \text { and } \quad z^{n} w^{m} \perp z^{s} w^{t+1} f_{0}
$$

for every $(n, m) \in A_{M}(0,0)$. By (3.3) and (3.4), we have $z^{s} w^{t} f_{0} \notin M$ and $z^{s+1} w^{t} f_{0}, z^{s} w^{t+1} f_{0} \in M$. Let $f_{1}=z^{s} w^{t} f_{0}-P_{M} z^{s} w^{t} f_{0}$. Then $f_{1} \in N$ and $f_{1} \neq 0$. Moreover we have $z f_{1}, w f_{1} \in M$. By (1.2), we have $f_{1} \in \widetilde{\Omega}(N)$.

Proposition 3.7. Suppose that $(0,0) \in E$ and $E \neq\{(0,0)\}$. Let M be an invariant subspace of H^{2} such that $M \varsubsetneqq I(E), Z(M)=E$ and $M=\widetilde{M}$. Moreover we assume that $M \not \subset z H^{2}$ and $M \not \subset w H^{2}$. Then $\widetilde{\Omega}(N) \neq\{0\}$ if and only if $M \varsubsetneqq M_{0}$.

Proof. The necessity follows from Lemma 3.5. The reverse implication follows from Lemma 3.6.

Under the condition $M \varsubsetneqq M_{0}$, we shall study about $\operatorname{dim} \widetilde{\Omega}(N)$.
Theorem 3.8. Suppose that $(0,0) \in E$ and $E \neq\{(0,0)\}$. Let M be an invariant subspace of H^{2} such that $M \varsubsetneqq I(E), Z(M)=E, M \varsubsetneqq M_{0}$ and $M=\widetilde{M}$. Moreover we assume that $M \not \subset z H^{2}$ and $M \not \subset w H^{2}$. Let $n_{1}, n_{2}, \ldots, n_{k}, m_{1}$, $m_{2}, \ldots, m_{k} \in \mathbb{N}$ satisfy the conditions given in Lemma 3.4. Let

$$
\Sigma=\left\{\left(n_{j}, m_{j}\right): 1 \leq j \leq k\right\} \subset A_{M}(0,0)
$$

and

$$
M_{1}=\left\{f \in M_{0}: f \perp z^{n} w^{m} \text { for every }(n, m) \in A_{M}(0,0) \backslash \Sigma\right\}
$$

Then $\widetilde{\Omega}(N)=M_{1} \ominus M$ and $1 \leq \operatorname{dim} \widetilde{\Omega}(N) \leq k$.
Proof. Since $M \varsubsetneqq M_{0}$, there is $f \in M_{0} \ominus M$ with $f \neq 0$. Since $M=\widetilde{M}$, $f \not \perp z^{i} w^{j}$ for some $(i, j) \in A_{M}(0,0)$. By considering $z^{s} w^{t} f$ for $(s, t) \in \mathbb{N}^{2}$, we have $M \varsubsetneqq M_{1} \subset M_{0}$.

Let $h \in \widetilde{\Omega}(N)$. Then $z h, w h \in M$. Since $M=\widetilde{M}$, we have $h \in M_{0}$. For any $(n, m) \in A_{M}(0,0) \backslash \Sigma$, either $(n+1, m) \in A_{M}(0,0)$ or $(n, m+1) \in A_{M}(0,0)$. If $(n+1, m) \in A_{M}(0,0)$, then $0=\left\langle z h, z^{n+1} w^{m}\right\rangle=\left\langle h, z^{n} w^{m}\right\rangle$. If $(n, m+1) \in$ $\underset{\widetilde{\Omega}}{A_{M}}(0,0)$, then $0=\left\langle w h, z^{n} w^{m+1}\right\rangle=\left\langle h, z^{n} w^{m}\right\rangle$. Hence $h \in M_{1}$. Thus we get $\widetilde{\Omega}(N) \subset M_{1} \ominus M$.

Let $f \in M_{1} \ominus M$ and $(n, m) \in A_{M}(0,0)$. Then $f \in M_{0}$ and $\left\langle z f, z^{n} w^{m}\right\rangle=$ $\left\langle f, z^{n-1} w^{m}\right\rangle=0$. Hence $z f \in \widetilde{M}=M$. Similarly $w f \in M$. Hence $M_{1} \ominus M \subset$ $\widetilde{\Omega}(N)$. Thus we get the assertion.
Theorem 3.9. Suppose that $(0,0) \in E$ and $E \neq\{(0,0)\}$. Let M be an invariant subspace of H^{2} such that $M \varsubsetneqq I(E), Z(M)=E$ and $M=\widetilde{M}$. Moreover we assume that $M \not \subset z H^{2}$ and $M \not \subset w H^{2}$. Let $n_{1}, n_{2}, \ldots, n_{k}, m_{1}, m_{2}, \ldots$, $m_{k} \in \mathbb{N}$ satisfy the conditions given in Lemma 3.4. If $(0,0) \notin Z\left(M_{0}\right)$, then $\operatorname{dim} \widetilde{\Omega}(N)=k$.
Proof. By the assumption, there is $f_{0} \in M_{0}$ such that $f_{0}(0,0)=1$. For each $1 \leq j \leq k$, we have $\left\langle z^{n_{j}} w^{m_{j}}, z^{n_{j}} w^{m_{j}} f_{0}\right\rangle \neq 0$. By Lemma 3.4 and (3.5), we have $z^{n_{j}} w^{m_{j}} f_{0} \notin M$. Let

$$
f_{j}=z^{n_{j}} w^{m_{j}} f_{0}-P_{M}\left(z^{n_{j}} w^{m_{j}} f_{0}\right)
$$

Then $f_{j} \in N$ and $f_{j} \neq 0$. Since $M=\widetilde{M}$, it is not so difficult to show that $z f_{j}, w f_{j} \in M$ for every $1 \leq j \leq k$. Hence $f_{j} \in \widetilde{\Omega}(N)$ for every $1 \leq j \leq k$. Suppose that $\sum_{j=1}^{k} c_{j} f_{j}=0$ for some $c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{C}$. Since $\left(n_{i}, m_{i}\right) \in$ $A_{M}(0,0)$ for every $1 \leq i \leq k$ and $f_{0}(0,0)=1$, we have

$$
0=\left\langle\sum_{j=1}^{k} c_{j} f_{j}, z^{n_{i}} w^{m_{i}}\right\rangle=\left\langle\sum_{j=1}^{k} c_{j} z^{n_{j}} w^{m_{j}} f_{0}, z^{n_{i}} w^{m_{i}}\right\rangle
$$

$$
=c_{i}\left\langle z^{n_{i}} w^{m_{i}} f_{0}, z^{n_{i}} w^{m_{i}}\right\rangle=c_{i}
$$

Therefore $\operatorname{dim} \sum_{j=1}^{k} \mathbb{C} \cdot f_{j}=k$. By Theorem 3.8, we get $\operatorname{dim} \widetilde{\Omega}(N)=k$.
We shall show an example satisfying conditions in Theorem 3.9.
Example 3.10. For $\alpha \in \mathbb{D}$, let $b_{\alpha}(z)=(z-\alpha) /(1-\bar{\alpha} z)$. For each $\ell \geq 1$, let

$$
M=b_{\alpha}(z) b_{\alpha}(w) \sum_{j=0}^{\ell} z^{\ell-j} w^{j} H^{2}
$$

and $E=Z(M)$. Then

$$
E=(\{\alpha\} \times \mathbb{D}) \cup(\mathbb{D} \times\{\alpha\}) \cup\{(0,0)\},
$$

$M \varsubsetneqq I(E), M \not \subset z H^{2}, M \not \subset w H^{2}$ and $M=\widetilde{M}$. Moreover we have that $M_{0}=b_{\alpha}(z) b_{\alpha}(w) H^{2}, Z\left(M_{0}\right)=(\{\alpha\} \times \mathbb{D}) \cup(\mathbb{D} \times\{\alpha\})$ and

$$
A_{M}(0,0)=\bigcup_{i=1}^{\ell}\{(i-1,0),(i-1,1), \ldots,(i-1, \ell-i)\}
$$

So in Lemma 3.4, we have

$$
\left(n_{1}, m_{1}\right)=(0, \ell-1),\left(n_{2}, m_{2}\right)=(1, \ell-2), \ldots,\left(n_{\ell}, m_{\ell}\right)=(\ell-1,0)
$$

and $k=\ell$. By Theorem 3.9, we have $\operatorname{dim} \widetilde{\Omega}(N)=\ell$.
Example 3.11. Let $M=[z(z-w), w(z-w)]$. Then we have $M_{0}=[z-w]$ and $Z(\underset{\sim}{\Omega})=Z\left(M_{0}\right)=\{(a, a): a \in \mathbb{D}\}, \widetilde{M}=M$ and $M_{0} \ominus M=\mathbb{C} \cdot(z-w)$. Hence $\widetilde{\Omega}(N)=\mathbb{C} \cdot(z-w)$ and $\operatorname{dim} \widetilde{\Omega}(N)=1$. Moreover

$$
A_{M}(0,0)=\{(0,0),(0,1),(1,0)\},
$$

so in Lemma 3.4 we have $\left(n_{1}, m_{1}\right)=(0,1),\left(n_{2}, m_{2}\right)=(1,0)$ and $k=2$. Hence $\operatorname{dim} \widetilde{\Omega}(N)=1<2=k$.

In Theorem 3.8, we have $\operatorname{dim} \widetilde{\Omega}(N) \leq k$. In Example 3.11, we showed an example of M satisfying $\operatorname{dim} \widetilde{\Omega}(N)<k$. In Theorem 3.9, if $(0,0) \notin Z\left(M_{0}\right)$, then $\operatorname{dim} \widetilde{\Omega}(N)=k$. In the following, we shall show an example of M satisfying that $(0,0) \in Z\left(M_{0}\right)$ and $\operatorname{dim} \widetilde{\Omega}(N)=k$.

Example 3.12. Let

$$
M=\left\{f \in[z-w]: f \perp z, z^{2}, w, z w, z^{2} w, w^{2}, w^{3}\right\} .
$$

Then $M_{0}=[z-w]$ and

$$
A_{M}(0,0)=\{(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(2,0),(2,1)\} .
$$

Note that $\left(n_{1}, m_{1}\right)=(0,3),\left(n_{2}, m_{2}\right)=(2,1)$ and $k=2$ in Lemma 3.4. Moreover

$$
M=\left[z\left(z^{2}-w^{2}\right), z^{3}(z-w), z^{2} w(z-w), z w^{2}(z-w), w^{3}(z-w)\right]
$$

and $\widetilde{M}=M$. In Theorem 3.8, we have $\Sigma=\{(0,3),(2,1)\}$ and

$$
M_{1}=\left[z^{2}(z-w), z w(z-w), w^{2}(z-w)\right]
$$

We have

$$
M_{1} \ominus M=\mathbb{C} \cdot w\left(z^{2}-w^{2}\right) \oplus \mathbb{C} \cdot\left(z^{3}-z^{2} w+z w^{2}-w^{3}\right)
$$

Then by Theorem 3.8, $\operatorname{dim} \widetilde{\Omega}(N)=2=k$.
Suppose that $(0,0) \in E$ and $E \neq\{(0,0)\}$. Let M be an invariant subspace of H^{2} such that $M \varsubsetneqq I(E), Z(M)=E$ and $M=\widetilde{M}$. Moreover we assume that $M \not \subset z H^{2}$ and $M \not \subset w H^{2}$. To describe $\Omega(M)$, we set

$$
B_{M}(0,0)=\mathbb{N}^{2} \backslash A_{M}(0,0)
$$

Let $n_{1}, n_{2}, \ldots, n_{k}, m_{1}, m_{2}, \ldots, m_{k} \in \mathbb{N}$ satisfy the conditions given in Lemma 3.4. Put

$$
\begin{gathered}
\left(s_{1}, t_{1}\right)=\left(0, m_{1}+1\right), \quad\left(s_{2}, t_{2}\right)=\left(n_{1}+1, m_{2}+1\right), \ldots \\
\left(s_{k}, t_{k}\right)=\left(n_{k-1}+1, m_{k}+1\right), \quad\left(s_{k+1}, t_{k+1}\right)=\left(n_{k}+1,0\right)
\end{gathered}
$$

Then $0=s_{1}<s_{2}<\cdots<s_{k+1}, 0=t_{k+1}<t_{k}<\cdots<t_{1}$ and

$$
\begin{equation*}
B_{M}(0,0)=\bigcup_{j=1}^{k+1}\left\{\left(s_{j}+n, t_{j}+m\right):(n, m) \in \mathbb{N}^{2}\right\} \tag{3.6}
\end{equation*}
$$

Let $1 \leq \sigma_{1}<\sigma_{2}<\cdots<\sigma_{q}$ be the integers such that for each $1 \leq i \leq q$ there is $1 \leq j \leq k+1$ satisfying $s_{j}+t_{j}=\sigma_{i}$ and

$$
\left\{\left(s_{j}, t_{j}\right): 1 \leq j \leq k+1\right\}=\bigcup_{i=1}^{q}\left\{\left(s_{j}, t_{j}\right): 1 \leq j \leq k+1, s_{j}+t_{j}=\sigma_{i}\right\}
$$

Set

$$
\Gamma=\left\{\left(s_{j}, t_{j}\right): 1 \leq j \leq k+1\right\}
$$

and

$$
\begin{equation*}
\Gamma_{i}=\left\{\left(s_{j}, t_{j}\right): 1 \leq j \leq k+1, s_{j}+t_{j}=\sigma_{i}\right\} \tag{3.7}
\end{equation*}
$$

Then $\sum_{i=1}^{q} \# \Gamma_{i}=\# \Gamma=k+1$, where $\# \Gamma$ denotes the number of elements in Γ.

Lemma 3.13. $P_{M} z^{s_{j}} w^{t_{j}} \neq 0$ and $P_{M} z^{s_{j}} w^{t_{j}} \in \Omega(M)$ for every $1 \leq j \leq k+1$.
Proof. Since $\left(s_{j}, t_{j}\right) \notin A_{M}(0,0)$, we have $z^{s_{j}} w^{t_{j}} \not \perp M$. Then $P_{M} z^{s_{j}} w^{t_{j}} \neq 0$,

$$
z^{s_{j}} w^{t_{j}}=P_{M} z^{s_{j}} w^{t_{j}} \oplus\left(z^{s_{j}} w^{t_{j}}-P_{M} z^{s_{j}} w^{t_{j}}\right)
$$

and $z^{s_{j}} w^{t_{j}}-P_{M} z^{s_{j}} w^{t_{j}} \in N$. Since $T_{z}^{*} z^{s_{j}} w^{t_{j}}, T_{w}^{*} z^{s_{j}} w^{t_{j}} \in N$, by (1.1) we have $P_{M} z^{s_{j}} w^{t_{j}} \in \Omega(M)$.

Corollary 3.14. $\operatorname{dim} \sum_{j=1}^{k+1} \mathbb{C} \cdot P_{M} z^{s_{j}} w^{t_{j}} \leq \operatorname{dim} \Omega(M)$.

Example 3.15. Let

$$
M=\left[z\left(z^{3}+z^{2} w+z w^{2}+w^{3}\right), w\left(z^{3}+z^{2} w+z w^{2}+w^{3}\right)\right] .
$$

Then $M=\widetilde{M}, M \not \subset z H^{2}$ and $M \not \subset w H^{2}$. We have

$$
B_{M}(0,0)=\bigcup_{j=0}^{4}\left((4-j, j)+\mathbb{N}^{2}\right)
$$

and $k=4$. We also have

$$
\begin{aligned}
\sum_{j=0}^{4} \mathbb{C} \cdot P_{M} z^{4-j} w^{j} & =\mathbb{C} \cdot z\left(z^{3}+z^{2} w+z w^{2}+w^{3}\right)+\mathbb{C} \cdot w\left(z^{3}+z^{2} w+z w^{2}+w^{3}\right) \\
& =\Omega(M)
\end{aligned}
$$

and

$$
\widetilde{\Omega}(N)=\mathbb{C} \cdot\left(z^{3}+z^{2} w+z w^{2}+w^{3}\right)
$$

Theorem 3.16. Suppose that $(0,0) \in E$ and $E \neq\{(0,0)\}$. Let M be an invariant subspace of H^{2} such that $M \varsubsetneqq I(E), Z(M)=E$ and $M=\widetilde{M}$. Moreover we assume that $M \not \subset z H^{2}$ and $M \not \subset w H^{2}$. If there is $h \in M_{0} \cap H^{\infty}$ satisfying $h(0,0) \neq 0$, then F_{z}^{M} is Fredholm and ind $F_{z}^{M}=-1$.

Proof. First, we shall show that

$$
\begin{equation*}
z M+w M=M \cap \sum_{j=1}^{k+1} z^{s_{j}} w^{t_{j}}\left(z H^{2}+w H^{2}\right) \tag{3.8}
\end{equation*}
$$

Let $s_{1}, s_{2}, \ldots, s_{k+1}, t_{1}, t_{2}, \ldots, t_{k+1} \in \mathbb{N}$ satisfy the conditions given above Lemma 3.13. Since $M \subset \sum_{j=1}^{k+1} z^{s_{j}} w^{t_{j}} H^{2}$, we have

$$
z M+w M \subset M \cap \sum_{j=1}^{k+1} z^{s_{j}} w^{t_{j}}\left(z H^{2}+w H^{2}\right)
$$

Let

$$
f \in M \cap \sum_{j=1}^{k+1} z^{s_{j}} w^{t_{j}}\left(z H^{2}+w H^{2}\right)
$$

We may assume that $h(0,0)=1$ and write $h=1+z h_{1}(z)+w h_{2}$ for some $h_{1}(z), h_{2} \in H^{\infty}$. Then

$$
f=f h-z f h_{1}(z)-w f h_{2} .
$$

Since $f \in M$, we have $z f h_{1}(z)+w f h_{2} \in z M+w M$. We may also write

$$
f=\sum_{j=1}^{k+1} z^{s_{j}} w^{t_{j}}\left(z f_{j}+w g_{j}\right), \quad f_{j}, g_{j} \in H^{2}
$$

We have

$$
f h=z\left(\sum_{j=1}^{k+1} z^{s_{j}} w^{t_{j}} f_{j} h\right)+w\left(\sum_{j=1}^{k+1} z^{s_{j}} w^{t_{j}} g_{j} h\right) .
$$

Since $h \in M_{0} \cap H^{\infty}$, we have $f_{j} h, g_{j} h \in M_{0}$. By (3.6), we have

$$
\sum_{j=1}^{k+1} z^{s_{j}} w^{t_{j}} f_{j} h, \quad \sum_{j=1}^{k+1} z^{s_{j}} w^{t_{j}} g_{j} h \perp z^{n} w^{m}
$$

for every $(n, m) \in A_{M}(0,0)$. Since $M=\widetilde{M}$, we get

$$
\sum_{j=1}^{k+1} z^{s_{j}} w^{t_{j}} f_{j} h, \sum_{j=1}^{k+1} z^{s_{j}} w^{t_{j}} g_{j} h \in M
$$

Hence $f h \in z M+w M$, so $f \in z M+w M$ and

$$
M \cap \sum_{j=1}^{k+1} z^{s_{j}} w^{t_{j}}\left(z H^{2}+w H^{2}\right) \subset z M+w M
$$

Thus we get (3.8).
It is not difficult to see that $\sum_{j=1}^{k+1} z^{s_{j}} w^{t_{j}}\left(z H^{2}+w H^{2}\right)$ is closed, so $z M+w M$ is closed.

By Theorem 3.9, we have $\operatorname{dim} \widetilde{\Omega}(N)=k$. By Lemma 3.13 , we also have $P_{M} z^{s_{j}} w^{t_{j}} \neq 0$ and

$$
\sum_{j=1}^{k+1} \mathbb{C} \cdot P_{M} z^{s_{j}} w^{t_{j}} \subset \Omega(M)
$$

Suppose that $\sum_{j=1}^{k+1} c_{j} P_{M} z^{s_{j}} w^{t_{j}}=0$ for some $\left\{c_{j}\right\}_{j=1}^{k+1} \subset \mathbb{C}$. Since $h \in M_{0}$, we have $z^{s_{j}} w^{t_{j}} h \in \widetilde{M}=M$ for every $1 \leq j \leq k+1$. Since $h(0,0)=1$, for each $1 \leq i \leq k+1$ we have

$$
0=\left\langle\sum_{j=1}^{k+1} c_{j} P_{M} z^{s_{j}} w^{t_{j}}, z^{s_{i}} w^{t_{i}} h\right\rangle=\sum_{j=1}^{k+1} c_{j}\left\langle z^{s_{j}} w^{t_{j}}, z^{s_{i}} w^{t_{i}} h\right\rangle=c_{i} .
$$

Hence $\left\{P_{M} z^{s_{j}} w^{t_{j}}\right\}_{j=1}^{k+1}$ is linearly independent, so by Corollary $3.14 k+1 \leq$ $\operatorname{dim} \Omega(M)$.

To show $k+1=\operatorname{dim} \Omega(M)$, let $f \in \Omega(M)$ satisfy $f \perp P_{M} z^{s_{j}} w^{t_{j}}$ for every $1 \leq j \leq k+1$. Then $f \perp z^{s_{j}} w^{t_{j}}$ for every $1 \leq j \leq k+1$. Since $f \perp z^{n} w^{m}$ for every $(n, m) \in A_{M}(0,0)$, we have

$$
f \in M \cap \sum_{j=1}^{k+1} z^{s_{j}} w^{t_{j}}\left(z H^{2}+w H^{2}\right)
$$

By (3.8), we have $f \in z M+w M$, so $f=0$. Thus we get the assertion.

4. Special cases

Let $\Lambda=\{(a, a): a \in \mathbb{D}\}$. Then $I(\Lambda)=[z-w]$ and $Z(I(\Lambda))=\Lambda$. In this section, we shall study invariant subspaces M of H^{2} satisfying $M \varsubsetneqq[z-w]$, $Z(M)=\Lambda, M \subset M_{0}=[z-w]$ and $M=\widetilde{M}$. Moreover we assume that $M \not \subset z H^{2}$ and $M \not \subset w H^{2}$. Since $M_{0}=[z-w]$ and $M=\widetilde{M}$, we have

$$
M=\left\{f \in[z-w]: f \perp z^{n} w^{m} \text { for every }(n, m) \in A_{M}(0,0)\right\} .
$$

For each positive integer n, let

$$
\begin{equation*}
[z-w]_{n}=\sum_{j=0}^{n-1} \mathbb{C} \cdot\left(z^{n-j} w^{j}-w^{n}\right) \tag{4.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
[z-w]=\bigoplus_{n=1}^{\infty}[z-w]_{n} \tag{4.2}
\end{equation*}
$$

Let

$$
\mathcal{L}_{n}=\sum_{j=0}^{n} \mathbb{C} \cdot z^{n-j} w^{j}
$$

Then $[z-w]_{n} \subset \mathcal{L}_{n}$. We note that $P_{\mathcal{L}_{n}} f=P_{[z-w]_{n}} f$ for every $f \in[z-w]$.
Since $M_{0}=[z-w], A_{M}((a, a))=\{(0,0)\}$ for every $a \in \mathbb{D} \backslash\{0\}$. By Lemma 3.4 , there are $n_{1}, n_{2}, \ldots, n_{k}, m_{1}, m_{2}, \ldots, m_{k} \in \mathbb{N}$ satisfying that $0 \leq n_{1}<n_{2}<$ $\cdots<n_{k}, 0 \leq m_{k}<m_{k-1}<\cdots<m_{1}$ and

$$
\begin{equation*}
A_{M}(0,0)=\bigcup_{j=1}^{k}\left\{(n, m) \in \mathbb{N}^{2}: 0 \leq n \leq n_{j}, 0 \leq m \leq m_{j}\right\} \tag{4.3}
\end{equation*}
$$

Since $Z(M)=\Lambda$ and $M \varsubsetneqq M_{0}=[z-w]$, we have $A_{M}(0,0) \neq\{(0,0)\}$, so $n_{j}+m_{j} \geq 1$ for every $1 \leq j \leq k$. Hence there are integers $1 \leq \ell_{1}<\ell_{2}<\cdots<\ell_{p}$ such that for each $1 \leq i \leq p$ there is $1 \leq j \leq k$ satisfying $n_{j}+m_{j}=\ell_{i}$ and

$$
\Sigma=\bigcup_{i=1}^{p}\left\{\left(n_{j}, m_{j}\right): 1 \leq j \leq k, n_{j}+m_{j}=\ell_{i}\right\}
$$

Set

$$
\Sigma_{i}=\left\{\left(n_{j}, m_{j}\right): 1 \leq j \leq k, n_{j}+m_{j}=\ell_{i}\right\}
$$

Then $\Sigma_{i} \neq \emptyset$ and $\Sigma_{i} \cap \Sigma_{j}=\emptyset$ for $i \neq j$. We have $\sum_{i=1}^{p} \# \Sigma_{i}=\# \Sigma=k$. Let

$$
\Sigma^{e}=\bigoplus_{(n, m) \in \Sigma} \mathbb{C} \cdot z^{n} w^{m} \quad \text { and } \quad \Sigma_{i}^{e}=\bigoplus_{(n, m) \in \Sigma_{i}} \mathbb{C} \cdot z^{n} w^{m}
$$

Recall that $B_{M}(0,0)=\mathbb{N}^{2} \backslash A_{M}(0,0)$ and

$$
\begin{gathered}
\left(s_{1}, t_{1}\right)=\left(0, m_{1}+1\right), \quad\left(s_{2}, t_{2}\right)=\left(n_{1}+1, m_{2}+1\right), \ldots \\
\left(s_{k}, t_{k}\right)=\left(n_{k-1}+1, m_{k}+1\right), \quad\left(s_{k+1}, t_{k+1}\right)=\left(n_{k}+1,0\right)
\end{gathered}
$$

Then by (4.3),

$$
\begin{equation*}
B_{M}(0,0)=\bigcup_{j=1}^{k+1}\left(\left(s_{j}, t_{j}\right)+\mathbb{N}^{2}\right) \tag{4.4}
\end{equation*}
$$

Let $1 \leq \sigma_{1}<\sigma_{2}<\cdots<\sigma_{q}$ be the integers such that for each $1 \leq i \leq q$ there is $1 \leq j \leq k+1$ satisfying $s_{j}+t_{j}=\sigma_{i}$ and

$$
\left\{\left(s_{j}, t_{j}\right): 1 \leq j \leq k+1\right\}=\bigcup_{i=1}^{q}\left\{\left(s_{j}, t_{j}\right): 1 \leq j \leq k+1, s_{j}+t_{j}=\sigma_{i}\right\}
$$

Set

$$
\Gamma=\left\{\left(s_{j}, t_{j}\right): 1 \leq j \leq k+1\right\}
$$

and

$$
\Gamma_{i}=\left\{\left(s_{j}, t_{j}\right): 1 \leq j \leq k+1, s_{j}+t_{j}=\sigma_{i}\right\}
$$

Then $\sum_{i=1}^{q} \# \Gamma_{i}=\# \Gamma=k+1$.
Lemma 4.1. (i) $s+t \geq \sigma_{1}$ for every $(s, t) \in B_{M}(0,0)$.
(ii) If $(s, t) \in B_{M}(0,0)$ and $s+t=\sigma_{1}$, then $(s, t) \in \Gamma_{1}$.
(iii) For each $\left(s_{1}, t_{1}\right) \in B_{M}(0,0)$, we have

$$
\#\left\{(s, t) \in B_{M}(0,0): s+t=s_{1}+t_{1}\right\} \geq 2 .
$$

Proof. (i) and (ii) follow from (4.4).
(iii) Since $\left(s_{1}, t_{1}\right) \in B_{M}(0,0)$, there is $f \in M$ satisfying $z^{s_{1}} w^{t_{1}} \not \perp f$. Since $f \in[z-w]$, by (4.1) and (4.2)

$$
M \ni P_{[z-w]_{s_{1}+t_{1}}} f=\sum_{j=0}^{s_{1}+t_{1}-1} c_{j}\left(z^{s_{1}+t_{1}-j} w^{j}-w^{s_{1}+t_{1}}\right) \neq 0 .
$$

This shows (iii).
Theorem 4.2. Let M be an invariant subspace of H^{2} with $M \varsubsetneqq[z-w]$ such that $Z(M)=\Lambda, M \subset M_{0}=[z-w]$ and $M=\widetilde{M}$. Moreover we assume that $M \not \subset z H^{2}$ and $M \not \subset w H^{2}$. Let $n_{1}, n_{2}, \ldots, n_{k}, m_{1}, m_{2}, \ldots, m_{\widetilde{\Omega}} \in \mathbb{N}$ satisfy the conditions given in Lemma 3.4. Then $\max \{k-1,1\} \leq \operatorname{dim} \widetilde{\Omega}(N) \leq k$.
Proof. Let $f \in \widetilde{\Omega}(N)$. By (1.2), $z f, w f \in M \subset[z-w]$, so $f \in[z-w]$. Recall that

$$
M_{1}=\left\{f \in[z-w]: f \perp z^{n} w^{m} \text { for every }(n, m) \in A_{M}(0,0) \backslash \Sigma\right\} .
$$

Then we have $f \in M_{1}$. Hence $\widetilde{\Omega}(N) \subset M_{1}$. Since $z M_{1} \subset M$ and $w M_{1} \subset M$, we have

$$
\widetilde{\Omega}(N)=M_{1} \ominus M
$$

We have

$$
M=\bigoplus_{n=1}^{\infty} M \cap[z-w]_{n} \quad \text { and } \quad M_{1}=\bigoplus_{n=1}^{\infty} M_{1} \cap[z-w]_{n}
$$

so

$$
\widetilde{\Omega}(N)=\bigoplus_{i=1}^{p} \widetilde{\Omega}(N) \cap[z-w]_{\ell_{i}} .
$$

Hence

$$
\begin{equation*}
\operatorname{dim} \widetilde{\Omega}(N)=\sum_{i=1}^{p} \operatorname{dim} \widetilde{\Omega}(N) \cap[z-w]_{\ell_{i}} \tag{4.5}
\end{equation*}
$$

For $2 \leq i \leq p$, there is $(s, t) \in B_{M}(0,0)$ such that $s+t=\ell_{i}$. Let

$$
K_{i}=\left\{(s, t) \in B_{M}(0,0): s+t=\ell_{i}\right\} .
$$

By Lemma 4.1(iii), we have $\# K_{i} \geq 2$. For each $\left(n_{j}, m_{j}\right) \in \Sigma_{i}$, let

$$
f_{j}=z^{n_{j}} w^{m_{j}}-\frac{1}{\# K_{i}} \sum_{(s, t) \in K_{i}} z^{s} w^{t} \in[z-w]_{\ell_{i}} .
$$

It is not difficult to see that

$$
f_{j} \in M_{1} \ominus M=\widetilde{\Omega}(N), \quad\left(n_{j}, m_{j}\right) \in \Sigma_{i},
$$

So

$$
\widetilde{\Omega}(N) \cap[z-w]_{\ell_{i}}=\sum_{\left(n_{j}, m_{j}\right) \in \Sigma_{i}} \mathbb{C} \cdot f_{j} .
$$

Hence

$$
\operatorname{dim} \widetilde{\Omega}(N) \cap[z-w]_{\ell_{i}}=\# \Sigma_{i}, \quad 2 \leq i \leq p
$$

We consider two cases for $i=1$.
Case 1. Suppose that there is $(s, t) \in B_{M}(0,0)$ such that $s+t=\ell_{1}$. Similarly as above, we have $\operatorname{dim} \widetilde{\Omega}(N) \cap[z-w]_{\ell_{1}}=\# \Sigma_{1}$. Hence in this case, by (4.5) we have

$$
\operatorname{dim} \widetilde{\Omega}(N)=\sum_{i=1}^{p} \# \Sigma_{i}=\# \Sigma=k
$$

Case 2. Suppose that $\left\{(s, t) \in B_{M}(0,0): s+t=\ell_{1}\right\}=\emptyset$. In this case, take $\left(n_{0}, m_{0}\right) \in \Sigma_{1}$. Then

$$
\widetilde{\Omega}(N) \cap[z-w]_{\ell_{1}}=\sum_{(n, m) \in \Sigma_{1}} \mathbb{C} \cdot\left(z^{n} w^{m}-z^{n_{0}} w^{m_{0}}\right),
$$

so

$$
\operatorname{dim} \widetilde{\Omega}(N) \cap[z-w]_{\ell_{1}}=\# \Sigma_{1}-1
$$

Hence

$$
\begin{aligned}
\operatorname{dim} \widetilde{\Omega}(N) & =\operatorname{dim} \widetilde{\Omega}(N) \cap[z-w]_{\ell_{1}}+\sum_{i=2}^{p} \operatorname{dim} \widetilde{\Omega}(N) \cap[z-w]_{\ell_{i}} \\
& =\# \Sigma_{1}-1+\sum_{i=2}^{p} \# \Sigma_{i}=k-1 .
\end{aligned}
$$

By Theorem 3.8, $1 \leq \operatorname{dim} \widetilde{\Omega}(N) \leq k$. Thus we get the assertion.
Let M be an invariant subspace of H^{2} with $M \subset[z-w]$ satisfying the conditions given in Theorem 4.2. Next, we shall study about $\Omega(M)$. In [5], the authors proved the following.

Lemma 4.3. Let M_{1} and M_{2} be invariant subspaces of H^{2} satisfying $M_{2} \varsubsetneqq M_{1}$ and $\operatorname{dim}\left(M_{1} \ominus M_{2}\right)<\infty$. Then $F_{z}^{M_{1}}$ is a Fredholm operator if and only if so is $F_{z}^{M_{2}}$. In this case, we have ind $F_{z}^{M_{1}}=\operatorname{ind} F_{z}^{M_{2}}$.
Corollary 4.4. Let M be an invariant subspace of H^{2} with $M \subset[z-w]$ such that $Z(M)=\Lambda, M \varsubsetneqq M_{0}=[z-w]$ and $M=\widetilde{M}$. Moreover we assume that $M \not \subset z H^{2}$ and $M \not \subset w H^{2}$. Then F_{z}^{M} is Fredholm and ind $F_{z}^{M}=-1$.
Proof. By Example 2.13, $F_{z}^{[z-w]}$ is Fredholm and ind $F_{z}^{[z-w]}=-1$. By Lemma 3.4, $\operatorname{dim}([z-w] \ominus M)<\infty$. Then by Lemma 4.3, we get the assertion.

In the proof of Theorem 4.2, we described the elements in $\widetilde{\Omega}(N)$. By Lemma 2.1 and Corollary 4.4, we have $\operatorname{dim} \Omega(M)=\operatorname{dim} \widetilde{\Omega}(N)+1$. We shall describe the elements in $\Omega(M)$. We shall use the same notations given above Lemma 3.13. Since $M \varsubsetneqq[z-w]$, we have $2 \leq \sigma_{1}$. We note that $n+m \geq \sigma_{1}$ for every $(n, m) \in B_{M}(0,0)$. Moreover if $(n, m) \in B_{M}(0,0)$ and $n+m=\sigma_{1}$, then $(n, m) \in \Gamma_{1}$.
Lemma 4.5. (i) $\# \Gamma_{1} \geq 2$ and if $(n, m) \in B_{M}(0,0)$, then $n+m=\sigma_{1}$ if and only if $(n, m) \in \Gamma_{1}$.
(ii)

$$
\operatorname{dim} \sum_{\left(s_{j}, t_{j}\right) \in \Gamma_{1}} \mathbb{C} \cdot P_{M} z^{s_{j}} w^{t_{j}}=\# \Gamma_{1}-1
$$

(iii) For each $2 \leq i \leq q$, we have

$$
\operatorname{dim} \sum_{\left(s_{j}, t_{j}\right) \in \Gamma_{i}} \mathbb{C} \cdot P_{M} z^{s_{j}} w^{t_{j}}=\# \Gamma_{i}
$$

Proof. (i) By Lemma 4.1(ii) and (iii), we have $\# \Gamma_{1} \geq 2$. The second assertion is already pointed out above Lemma 4.5.
(ii) Take $\left(s_{j_{0}}, t_{j_{0}}\right) \in \Gamma_{1}$. Since $M=\widetilde{M}$, for $(s, t) \in \Gamma_{1}$ we have $z^{s} w^{t}-$ $z^{s_{j_{0}}} w^{t_{j_{0}}} \in M$ and

$$
\sum_{(s, t) \in \Gamma_{1}} \mathbb{C} \cdot\left(z^{s} w^{t}-z^{s_{j_{0}}} w^{t_{j_{0}}}\right) \subset M
$$

By (i),

$$
z^{s_{j}} w^{t_{j}} \perp M \ominus \sum_{(s, t) \in \Gamma_{1}} \mathbb{C} \cdot\left(z^{s} w^{t}-z^{s_{j_{0}}} w^{t_{j_{0}}}\right)
$$

for every $\left(s_{j}, t_{j}\right) \in \Gamma_{1}$. Hence

$$
\sum_{\left(s_{j}, t_{j}\right) \in \Gamma_{1}} \mathbb{C} \cdot P_{M} z^{s_{j}} w^{t_{j}} \subset \sum_{(s, t) \in \Gamma_{1}} \mathbb{C} \cdot\left(z^{s} w^{t}-z^{s_{j_{0}}} w^{t_{j_{0}}}\right)
$$

Let

$$
g \in\left(\sum_{(s, t) \in \Gamma_{1}} \mathbb{C} \cdot\left(z^{s} w^{t}-z^{s_{j_{0}}} w^{t_{j_{0}}}\right)\right) \ominus\left(\sum_{\left(s_{j}, t_{j}\right) \in \Gamma_{1}} \mathbb{C} \cdot P_{M} z^{s_{j}} w^{t_{j}}\right)
$$

Then $g \perp z^{s_{j}} w^{t_{j}}$ for every $\left(s_{j}, t_{j}\right) \in \Gamma_{1}$, so $g=0$. Hence

$$
\sum_{\left(s_{j}, t_{j}\right) \in \Gamma_{1}} \mathbb{C} \cdot P_{M} z^{s_{j}} w^{t_{j}}=\sum_{(s, t) \in \Gamma_{1}} \mathbb{C} \cdot\left(z^{s} w^{t}-z^{s_{j_{0}}} w^{t_{j_{0}}}\right) .
$$

Therefore we get (ii).
(iii) Since $2 \leq i$, there is $(s, t) \in B_{M}(0,0) \backslash \Gamma$ such that $s+t=\sigma_{i}$. Let

$$
\widetilde{\Gamma}_{i}=\left\{(s, t) \in B_{M}(0,0): s+t=\sigma_{i}\right\} .
$$

Then $\Gamma_{i} \varsubsetneqq \widetilde{\Gamma}_{i}$. Take $\left(s_{0}, t_{0}\right) \in \widetilde{\Gamma}_{i} \backslash \Gamma_{i}$. Since $M=\widetilde{M}$, for $(s, t) \in \widetilde{\Gamma}_{i}$ we have $z^{s} w^{t}-z^{s_{0}} w^{t_{0}} \in M$ and

$$
z^{s_{j}} w^{t_{j}} \perp M \ominus \sum_{(s, t) \in \widetilde{\Gamma}_{i}} \mathbb{C} \cdot\left(z^{s} w^{t}-z^{s_{0}} w^{t_{0}}\right)
$$

for every $\left(s_{j}, t_{j}\right) \in \Gamma_{i}$. Hence

$$
\sum_{\left(s_{j}, t_{j}\right) \in \Gamma_{i}} \mathbb{C} \cdot P_{M} z^{s_{j}} w^{t_{j}} \subset \sum_{(s, t) \in \widetilde{\Gamma}_{i}} \mathbb{C} \cdot\left(z^{s} w^{t}-z^{s_{0}} w^{t_{0}}\right) \subset M
$$

Let

$$
h \in\left(\sum_{(s, t) \in \widetilde{\Gamma}_{i}} \mathbb{C} \cdot\left(z^{s} w^{t}-z^{s_{0}} w^{t_{0}}\right)\right) \ominus\left(\sum_{\left(s_{j}, t_{j}\right) \in \Gamma_{i}} \mathbb{C} \cdot P_{M} z^{s_{j}} w^{t_{j}}\right) .
$$

Then $h \perp z^{s_{j}} w^{t_{j}}$ for every $\left(s_{j}, t_{j}\right) \in \Gamma_{i}$. Hence

$$
h \in \sum_{(s, t) \in \widetilde{\Gamma}_{i} \backslash \Gamma_{i}} \mathbb{C} \cdot\left(z^{s} w^{t}-z^{s_{0}} w^{t_{0}}\right) .
$$

This shows that

$$
\begin{aligned}
\sum_{\left(s_{j}, t_{j}\right) \in \Gamma_{i}} \mathbb{C} \cdot P_{M} z^{s_{j}} w^{t_{j}}= & \left(\sum_{(s, t) \in \widetilde{\Gamma}_{i}} \mathbb{C} \cdot\left(z^{s} w^{t}-z^{s_{0}} w^{t_{0}}\right)\right) \ominus \\
& \left(\sum_{(s, t) \in \widetilde{\Gamma}_{i} \backslash \Gamma_{i}} \mathbb{C} \cdot\left(z^{s} w^{t}-z^{s_{0}} w^{t_{0}}\right)\right) .
\end{aligned}
$$

Hence

$$
\operatorname{dim} \sum_{\left(s_{j}, t_{j}\right) \in \Gamma_{i}} \mathbb{C} \cdot P_{M} z^{s_{j}} w^{t_{j}}=\left(\# \widetilde{\Gamma}_{i}-1\right)-\left(\#\left(\widetilde{\Gamma}_{i} \backslash \Gamma_{i}\right)-1\right)=\# \Gamma_{i}
$$

We note that

$$
z^{s_{j}} w^{t_{j}}-\frac{1}{\#\left(\Gamma_{i} \backslash \Gamma_{i}\right)} \sum_{(s, t) \in \tilde{\Gamma}_{i} \backslash \Gamma_{i}} z^{s} w^{t} \in \mathbb{C} \cdot P_{M} z^{s_{j}} w^{t_{j}}, \quad\left(s_{j}, t_{j}\right) \in \Gamma_{i} .
$$

Theorem 4.6. Let M be an invariant subspace of H^{2} with $M \varsubsetneqq[z-w]$ such that $Z(M)=\Lambda, M \subset M_{0}=[z-w]$ and $M=\widetilde{M}$. Moreover we assume that $M \not \subset z H^{2}$ and $M \not \subset w H^{2}$. Let $n_{1}, n_{2}, \ldots, n_{k}, m_{1}, m_{2}, \ldots, m_{k} \in \mathbb{N}$ satisfy the conditions given in Lemma 3.4 and $\ell_{1}=\min _{1 \leq j \leq k} n_{j}+m_{j}$. Then we have the following.
(i) Suppose that $s+t \neq \ell_{1}$ for any $(s, t) \in B_{M}(0,0)$. Then

$$
\Omega(M)=\sum_{(s, t) \in \Gamma} \mathbb{C} \cdot P_{M} z^{s} w^{t}
$$

and $\operatorname{dim} \Omega(M)=k$.
(ii) Suppose that there is $(s, t) \in B_{M}(0,0)$ such that $s+t=\ell_{1}$. Let

$$
g=\sum_{(s, t) \in \Gamma_{1}} z^{s} w^{t}(z-w) \in M
$$

Then

$$
\Omega(M)=\mathbb{C} \cdot g \oplus \sum_{(s, t) \in \Gamma} \mathbb{C} \cdot P_{M} z^{s} w^{t}
$$

and $\operatorname{dim} \Omega(M)=k+1$.
Proof. (i) By the proof of Theorem 4.2, we have $\operatorname{dim} \widetilde{\Omega}(N)=k-1$. By Lemma 2.1 and Corollary 4.4, we have $\operatorname{dim} \Omega(M)=k$. By Lemma 3.13,

$$
\sum_{(s, t) \in \Gamma} \mathbb{C} \cdot P_{M} z^{s} w^{t} \subset \Omega(M)
$$

and

$$
\begin{aligned}
\operatorname{dim} \sum_{(s, t) \in \Gamma} \mathbb{C} \cdot P_{M} z^{s} w^{t} & =\sum_{i=1}^{q} \operatorname{dim} \sum_{(s, t) \in \Gamma_{i}} \mathbb{C} \cdot P_{M} z^{s} w^{t} \\
& =\# \Gamma_{1}-1+\sum_{i=2}^{q} \# \Gamma_{i} \quad \text { by Lemma } 4.5 \\
& =\# \Gamma-1=k+1-1=k .
\end{aligned}
$$

Thus we get (i).
(ii) In this case, by the proof of Theorem 4.2 we have $\operatorname{dim} \widetilde{\Omega}(N)=k$, so $\operatorname{dim} \Omega(M)=k+1$. In the same way as the one in (i), we have

$$
\sum_{(s, t) \in \Gamma} \mathbb{C} \cdot P_{M} z^{s} w^{t} \subset \Omega(M)
$$

and

$$
\operatorname{dim} \sum_{(s, t) \in \Gamma} \mathbb{C} \cdot P_{M} z^{s} w^{t}=k
$$

By Lemma $4.5(\mathrm{i}), \# \Gamma_{1} \geq 2$. Put

$$
\begin{equation*}
\Gamma_{1}=\left\{\left(s_{j_{1}}, t_{j_{1}}\right),\left(s_{j_{2}}, t_{j_{2}}\right), \ldots,\left(s_{j_{\gamma}}, t_{j_{\gamma}}\right)\right\} \subset B_{M}(0,0) \tag{4.6}
\end{equation*}
$$

where $0 \leq s_{j_{1}}<s_{j_{2}}<\cdots<s_{j_{\gamma}}$ and $\gamma \geq 2$. We have $\sigma_{1} \leq s+t$ for every $(s, t) \in B_{M}(0,0)$, and for $(s, t) \in B_{M}(0,0), \sigma_{1}=s+t$ if and only if $(s, t) \in \Gamma_{1}$. If $s_{j_{n+1}}-s_{j_{n}}=1$, then $\left(s_{j_{n}}, t_{j_{n}}-1\right) \in \Sigma$. Hence

$$
\ell_{1} \leq s_{j_{n}}+t_{j_{n}}-1=\sigma_{1}-1<\sigma_{1} \leq s+t
$$

for every $(s, t) \in B_{M}(0,0)$. This contradicts with the assumption of (ii). Hence $s_{j_{n+1}}-s_{j_{n}}=t_{j_{n}}-t_{j_{n+1}} \geq 2$ for every $1 \leq n \leq \gamma-1$. This shows that $\left(s_{j_{n}}+\right.$ $\left.1, t_{j_{n}}-1\right) \in A_{M}(0,0)$ for every $1 \leq n \leq \gamma-1$ and $\left(s_{j_{n}}-1, t_{j_{n}}+1\right) \in A_{M}(0,0)$ for every $2 \leq n \leq \gamma$. If $s_{j_{1}} \geq 1$, then we have $\left(s_{j_{1}}-1, t_{j_{1}}+1\right) \in A_{M}(0,0)$. For, if $\left(s_{j_{1}}-1, t_{j_{1}}+1\right) \in B_{M}(0,0)$, then $\left(s_{j_{1}}-1, t_{j_{1}}+1\right) \in \Gamma_{1}$ and this contradicts with (4.6). Similarly if $t_{j_{\gamma}} \geq 1$, then $\left(s_{j_{\gamma}}+1, t_{j_{\gamma}}-1\right) \in A_{M}(0,0)$.

Let

$$
g=\sum_{n=1}^{\gamma} z^{s_{j_{n}}} w^{t_{j_{n}}}(z-w) \in M
$$

We have

$$
\begin{aligned}
P_{M} T_{z}^{*} g & =P_{M}\left(\left(\sum_{n=1}^{\gamma}\left(-z^{s_{j_{n}}-1} w^{t_{j_{n}}+1}\right)\right)+\left(\sum_{n=1}^{\gamma} z^{s_{j_{n}}} w^{t_{j_{n}}}\right)\right) \\
& =P_{M}\left(\sum_{n=1}^{\gamma} z^{s_{j_{n}}} w^{t_{j_{n}}}\right) .
\end{aligned}
$$

Since

$$
M \cap\left(\mathbb{C} \cdot z^{\sigma_{1}} \oplus \mathbb{C} \cdot z^{\sigma_{1}-1} w \oplus \cdots \oplus \mathbb{C} \cdot w^{\sigma_{1}}\right)=\sum_{n=2}^{\gamma} \mathbb{C} \cdot\left(z^{s_{j_{1}}} w^{t_{j_{1}}}-z^{s_{j_{n}}} w^{t_{j_{n}}}\right)
$$

we have

$$
P_{M}\left(\sum_{n=1}^{\gamma} z^{s_{j_{n}}} w^{t_{j_{n}}}\right)=0
$$

Hence $P_{M} T_{z}^{*} g=0$. Similarly $P_{M} T_{w}^{*} g=0$. Thus by (1.1), we get $g \in \Omega(M)$.
Since $g \perp z^{s} w^{t}$, we have $g \perp P_{M} z^{s} w^{t}$ for every $(s, t) \in \Gamma$. Hence

$$
\mathbb{C} \cdot g \oplus \sum_{(s, t) \in \Gamma} \mathbb{C} \cdot P_{M} z^{s} w^{t} \subset \Omega(M)
$$

and

$$
\operatorname{dim}\left(\mathbb{C} \cdot g \oplus \sum_{(s, t) \in \Gamma} \mathbb{C} \cdot P_{M} z^{s} w^{t}\right)=k+1
$$

Thus we get

$$
\Omega(M)=\mathbb{C} \cdot g \oplus \sum_{(s, t) \in \Gamma} \mathbb{C} \cdot P_{M} z^{s} w^{t}
$$

We shall give an example satisfying $M \neq \widetilde{M}$.

Example 4.7. Let

$$
M=\left[z^{2}-w^{2}, z^{3}(z-w), z^{2} w(z-w), z w^{2}(z-w), w^{3}(z-w)\right]
$$

Then $M_{0}=[z-w], A_{M}(0,0)=\{(0,0),(0,1),(1,0),(1,1)\}$ and

$$
\widetilde{M}=\{f \in[z-w]: f \perp z, f \perp z w, f \perp w\}
$$

We have $z w(z-w) \in \widetilde{M}$ and $z w(z-w) \notin M$, so $M \neq \widetilde{M}$. We have $\Sigma=$ $\{(1,1)\}$, so $M_{1}=[z(z-w), w(z-w)]$. We have $z^{2}-2 z w+w^{2} \in M_{1} \ominus M$ and $z\left(z^{2}-2 z w+w^{2}\right) \notin M$. Hence $M_{1} \ominus M \not \subset \widetilde{\Omega}(N)$ and compare with the assertion of Theorem 3.8. By calculation, we have

$$
\widetilde{\Omega}(N)=\mathbb{C} \cdot\left(\left(z^{3}+z w^{2}\right)-\left(z^{2} w+w^{3}\right)\right)
$$

and

$$
\Omega(M)=\mathbb{C} \cdot\left(z^{2}-w^{2}\right)+\mathbb{C} \cdot\left(2 z^{4}-3 z^{3} w+2 z^{2} w^{2}-3 z w^{3}+2 w^{4}\right)
$$

By Example 2.13 and Lemma 4.3, F_{z}^{M} is Fredholm and ind $F_{z}^{M}=-1$.

References

[1] X. Chen and K. Guo, Analytic Hilbert Modules, Chapman \& Hall/CRC, Boca Raton, FL, 2003.
[2] J. Conway, A Course in Operator Theory, Grad. Stud. Math., Vol. 21, Amer. Math. Soc., RI, 2000.
[3] K. Guo and R. Yang, The core function of submodules over the bidisk, Indiana Univ. Math. J. 53 (2004), no. 1, 205-222.
[4] K. J. Izuchi, K. H. Izuchi, and Y. Izuchi, Splitting invariant subspaces in the Hardy space over the bidisk, J. Australian Math. Soc., to appear.
[5] _, One dimensional perturbation of invariant subspaces in the Hardy space over the bidisk I, preprint.
[6] W. Rudin, Function Theory in Polydiscs, Benjamin, New York, 1969.
[7] R. Yang, Operator theory in the Hardy space over the bidisk (III), J. Funct. Anal. 186 (2001), no. 2, 521-545.
[8] , Beurling's phenomenon in two variables, Integral Equations Operator Theory 48 (2004), no. 3, 411-423.
[9] , The core operator and congruent submodules, J. Funct. Anal. 228 (2005), no. 2, 469-489.
[10] , Hilbert-Schmidt submodules and issues of unitary equivalence, J. Operator Theory 53 (2005), no. 1, 169-184.
[11] , On two variable Jordan block II, Integral Equations Operator Theory 56 (2006), no. 3, 431-449.

Kei Ji Izuchi
Department of Mathematics
Niigata University
Nilgata 950-2181, Japan
E-mail address: izuchi@m.sc.niigata-u.ac.jp

Kou Hei Izuchi
Department of Mathematics
Faculty of Education
Yamaguchi University
Yamaguchi 753-8511, Japan
E-mail address: izuchi@yamaguchi-u.ac.jp
Yuko Izuchi
Aoyama-Shinmachi 18-6-301, Nishi-ku, Niigata 950-2006, Japan
E-mail address: yfd10198@nifty.com

