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ZERO BASED INVARIANT SUBSPACES AND FRINGE

OPERATORS OVER THE BIDISK

Kei Ji Izuchi, Kou Hei Izuchi, and Yuko Izuchi

Abstract. Let M be an invariant subspace of H2 over the bidisk. Asso-
ciated with M , we have the fringe operator FM

z
on M⊖wM . It is studied

the Fredholmness of FM

z
for (generalized) zero based invariant subspaces

M . Also kerFM

z
and ker (FM

z
)∗ are described.

1. Introduction

Let H2 = H2(D2) be the Hardy space over the bidisk D2 with two variables
z, w. We write ‖f‖ the Hardy space norm of f ∈ H2. We denote by Tz, Tw the
multiplication operators on H2 by z, w. A nonzero closed subspace M of H2

is said to be invariant if TzM ⊂ M and TwM ⊂ M . The structure of invariant
subspaces of H2 is fairly complicated and at this moment it seems to be out of
reach (see [1, 3, 6, 7]). We have

M =

∞
⊕

n=0

wn(M ⊖ wM),

so the space M ⊖wM contains many informations of an invariant subspace M .
In [7], Yang studied the operator FM

z on M ⊖ wM defined by

FM
z f = PM⊖wMTzf, f ∈ M ⊖ wM,

where PA is the orthogonal projection from H2 onto A ⊂ H2, and he called
FM
z the fringe operator of M .
Let N = H2 ⊖M . We set

Ω(M) = M ⊖ (zM + wM) and ˜Ω(N) = N ⊖ (T ∗
z N + T ∗

wN).

We have Ω(M) 6= {0},
(1.1) Ω(M) = {f ∈ M : T ∗

z f ∈ N, T ∗
wf ∈ N}
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and

(1.2) ˜Ω(N) = {f ∈ N : Tzf ∈ M,Twf ∈ M}.

It is known that ˜Ω(N) may be an empty set. Generally, we do not know
whether zM +wM is closed or not. In [7], Yang pointed out that zM +wM is
closed if and only if FM

z has closed range. Let H∞ = H∞(D2) be the space of
bounded analytic functions on D2 with the supremum norm ‖·‖∞. In [7], Yang
also showed that if there is h ∈ M ∩H∞ satisfying h(0, 0) 6= 0, then zM +wM
is closed and Ω(M) = C · PM1. A bounded linear operator T on a separable
Hilbert space is called Fredholm if T has closed range, dimkerT < ∞ and
dimkerT ∗ < ∞ (see [2]). In this case, indT = dimkerT − dimkerT ∗ is called
the Fredholm index of T . The Fredholmness is one of the important subjects
in operator theory. In [7], Yang pointed out that

kerFM
z = w˜Ω(N) and ker (FM

z )∗ = Ω(M).

Hence if FM
z is Fredholm, then indFM

z = dim ˜Ω(N)− dimΩ(M).
We shall study the following questions in this paper.

(Q1) How to prove the closedness of zM + wM?
(Q2) How to describe the elements in Ω(M)?

(Q3) How to describe the elements in ˜Ω(N)?

It is difficult to answer these questions completely. In this paper, we study these
questions for the zero based invariant subspaces of H2. Let E be a nonvoid
subset D2 and

I(E) = {f ∈ H2 : f = 0 on E}.
Then I(E) is an invariant subspace and I(E) is called a zero based invariant
subspace for E. We may assume that I(E) 6= {0} and

E = Z(I(E)) :=
{

λ ∈ D2 : f(λ) = 0 for every f ∈ I(E)
}

.

In Section 2, we shall study the above questions for I(E). We shall answer
(Q3) for M = I(E).

Let M be an invariant subspace of H2 with M ⊂ I(E) and Z(M) = E. We
write N = {0, 1, 2, . . .} and

Dn
zD

m
w =

∂n

∂zn
∂m

∂wm
, (n,m) ∈ N2,

where D0
zD

m
w = Dm

w , Dn
zD

0
w = Dn

z and D0
zD

0
w = 1. For each λ ∈ E, let

AM (λ) =
{

(n,m) ∈ N2 : (Dn
zD

m
w f)(λ) = 0 for every f ∈ M

}

.

Since Z(M) = E, (0, 0) ∈ AM (λ) $ N2 for every λ ∈ E. We have

I(E) =
⋂

λ∈E

{

f ∈ H2 : (Dn
zD

m
w f)(λ) = 0 for every (n,m) ∈ AI(E)(λ)

}

.
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Let

˜M =
⋂

λ∈E

{

f ∈ H2 : (Dn
zD

m
w f)(λ) = 0 for every (n,m) ∈ AM (λ)

}

.

Then ˜M is an invariant subspace. Since AI(E)(λ) ⊂ AM (λ) for every λ ∈ E, we

have that M ⊂ ˜M ⊂ I(E) and E ⊂ Z(˜M) ⊂ Z(M) = E. Hence Z(˜M) = E.

Since I(E) = ˜I(E), as a generalization of a zero based invariant subspace I(E)

we assume that M = ˜M .
Let

M0 =
⋂

λ∈E\{(0,0)}

{

f ∈ H2 : (Dn
zD

m
w f)(λ) = 0 for every (n,m) ∈ AM (λ)

}

.

Then M0 is an invariant subspace, M = ˜M ⊂ M0, and if (0, 0) /∈ E, then
˜M = M0. In this paper, M0 plays an important role. In Section 3, we shall
study questions (Q1), (Q2) and (Q3).

In Section 4, we shall study the special cases. Let Λ = {(a, a) : a ∈ D}. Then
I(Λ) = [z−w], where [L] is the smallest invariant subspace containing L ⊂ H2.
Let M be an invariant subspace satisfying that M $ [z−w], Z(M) = Λ, M =
˜M and M0 = [z − w]. We shall show that FM

z is Fredholm and indFM
z = −1.

We shall also describe ˜Ω(N) and Ω(M) completely.
We have a conjecture that if dimΩ(M) < ∞, then FM

z is Fredholm and
indFM

z = −1. Our results in this paper support that this conjecture is true
(see [4, 5, 7, 8, 9, 10, 11]).

2. Zero based invariant subspaces

Let M be an invariant subspace of H2 and N = H2 ⊖ M . In [7], Yang
pointed out the following facts.

Lemma 2.1. kerFM
z = w˜Ω(N) and ker (FM

z )∗ = Ω(M).

Lemma 2.2. zM + wM is closed if and only if FM
z has closed range.

Lemma 2.3. If there is h ∈ M ∩H∞ satisfying h(0, 0) 6= 0, then zM + wM
is closed and Ω(M) = C · PM1.

Actually he showed that zM+wM = M∩(zH2+wH2) under the assumption
in Lemma 2.3. Using the same idea, we have the following.

Proposition 2.4. If there is h ∈ M ∩H∞ satisfying h(0, 0) 6= 0, then FM
z is

Fredholm and indFM
z = −1.

Proof. We shall show ˜Ω(N) = {0}. We may assume that h(0, 0) = 1 and write

h = 1 + zh1(z) + wh2 for some h1(z), h2 ∈ H∞. Let f ∈ ˜Ω(N). We have

f = f(h− zh1(z)− wh2) = fh− zfh1(z)− wfh2.
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By (1.2), zf ∈ M and wf ∈ M . So zfh1(z) +wfh2 ∈ M . Since h ∈ M ∩H∞,
we have fh ∈ M , so by the above we have f ∈ M . Since f ⊥ M , we have

f = 0. Thus ˜Ω(N) = {0}. By Lemmas 2.1–2.3, we get the assertion. �

The following is a well known fact.

Lemma 2.5. Let M be an invariant subspace of H2. Then Ω(M) 6= {0}.
Moreover dimΩ([f ]) = 1 for every nonzero f in H2.

Let E be a nonvoid subset of D2. We assume that

I(E) 6= {0} and Z(I(E)) = E.

We write
N(E) = H2 ⊖ I(E).

Lemma 2.6. Suppose that (0, 0) /∈ E. Then ˜Ω(N(E)) = {0}.

Proof. Let f ∈ ˜Ω(N(E)). By (1.2), (az + bw)f ∈ I(E) for every a, b ∈ C.
Since (0, 0) /∈ E, we have f = 0 on E, so f ∈ I(E). Since f ⊥ I(E), we get
f = 0. �

Similarly, we have the following.

Lemma 2.7. Suppose that (0, 0) ∈ E and E 6= {(0, 0)}. If I(E) contains all

f ∈ H2 satisfying f = 0 on E \ {(0, 0)}, then ˜Ω(N(E)) = {0}.

Proof. Let f ∈ ˜Ω(N(E)). By (1.2), (az+bw)f ∈ I(E) for every a, b ∈ C. Then
f = 0 on E \ {(0, 0)}. By the assumption, we have f ∈ I(E). Since f ⊥ I(E),
we get f = 0. �

Proposition 2.8. Suppose that (0, 0) ∈ E and E 6= {(0, 0)}. If there is f ∈ H2

such that f = 0 on E \ {(0, 0)} and f(0, 0) 6= 0, then

˜Ω(N(E)) = C · (f − PI(E)f) 6= {0}.
Proof. Since f /∈ I(E), f − PI(E)f 6= 0 and f − PI(E)f ∈ N(E). Since f = 0
on E \ {(0, 0)}, we have

z(f − PI(E)f), w(f − PI(E)f) ∈ I(E).

By (1.2), f − PI(E)f ∈ ˜Ω(N(E)).

We may assume that f(0, 0) = 1. Let g ∈ ˜Ω(N(E)) and g 6= 0. As the proof
of Lemma 2.7, g = 0 on E \ {(0, 0)} and g(0, 0) 6= 0. We may assume that

g(0, 0) = 1. Hence (f −PI(E)f)−g ∈ I(E). Since (f −PI(E)f)−g ∈ ˜Ω(N(E)),
we get g = f − PI(E)f . �

Example 2.9. Let α ∈ D with α 6= 0 and

E = {(0, 0), (0, α), (α, 0), (α, α)}.
We write bα(z) = (z − α)/(1 − αz). One may checks that I(E) = zbα(z)H

2 +
wbα(w)H

2. Let f = bα(z)bα(w). Then f(0, α) = f(α, 0) = f(α, α) = 0 and
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f(0, 0) = α2 6= 0, so by Proposition 2.8 dim ˜Ω(N(E)) = 1. We have f ⊥ I(E)

and ˜Ω(N(E)) = C · f . �

In the same way as the one by Yang [7], we may prove the following.

Theorem 2.10. Suppose that (0, 0) ∈ E and E 6= {(0, 0)}. If there is h ∈ H∞

satisfying h = 0 on E \ {(0, 0)} and h(0, 0) 6= 0, then zI(E) + wI(E) is closed

and Ω(I(E)) = C · PI(E)z + C · PI(E)w. Moreover F
I(E)
z is Fredholm and

indF
I(E)
z = −1.

Proof. We may assume that h(0, 0) = 1. Then there are h1(z) and h2 in H∞

such that h = 1 + zh1(z) + wh2. We write

H0 = {f ∈ H2 : f ⊥ 1, f ⊥ z, f ⊥ w}.
We shall show that

(2.1) zI(E) + wI(E) = I(E) ∩H0.

Let f ∈ I(E) ∩H0. We have

f = fh− zfh1(z)− wfh2.

Since f ∈ I(E), we have zfh1(z)+wfh2 ∈ zI(E)+wI(E). Since H0 = z2H2+
zwH2+w2H2, we may write f = z2f1 + zwf2+w2f3 for some f1, f2, f3 ∈ H2.
Since h = 0 on E \ {(0, 0)}, we have that zf1h,wf2h,wf3h ∈ I(E). Hence

fh = z(zf1h+ wf2h) + w(wf3h) ∈ zI(E) + wI(E),

so f ∈ zI(E) + wI(E). Thus we get I(E) ∩H0 ⊂ zI(E) + wI(E).
Let g ∈ zI(E) + wI(E). Then g = zg1 + wg2 for some g1, g2 ∈ I(E). Since

(0, 0) ∈ E, I(E) ⊂ zH2 + wH2. Hence for each i = 1, 2, gi = zgi,1 + wgi,2 for
some gi,1, gi,2 ∈ H2. We have

g = z2g1,1 + zw(g1,2 + g2,1) + w2g2,2 ∈ H0.

Thus zI(E)+wI(E) ⊂ I(E)∩H0, so we get (2.1). Since H0 is closed, zI(E)+
wI(E) is closed.

Since zh, wh ∈ I(E) and h(0, 0) = 1, we have PI(E)z 6= 0 and PI(E)w 6= 0.
Let g ∈ I(E)⊖ (C · PI(E)z +C · PI(E)w). Then g ⊥ 1, g ⊥ z and g ⊥ w. Hence
g ∈ H0, so g ∈ I(E) ∩H0. Thus by (2.1),

I(E)⊖ (C · PI(E)z + C · PI(E)w) ⊂ zI(E) + wI(E).

Since PI(E)z, PI(E)w ⊥ zI(E) + wI(E), we have

I(E) = (zI(E) + wI(E)) ⊕ (C · PI(E)z + C · PI(E)w).

Hence

Ω(I(E)) = C · PI(E)z + C · PI(E)w.

Since PI(E)z ⊥ wh and PI(E)w 6⊥ wh, we have C · PI(E)z 6= C · PI(E)w. Hence
dimΩ(I(E)) = 2.

By Lemmas 2.1, 2.2 and Proposition 2.8, we conclude the assertion. �
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Let Λ = {(a, a) : a ∈ D}. Then I(Λ) = [z − w]. It is known that F
[z−w]
z is

Fredholm and indF
[z−w]
z = −1 (see [7]). The following is a generalization of

this fact.

Theorem 2.11. Let ϕ(z) be an inner function with ϕ(0) = 0 and g ∈ H∞

with g 6= 0. Then F
[ϕ(z)−wg]
z is Fredholm and indF

[ϕ(z)−wg]
z = −1.

Proof. Put M = [ϕ(z)− wg]. We shall show that

(2.2) zM + wM = M ∩ (zϕ(z)H2 + wH2).

Since M ⊂ ϕ(z)H2 + wH2, we have

zM + wM ⊂ M ∩ (zϕ(z)H2 + wH2).

Let f ∈ M ∩ (zϕ(z)H2 + wH2). We may write f = zϕ(z)f1 + wf2 for some
f1, f2 ∈ H2. Put h = ϕ(z)− wg. Then M = [h] and

(2.3) f = z(h+ wg)f1 + wf2 = zhf1 + w(zgf1 + f2).

Since h ∈ M ∩H∞, we have hf1 ∈ M . Hence zhf1 ∈ zM and

w(zgf1 + f2) = f − zhf1 ∈ M,

so there is a sequence of polynomials {pn}n such that

(ϕ(z)− wg)pn = hpn → w(zgf1 + f2)

in H2 as n → ∞. Putting w = 0, we have ‖ϕ(z)pn(z, 0)‖ → 0, so ‖pn(z, 0)‖ →
0. Hence

∥

∥h(pn − pn(z, 0))− w(zgf1 + f2)
∥

∥

≤ ‖hpn − w(zgf1 + f2)‖+ ‖h‖∞‖pn(z, 0)‖
→ 0 as n → ∞.

Since pn − pn(z, 0) = wqn for some polynomial qn, we have

h(pn − pn(z, 0)) = whqn ∈ w[h] = wM.

Hence w(zgf1 + f2) ∈ wM . Therefore by (2.3), f ∈ zM + wM . Thus we get
(2.2).

Since zϕ(z)H2 + wH2 is closed, by (2.2) zM + wM is closed. By Lemma

2.2, FM
z has closed range. Let f ∈ ˜Ω(N). Then wf ∈ M . Similarly as the last

paragraph, we have wf ∈ wM , so f ∈ M . Hence f = 0. By Lemma 2.1, we
have kerFM

z = {0}. By Lemma 2.5, we have dimΩ(M) = 1, so by Lemma 2.1
we have dimker (FM

z )∗ = 1. Thus we get the assertion. �

Corollary 2.12. Let h ∈ H∞ satisfy |h(eiθ, 0)| > δ > 0 for almost every

eiθ ∈ ∂D. Then F
[h]
z is Fredholm and indF

[h]
z = −1.
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Proof. We may write h = h1(z) + wh2 for some h1(z), h2 ∈ H∞. If h1(0) 6= 0,
then by Proposition 2.4 we have the assertion. So we assume that h1(0) = 0.
Let h1(z) = ϕ(z)f(z) be an inner-outer factorization of h1(z). We have ϕ(0) =
0. By the assumption, f(z) is invertible in H∞. Then we have

[h] = [f(z)(ϕ(z) + wf−1(z)h2)] = [ϕ(z) + wf−1(z)h2].

If h2 = 0, then [h] = ϕ(z)H2, so we get the assertion. If h2 6= 0, then by
Theorem 2.11 we get the assertion. �

Example 2.13. By Theorem 2.11, for the following M we have that FM
z is

Fredholm and indFM
z = −1;

M = [z − w], M = [(z − w)2], M = [z2 − w3].

3. Generalizations

LetM be an invariant subspace ofH2 satisfying thatM ⊂ I(E) and Z(M) =
E. We have AI(E)(λ) ⊂ AM (λ) for every λ ∈ E,

(3.1) T ∗
z

{

0, znwm : (n,m) ∈ AM (λ)
}

⊂
{

0, znwm : (n,m) ∈ AM (λ)
}

and

(3.2) T ∗
w

{

0, znwm : (n,m) ∈ AM (λ)
}

⊂
{

0, znwm : (n,m) ∈ AM (λ)
}

.

We recall that

(3.3) ˜M =
⋂

λ∈E

{

f ∈ H2 : (Dn
zD

m
w f)(λ) = 0 for every (n,m) ∈ AM (λ)

}

.

Then M ⊂ ˜M ⊂ I(E) and E ⊂ Z(˜M) ⊂ Z(M) = E. Hence Z(˜M) = E. Since

I(E) = ˜I(E), as a generalization of zero based invariant subspaces we assume
that

(3.4) M = ˜M.

Put N = H2 ⊖M . We shall study about ˜Ω(N), Ω(M) and the Fredholmness
of FM

z under the above situation.

Lemma 3.1. If (0, 0) /∈ E, then ˜Ω(N) = {0}.

Proof. Let f ∈ ˜Ω(N). By (1.2), (az + bw)f ∈ M for every a, b ∈ C. Since
(0, 0) /∈ E, (Dn

zD
m
w f)(λ) = 0 for every λ ∈ E and (n,m) ∈ AM (λ). By (3.3)

and (3.4), we have f ∈ M . Since M ⊥ ˜Ω(N), we have f = 0. �

Lemma 3.2. Suppose that M ⊂ znwmH2 for some (n,m) ∈ N2 with (n,m) 6=
(0, 0). If f ∈ ˜Ω(N), then f ∈ znwmH2.

Proof. Let f ∈ ˜Ω(N). Suppose that f /∈ znwmH2. Then we may write f =
f1 ⊕ f2 for some f1 ∈ znwmH2 and f2 ∈ H2 ⊖ znwmH2. Since f2 6= 0, either
zf /∈ znwmH2 or wf /∈ znwmH2. So either zf /∈ M or wf /∈ M . By (1.2),

f /∈ ˜Ω(N). This is a contradiction. Thus we get f ∈ znwmH2. �
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Corollary 3.3. Suppose that M ⊂ znwmH2 for some (n,m) ∈ N2 with

(n,m) 6= (0, 0). Let N1 = H2 ⊖ znwmM . Then ˜Ω(N) = znwm
˜Ω(N1).

By Corollary 3.3, to study ˜Ω(N) we may assume that M 6⊂ zH2 and M 6⊂
wH2.

Lemma 3.4. Suppose that (0, 0) ∈ E, M 6⊂ zH2 and M 6⊂ wH2. Then there

are n1, n2, . . . , nk,m1,m2, . . . ,mk ∈ N such that 0 ≤ n1 < n2 < · · · < nk,

0 ≤ mk < mk−1 < · · · < m1 and

AM (0, 0) =

k
⋃

j=1

{

(n,m) ∈ N2 : 0 ≤ n ≤ nj , 0 ≤ m ≤ mj

}

.

Proof. Since M 6⊂ zH2 and M 6⊂ wH2, (n, 0) /∈ AM (0, 0) and (0,m) /∈
AM (0, 0) for some n,m ∈ N. By (3.1) and (3.2), we get the assertion. �

Suppose that (0, 0) ∈ E and E 6= {(0, 0)}. Let
M0 =

⋂

λ∈E\{(0,0)}

{

f ∈ H2 : (Dn
zD

m
w f)(λ) = 0 for every (n,m) ∈ AM (λ)

}

.

Then by (3.3) and (3.4), we have M ⊂ M0.

Lemma 3.5. Suppose that (0, 0) ∈ E and E 6= {(0, 0)}. If M = M0, then
˜Ω(N) = {0}.

Proof. Let g ∈ ˜Ω(N). Then (az + bw)g ∈ M for every a, b ∈ C, so g ∈ M0. By
the assumption, we have g ∈ M . Thus we get the assertion. �

We may rewrite AM (0, 0) as follows;

(3.5) AM (0, 0) =
{

(n,m) ∈ N2 : znwm ⊥ M
}

.

Lemma 3.6. Suppose that (0, 0) ∈ E, E 6= {(0, 0)}, M 6⊂ zH2 and M 6⊂ wH2.

If M 6= M0, then ˜Ω(N) 6= {0}.
Proof. Take f0 ∈ M0⊖M with f0 6= 0. By (3.3) and (3.4), (Di

zD
j
wf0)(0, 0) 6= 0

for some (i, j) ∈ AM (0, 0). Here we use the notations given in Lemma 3.4.
Since ziwj 6⊥ f0, there is (s, t) ∈ N2 such that znℓwmℓ 6⊥ zswtf0 for some
1 ≤ ℓ ≤ k,

znwm ⊥ zs+1wtf0 and znwm ⊥ zswt+1f0

for every (n,m) ∈ AM (0, 0). By (3.3) and (3.4), we have zswtf0 /∈ M and
zs+1wtf0, z

swt+1f0 ∈ M . Let f1 = zswtf0 − PMzswtf0. Then f1 ∈ N and

f1 6= 0. Moreover we have zf1, wf1 ∈ M . By (1.2), we have f1 ∈ ˜Ω(N). �

Proposition 3.7. Suppose that (0, 0) ∈ E and E 6= {(0, 0)}. Let M be an

invariant subspace of H2 such that M $ I(E), Z(M) = E and M = ˜M .

Moreover we assume that M 6⊂ zH2 and M 6⊂ wH2. Then ˜Ω(N) 6= {0} if and

only if M $ M0.
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Proof. The necessity follows from Lemma 3.5. The reverse implication follows
from Lemma 3.6. �

Under the condition M $ M0, we shall study about dim ˜Ω(N).

Theorem 3.8. Suppose that (0, 0) ∈ E and E 6= {(0, 0)}. Let M be an invari-

ant subspace of H2 such that M $ I(E), Z(M) = E, M $ M0 and M = ˜M .

Moreover we assume that M 6⊂ zH2 and M 6⊂ wH2. Let n1, n2, . . . , nk,m1,

m2, . . . ,mk ∈ N satisfy the conditions given in Lemma 3.4. Let

Σ =
{

(nj ,mj) : 1 ≤ j ≤ k
}

⊂ AM (0, 0)

and

M1 =
{

f ∈ M0 : f ⊥ znwm for every (n,m) ∈ AM (0, 0) \ Σ
}

.

Then ˜Ω(N) = M1 ⊖M and 1 ≤ dim ˜Ω(N) ≤ k.

Proof. Since M $ M0, there is f ∈ M0 ⊖ M with f 6= 0. Since M = ˜M ,
f 6⊥ ziwj for some (i, j) ∈ AM (0, 0). By considering zswtf for (s, t) ∈ N2, we
have M $ M1 ⊂ M0.

Let h ∈ ˜Ω(N). Then zh, wh ∈ M . Since M = ˜M , we have h ∈ M0. For any
(n,m) ∈ AM (0, 0) \ Σ, either (n + 1,m) ∈ AM (0, 0) or (n,m+ 1) ∈ AM (0, 0).
If (n+ 1,m) ∈ AM (0, 0), then 0 = 〈zh, zn+1wm〉 = 〈h, znwm〉. If (n,m+ 1) ∈
AM (0, 0), then 0 = 〈wh, znwm+1〉 = 〈h, znwm〉. Hence h ∈ M1. Thus we get
˜Ω(N) ⊂ M1 ⊖M .

Let f ∈ M1 ⊖M and (n,m) ∈ AM (0, 0). Then f ∈ M0 and 〈zf, znwm〉 =
〈f, zn−1wm〉 = 0. Hence zf ∈ ˜M = M . Similarly wf ∈ M . Hence M1 ⊖M ⊂
˜Ω(N). Thus we get the assertion. �

Theorem 3.9. Suppose that (0, 0) ∈ E and E 6= {(0, 0)}. Let M be an invari-

ant subspace of H2 such that M $ I(E), Z(M) = E and M = ˜M . Moreover

we assume that M 6⊂ zH2 and M 6⊂ wH2. Let n1, n2, . . . , nk,m1,m2, . . . ,
mk ∈ N satisfy the conditions given in Lemma 3.4. If (0, 0) /∈ Z(M0), then

dim ˜Ω(N) = k.

Proof. By the assumption, there is f0 ∈ M0 such that f0(0, 0) = 1. For each
1 ≤ j ≤ k, we have 〈znjwmj , znjwmjf0〉 6= 0. By Lemma 3.4 and (3.5), we
have znjwmjf0 /∈ M . Let

fj = znjwmjf0 − PM (znjwmjf0).

Then fj ∈ N and fj 6= 0. Since M = ˜M , it is not so difficult to show that

zfj, wfj ∈ M for every 1 ≤ j ≤ k. Hence fj ∈ ˜Ω(N) for every 1 ≤ j ≤ k.

Suppose that
∑k

j=1 cjfj = 0 for some c1, c2, . . . , ck ∈ C. Since (ni,mi) ∈
AM (0, 0) for every 1 ≤ i ≤ k and f0(0, 0) = 1, we have

0 =
〈

k
∑

j=1

cjfj, z
niwmi

〉

=
〈

k
∑

j=1

cjz
njwmjf0, z

niwmi

〉
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= ci〈zniwmif0, z
niwmi〉 = ci.

Therefore dim
∑k

j=1 C · fj = k. By Theorem 3.8, we get dim ˜Ω(N) = k. �

We shall show an example satisfying conditions in Theorem 3.9.

Example 3.10. For α ∈ D, let bα(z) = (z − α)/(1− αz). For each ℓ ≥ 1, let

M = bα(z)bα(w)
ℓ

∑

j=0

zℓ−jwjH2

and E = Z(M). Then

E = ({α} × D) ∪ (D× {α}) ∪ {(0, 0)},
M $ I(E), M 6⊂ zH2, M 6⊂ wH2 and M = ˜M . Moreover we have that
M0 = bα(z)bα(w)H

2, Z(M0) = ({α} × D) ∪ (D× {α}) and

AM (0, 0) =

ℓ
⋃

i=1

{(i− 1, 0), (i− 1, 1), . . . , (i− 1, ℓ− i)}.

So in Lemma 3.4, we have

(n1,m1) = (0, ℓ− 1), (n2,m2) = (1, ℓ− 2), . . . , (nℓ,mℓ) = (ℓ− 1, 0)

and k = ℓ. By Theorem 3.9, we have dim ˜Ω(N) = ℓ. �

Example 3.11. Let M = [z(z − w), w(z − w)]. Then we have M0 = [z − w]

and Z(M) = Z(M0) = {(a, a) : a ∈ D}, ˜M = M and M0 ⊖M = C · (z − w).

Hence ˜Ω(N) = C · (z − w) and dim ˜Ω(N) = 1. Moreover

AM (0, 0) = {(0, 0), (0, 1), (1, 0)},
so in Lemma 3.4 we have (n1,m1) = (0, 1), (n2,m2) = (1, 0) and k = 2. Hence

dim ˜Ω(N) = 1 < 2 = k. �

In Theorem 3.8, we have dim ˜Ω(N) ≤ k. In Example 3.11, we showed an

example of M satisfying dim ˜Ω(N) < k. In Theorem 3.9, if (0, 0) /∈ Z(M0),

then dim ˜Ω(N) = k. In the following, we shall show an example of M satisfying

that (0, 0) ∈ Z(M0) and dim ˜Ω(N) = k.

Example 3.12. Let

M =
{

f ∈ [z − w] : f ⊥ z, z2, w, zw, z2w,w2, w3
}

.

Then M0 = [z − w] and

AM (0, 0) = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (2, 0), (2, 1)}.
Note that (n1,m1) = (0, 3), (n2,m2) = (2, 1) and k = 2 in Lemma 3.4. More-
over

M =
[

z(z2 − w2), z3(z − w), z2w(z − w), zw2(z − w), w3(z − w)
]
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and ˜M = M . In Theorem 3.8, we have Σ = {(0, 3), (2, 1)} and

M1 =
[

z2(z − w), zw(z − w), w2(z − w)
]

.

We have

M1 ⊖M = C · w(z2 − w2)⊕ C · (z3 − z2w + zw2 − w3).

Then by Theorem 3.8, dim ˜Ω(N) = 2 = k. �

Suppose that (0, 0) ∈ E and E 6= {(0, 0)}. Let M be an invariant subspace

of H2 such that M $ I(E), Z(M) = E and M = ˜M . Moreover we assume
that M 6⊂ zH2 and M 6⊂ wH2. To describe Ω(M), we set

BM (0, 0) = N2 \AM (0, 0).

Let n1, n2, . . . , nk,m1,m2, . . . ,mk ∈ N satisfy the conditions given in Lemma
3.4. Put

(s1, t1) = (0,m1 + 1), (s2, t2) = (n1 + 1,m2 + 1), . . . ,

(sk, tk) = (nk−1 + 1,mk + 1), (sk+1, tk+1) = (nk + 1, 0).

Then 0 = s1 < s2 < · · · < sk+1, 0 = tk+1 < tk < · · · < t1 and

(3.6) BM (0, 0) =

k+1
⋃

j=1

{(sj + n, tj +m) : (n,m) ∈ N2}.

Let 1 ≤ σ1 < σ2 < · · · < σq be the integers such that for each 1 ≤ i ≤ q there
is 1 ≤ j ≤ k + 1 satisfying sj + tj = σi and

{(sj , tj) : 1 ≤ j ≤ k + 1} =

q
⋃

i=1

{(sj , tj) : 1 ≤ j ≤ k + 1, sj + tj = σi}.

Set

Γ = {(sj , tj) : 1 ≤ j ≤ k + 1}
and

(3.7) Γi = {(sj, tj) : 1 ≤ j ≤ k + 1, sj + tj = σi}.
Then

∑q
i=1 #Γi = #Γ = k + 1, where #Γ denotes the number of elements in

Γ.

Lemma 3.13. PMzsjwtj 6= 0 and PMzsjwtj ∈ Ω(M) for every 1 ≤ j ≤ k+ 1.

Proof. Since (sj , tj) /∈ AM (0, 0), we have zsjwtj 6⊥ M . Then PMzsjwtj 6= 0,

zsjwtj = PMzsjwtj ⊕ (zsjwtj − PMzsjwtj )

and zsjwtj − PMzsjwtj ∈ N . Since T ∗
z z

sjwtj , T ∗
wz

sjwtj ∈ N , by (1.1) we have
PMzsjwtj ∈ Ω(M). �

Corollary 3.14. dim
∑k+1

j=1 C · PMzsjwtj ≤ dimΩ(M).
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Example 3.15. Let

M =
[

z(z3 + z2w + zw2 + w3), w(z3 + z2w + zw2 + w3)
]

.

Then M = ˜M , M 6⊂ zH2 and M 6⊂ wH2. We have

BM (0, 0) =

4
⋃

j=0

(

(4 − j, j) + N2
)

and k = 4. We also have

4
∑

j=0

C · PMz4−jwj = C · z(z3 + z2w + zw2 + w3)+C · w(z3 + z2w + zw2 + w3)

= Ω(M)

and
˜Ω(N) = C · (z3 + z2w + zw2 + w3).

Theorem 3.16. Suppose that (0, 0) ∈ E and E 6= {(0, 0)}. Let M be an

invariant subspace of H2 such that M $ I(E), Z(M) = E and M = ˜M .

Moreover we assume that M 6⊂ zH2 and M 6⊂ wH2. If there is h ∈ M0 ∩H∞

satisfying h(0, 0) 6= 0, then FM
z is Fredholm and indFM

z = −1.

Proof. First, we shall show that

(3.8) zM + wM = M ∩
k+1
∑

j=1

zsjwtj (zH2 + wH2).

Let s1, s2, . . . , sk+1, t1, t2, . . . , tk+1 ∈ N satisfy the conditions given above

Lemma 3.13. Since M ⊂
∑k+1

j=1 z
sjwtjH2, we have

zM + wM ⊂ M ∩
k+1
∑

j=1

zsjwtj (zH2 + wH2).

Let

f ∈ M ∩
k+1
∑

j=1

zsjwtj (zH2 + wH2).

We may assume that h(0, 0) = 1 and write h = 1 + zh1(z) + wh2 for some
h1(z), h2 ∈ H∞. Then

f = fh− zfh1(z)− wfh2.

Since f ∈ M , we have zfh1(z) + wfh2 ∈ zM + wM . We may also write

f =
k+1
∑

j=1

zsjwtj (zfj + wgj), fj, gj ∈ H2.
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We have

fh = z
(

k+1
∑

j=1

zsjwtjfjh
)

+ w
(

k+1
∑

j=1

zsjwtjgjh
)

.

Since h ∈ M0 ∩H∞, we have fjh, gjh ∈ M0. By (3.6), we have

k+1
∑

j=1

zsjwtjfjh,
k+1
∑

j=1

zsjwtjgjh ⊥ znwm

for every (n,m) ∈ AM (0, 0). Since M = ˜M , we get

k+1
∑

j=1

zsjwtjfjh,

k+1
∑

j=1

zsjwtjgjh ∈ M.

Hence fh ∈ zM + wM , so f ∈ zM + wM and

M ∩
k+1
∑

j=1

zsjwtj (zH2 + wH2) ⊂ zM + wM.

Thus we get (3.8).

It is not difficult to see that
∑k+1

j=1 z
sjwtj (zH2+wH2) is closed, so zM+wM

is closed.
By Theorem 3.9, we have dim ˜Ω(N) = k. By Lemma 3.13, we also have

PMzsjwtj 6= 0 and
k+1
∑

j=1

C · PMzsjwtj ⊂ Ω(M).

Suppose that
∑k+1

j=1 cjPMzsjwtj = 0 for some {cj}k+1
j=1 ⊂ C. Since h ∈ M0, we

have zsjwtjh ∈ ˜M = M for every 1 ≤ j ≤ k + 1. Since h(0, 0) = 1, for each
1 ≤ i ≤ k + 1 we have

0 =
〈

k+1
∑

j=1

cjPMzsjwtj , zsiwtih
〉

=

k+1
∑

j=1

cj〈zsjwtj , zsiwtih〉 = ci.

Hence {PMzsjwtj}k+1
j=1 is linearly independent, so by Corollary 3.14 k + 1 ≤

dimΩ(M).
To show k + 1 = dimΩ(M), let f ∈ Ω(M) satisfy f ⊥ PMzsjwtj for every

1 ≤ j ≤ k + 1. Then f ⊥ zsjwtj for every 1 ≤ j ≤ k + 1. Since f ⊥ znwm for
every (n,m) ∈ AM (0, 0), we have

f ∈ M ∩
k+1
∑

j=1

zsjwtj (zH2 + wH2).

By (3.8), we have f ∈ zM + wM , so f = 0. Thus we get the assertion. �
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4. Special cases

Let Λ = {(a, a) : a ∈ D}. Then I(Λ) = [z − w] and Z(I(Λ)) = Λ. In this
section, we shall study invariant subspaces M of H2 satisfying M $ [z − w],

Z(M) = Λ, M ⊂ M0 = [z − w] and M = ˜M . Moreover we assume that

M 6⊂ zH2 and M 6⊂ wH2. Since M0 = [z − w] and M = ˜M , we have

M =
{

f ∈ [z − w] : f ⊥ znwm for every (n,m) ∈ AM (0, 0)
}

.

For each positive integer n, let

(4.1) [z − w]n =

n−1
∑

j=0

C · (zn−jwj − wn).

Then

(4.2) [z − w] =

∞
⊕

n=1

[z − w]n.

Let

Ln =

n
∑

j=0

C · zn−jwj .

Then [z − w]n ⊂ Ln. We note that PLn
f = P[z−w]nf for every f ∈ [z − w].

Since M0 = [z −w], AM ((a, a)) = {(0, 0)} for every a ∈ D \ {0}. By Lemma
3.4, there are n1, n2, . . . , nk,m1,m2, . . . ,mk ∈ N satisfying that 0 ≤ n1 < n2 <
· · · < nk, 0 ≤ mk < mk−1 < · · · < m1 and

(4.3) AM (0, 0) =
k
⋃

j=1

{(n,m) ∈ N2 : 0 ≤ n ≤ nj , 0 ≤ m ≤ mj}.

Since Z(M) = Λ and M $ M0 = [z − w], we have AM (0, 0) 6= {(0, 0)}, so
nj+mj ≥ 1 for every 1 ≤ j ≤ k. Hence there are integers 1 ≤ ℓ1 < ℓ2 < · · · < ℓp
such that for each 1 ≤ i ≤ p there is 1 ≤ j ≤ k satisfying nj +mj = ℓi and

Σ =

p
⋃

i=1

{(nj,mj) : 1 ≤ j ≤ k, nj +mj = ℓi}.

Set

Σi = {(nj,mj) : 1 ≤ j ≤ k, nj +mj = ℓi}.
Then Σi 6= ∅ and Σi ∩Σj = ∅ for i 6= j. We have

∑p
i=1 #Σi = #Σ = k. Let

Σe =
⊕

(n,m)∈Σ

C · znwm and Σe
i =

⊕

(n,m)∈Σi

C · znwm.

Recall that BM (0, 0) = N2 \AM (0, 0) and

(s1, t1) = (0,m1 + 1), (s2, t2) = (n1 + 1,m2 + 1), . . . ,

(sk, tk) = (nk−1 + 1,mk + 1), (sk+1, tk+1) = (nk + 1, 0).
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Then by (4.3),

(4.4) BM (0, 0) =

k+1
⋃

j=1

((sj , tj) + N2).

Let 1 ≤ σ1 < σ2 < · · · < σq be the integers such that for each 1 ≤ i ≤ q there
is 1 ≤ j ≤ k + 1 satisfying sj + tj = σi and

{(sj , tj) : 1 ≤ j ≤ k + 1} =

q
⋃

i=1

{(sj , tj) : 1 ≤ j ≤ k + 1, sj + tj = σi}.

Set
Γ = {(sj , tj) : 1 ≤ j ≤ k + 1}

and
Γi = {(sj, tj) : 1 ≤ j ≤ k + 1, sj + tj = σi}.

Then
∑q

i=1 #Γi = #Γ = k + 1.

Lemma 4.1. (i) s+ t ≥ σ1 for every (s, t) ∈ BM (0, 0).
(ii) If (s, t) ∈ BM (0, 0) and s+ t = σ1, then (s, t) ∈ Γ1.

(iii) For each (s1, t1) ∈ BM (0, 0), we have

#{(s, t) ∈ BM (0, 0) : s+ t = s1 + t1} ≥ 2.

Proof. (i) and (ii) follow from (4.4).
(iii) Since (s1, t1) ∈ BM (0, 0), there is f ∈ M satisfying zs1wt1 6⊥ f . Since

f ∈ [z − w], by (4.1) and (4.2)

M ∋ P[z−w]s1+t1
f =

s1+t1−1
∑

j=0

cj(z
s1+t1−jwj − ws1+t1) 6= 0.

This shows (iii). �

Theorem 4.2. Let M be an invariant subspace of H2 with M $ [z − w] such

that Z(M) = Λ, M ⊂ M0 = [z − w] and M = ˜M . Moreover we assume that

M 6⊂ zH2 and M 6⊂ wH2. Let n1, n2, . . . , nk, m1,m2, . . . ,mk ∈ N satisfy the

conditions given in Lemma 3.4. Then max{k − 1, 1} ≤ dim ˜Ω(N) ≤ k.

Proof. Let f ∈ ˜Ω(N). By (1.2), zf, wf ∈ M ⊂ [z − w], so f ∈ [z − w]. Recall
that

M1 =
{

f ∈ [z − w] : f ⊥ znwm for every (n,m) ∈ AM (0, 0) \ Σ
}

.

Then we have f ∈ M1. Hence ˜Ω(N) ⊂ M1. Since zM1 ⊂ M and wM1 ⊂ M ,
we have

˜Ω(N) = M1 ⊖M.

We have

M =

∞
⊕

n=1

M ∩ [z − w]n and M1 =

∞
⊕

n=1

M1 ∩ [z − w]n,
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so

˜Ω(N) =

p
⊕

i=1

˜Ω(N) ∩ [z − w]ℓi .

Hence

(4.5) dim ˜Ω(N) =

p
∑

i=1

dim ˜Ω(N) ∩ [z − w]ℓi .

For 2 ≤ i ≤ p, there is (s, t) ∈ BM (0, 0) such that s+ t = ℓi. Let

Ki = {(s, t) ∈ BM (0, 0) : s+ t = ℓi}.
By Lemma 4.1(iii), we have #Ki ≥ 2. For each (nj ,mj) ∈ Σi, let

fj = znjwmj − 1

#Ki

∑

(s,t)∈Ki

zswt ∈ [z − w]ℓi .

It is not difficult to see that

fj ∈ M1 ⊖M = ˜Ω(N), (nj ,mj) ∈ Σi,

so
˜Ω(N) ∩ [z − w]ℓi =

∑

(nj ,mj)∈Σi

C · fj .

Hence

dim ˜Ω(N) ∩ [z − w]ℓi = #Σi, 2 ≤ i ≤ p.

We consider two cases for i = 1.

Case 1. Suppose that there is (s, t) ∈ BM (0, 0) such that s+t = ℓ1. Similarly

as above, we have dim ˜Ω(N) ∩ [z − w]ℓ1 = #Σ1. Hence in this case, by (4.5)
we have

dim ˜Ω(N) =

p
∑

i=1

#Σi = #Σ = k.

Case 2. Suppose that {(s, t) ∈ BM (0, 0) : s+ t = ℓ1} = ∅. In this case, take
(n0,m0) ∈ Σ1. Then

˜Ω(N) ∩ [z − w]ℓ1 =
∑

(n,m)∈Σ1

C · (znwm − zn0wm0 ),

so

dim ˜Ω(N) ∩ [z − w]ℓ1 = #Σ1 − 1.

Hence

dim ˜Ω(N) = dim ˜Ω(N) ∩ [z − w]ℓ1 +

p
∑

i=2

dim ˜Ω(N) ∩ [z − w]ℓi

= #Σ1 − 1 +

p
∑

i=2

#Σi = k − 1.
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By Theorem 3.8, 1 ≤ dim ˜Ω(N) ≤ k. Thus we get the assertion. �

Let M be an invariant subspace of H2 with M ⊂ [z − w] satisfying the
conditions given in Theorem 4.2. Next, we shall study about Ω(M). In [5], the
authors proved the following.

Lemma 4.3. Let M1 and M2 be invariant subspaces of H2 satisfying M2 $ M1

and dim (M1 ⊖M2) < ∞. Then FM1

z is a Fredholm operator if and only if so

is FM2

z . In this case, we have indFM1

z = indFM2

z .

Corollary 4.4. Let M be an invariant subspace of H2 with M ⊂ [z −w] such

that Z(M) = Λ, M $ M0 = [z − w] and M = ˜M . Moreover we assume that

M 6⊂ zH2 and M 6⊂ wH2. Then FM
z is Fredholm and indFM

z = −1.

Proof. By Example 2.13, F
[z−w]
z is Fredholm and indF

[z−w]
z = −1. By Lemma

3.4, dim ([z − w]⊖M) < ∞. Then by Lemma 4.3, we get the assertion. �

In the proof of Theorem 4.2, we described the elements in ˜Ω(N). By Lemma

2.1 and Corollary 4.4, we have dimΩ(M) = dim ˜Ω(N) + 1. We shall describe
the elements in Ω(M). We shall use the same notations given above Lemma
3.13. Since M $ [z − w], we have 2 ≤ σ1. We note that n + m ≥ σ1 for
every (n,m) ∈ BM (0, 0). Moreover if (n,m) ∈ BM (0, 0) and n+m = σ1, then
(n,m) ∈ Γ1.

Lemma 4.5. (i) #Γ1 ≥ 2 and if (n,m) ∈ BM (0, 0), then n +m = σ1 if

and only if (n,m) ∈ Γ1.

(ii)

dim
∑

(sj ,tj)∈Γ1

C · PMzsjwtj = #Γ1 − 1.

(iii) For each 2 ≤ i ≤ q, we have

dim
∑

(sj ,tj)∈Γi

C · PMzsjwtj = #Γi.

Proof. (i) By Lemma 4.1(ii) and (iii), we have #Γ1 ≥ 2. The second assertion
is already pointed out above Lemma 4.5.

(ii) Take (sj0 , tj0) ∈ Γ1. Since M = ˜M , for (s, t) ∈ Γ1 we have zswt −
zsj0wtj0 ∈ M and

∑

(s,t)∈Γ1

C · (zswt − zsj0wtj0 ) ⊂ M.

By (i),

zsjwtj ⊥ M ⊖
∑

(s,t)∈Γ1

C · (zswt − zsj0wtj0 )

for every (sj , tj) ∈ Γ1. Hence
∑

(sj ,tj)∈Γ1

C · PMzsjwtj ⊂
∑

(s,t)∈Γ1

C · (zswt − zsj0wtj0 ).
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Let

g ∈
(

∑

(s,t)∈Γ1

C · (zswt − zsj0wtj0 )
)

⊖
(

∑

(sj ,tj)∈Γ1

C · PMzsjwtj
)

.

Then g ⊥ zsjwtj for every (sj , tj) ∈ Γ1, so g = 0. Hence
∑

(sj ,tj)∈Γ1

C · PMzsjwtj =
∑

(s,t)∈Γ1

C · (zswt − zsj0wtj0 ).

Therefore we get (ii).
(iii) Since 2 ≤ i, there is (s, t) ∈ BM (0, 0) \ Γ such that s+ t = σi. Let

˜Γi = {(s, t) ∈ BM (0, 0) : s+ t = σi}.

Then Γi $ ˜Γi. Take (s0, t0) ∈ ˜Γi \ Γi. Since M = ˜M , for (s, t) ∈ ˜Γi we have
zswt − zs0wt0 ∈ M and

zsjwtj ⊥ M ⊖
∑

(s,t)∈˜Γi

C · (zswt − zs0wt0)

for every (sj , tj) ∈ Γi. Hence
∑

(sj ,tj)∈Γi

C · PMzsjwtj ⊂
∑

(s,t)∈˜Γi

C · (zswt − zs0wt0 ) ⊂ M.

Let

h ∈
(

∑

(s,t)∈˜Γi

C · (zswt − zs0wt0)
)

⊖
(

∑

(sj ,tj)∈Γi

C · PMzsjwtj
)

.

Then h ⊥ zsjwtj for every (sj , tj) ∈ Γi. Hence

h ∈
∑

(s,t)∈˜Γi\Γi

C · (zswt − zs0wt0 ).

This shows that
∑

(sj ,tj)∈Γi

C · PMzsjwtj =
(

∑

(s,t)∈˜Γi

C · (zswt − zs0wt0 )
)

⊖

(

∑

(s,t)∈˜Γi\Γi

C · (zswt − zs0wt0)
)

.

Hence

dim
∑

(sj ,tj)∈Γi

C · PMzsjwtj = (#˜Γi − 1)− (#(˜Γi \ Γi)− 1) = #Γi.

We note that

zsjwtj − 1

#(Γi \ Γi)

∑

(s,t)∈˜Γi\Γi

zswt ∈ C · PMzsjwtj , (sj , tj) ∈ Γi.

�
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Theorem 4.6. Let M be an invariant subspace of H2 with M $ [z − w] such

that Z(M) = Λ, M ⊂ M0 = [z − w] and M = ˜M . Moreover we assume

that M 6⊂ zH2 and M 6⊂ wH2. Let n1, n2, . . . , nk,m1,m2, . . . ,mk ∈ N satisfy

the conditions given in Lemma 3.4 and ℓ1 = min
1≤j≤k

nj +mj. Then we have the

following.

(i) Suppose that s+ t 6= ℓ1 for any (s, t) ∈ BM (0, 0). Then

Ω(M) =
∑

(s,t)∈Γ

C · PMzswt

and dimΩ(M) = k.
(ii) Suppose that there is (s, t) ∈ BM (0, 0) such that s+ t = ℓ1. Let

g =
∑

(s,t)∈Γ1

zswt(z − w) ∈ M.

Then

Ω(M) = C · g ⊕
∑

(s,t)∈Γ

C · PMzswt

and dimΩ(M) = k + 1.

Proof. (i) By the proof of Theorem 4.2, we have dim ˜Ω(N) = k−1. By Lemma
2.1 and Corollary 4.4, we have dimΩ(M) = k. By Lemma 3.13,

∑

(s,t)∈Γ

C · PMzswt ⊂ Ω(M)

and

dim
∑

(s,t)∈Γ

C · PMzswt =

q
∑

i=1

dim
∑

(s,t)∈Γi

C · PMzswt

= #Γ1 − 1 +

q
∑

i=2

#Γi by Lemma 4.5

= #Γ− 1 = k + 1− 1 = k.

Thus we get (i).

(ii) In this case, by the proof of Theorem 4.2 we have dim ˜Ω(N) = k, so
dimΩ(M) = k + 1. In the same way as the one in (i), we have

∑

(s,t)∈Γ

C · PMzswt ⊂ Ω(M)

and
dim

∑

(s,t)∈Γ

C · PMzswt = k.

By Lemma 4.5(i), #Γ1 ≥ 2. Put

(4.6) Γ1 =
{

(sj1 , tj1), (sj2 , tj2), . . . , (sjγ , tjγ )
}

⊂ BM (0, 0),
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where 0 ≤ sj1 < sj2 < · · · < sjγ and γ ≥ 2. We have σ1 ≤ s + t for every
(s, t) ∈ BM (0, 0), and for (s, t) ∈ BM (0, 0), σ1 = s+ t if and only if (s, t) ∈ Γ1.
If sjn+1

− sjn = 1, then (sjn , tjn − 1) ∈ Σ. Hence

ℓ1 ≤ sjn + tjn − 1 = σ1 − 1 < σ1 ≤ s+ t

for every (s, t) ∈ BM (0, 0). This contradicts with the assumption of (ii). Hence
sjn+1

− sjn = tjn − tjn+1
≥ 2 for every 1 ≤ n ≤ γ − 1. This shows that (sjn +

1, tjn − 1) ∈ AM (0, 0) for every 1 ≤ n ≤ γ − 1 and (sjn − 1, tjn +1) ∈ AM (0, 0)
for every 2 ≤ n ≤ γ. If sj1 ≥ 1, then we have (sj1 − 1, tj1 +1) ∈ AM (0, 0). For,
if (sj1 − 1, tj1 + 1) ∈ BM (0, 0), then (sj1 − 1, tj1 + 1) ∈ Γ1 and this contradicts
with (4.6). Similarly if tjγ ≥ 1, then (sjγ + 1, tjγ − 1) ∈ AM (0, 0).

Let

g =

γ
∑

n=1

zsjnwtjn (z − w) ∈ M.

We have

PMT ∗
z g = PM

((

γ
∑

n=1

(−zsjn−1wtjn+1)
)

+
(

γ
∑

n=1

zsjnwtjn

))

= PM

(

γ
∑

n=1

zsjnwtjn

)

.

Since

M ∩
(

C · zσ1 ⊕ C · zσ1−1w ⊕ · · · ⊕ C · wσ1

)

=

γ
∑

n=2

C · (zsj1wtj1 − zsjnwtjn ),

we have

PM

(

γ
∑

n=1

zsjnwtjn

)

= 0.

Hence PMT ∗
z g = 0. Similarly PMT ∗

wg = 0. Thus by (1.1), we get g ∈ Ω(M).
Since g ⊥ zswt, we have g ⊥ PMzswt for every (s, t) ∈ Γ. Hence

C · g ⊕
∑

(s,t)∈Γ

C · PMzswt ⊂ Ω(M)

and

dim
(

C · g ⊕
∑

(s,t)∈Γ

C · PMzswt
)

= k + 1.

Thus we get

Ω(M) = C · g ⊕
∑

(s,t)∈Γ

C · PMzswt.
�

We shall give an example satisfying M 6= ˜M .
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Example 4.7. Let

M = [z2 − w2, z3(z − w), z2w(z − w), zw2(z − w), w3(z − w)].

Then M0 = [z − w], AM (0, 0) = {(0, 0), (0, 1), (1, 0), (1, 1)} and

˜M = {f ∈ [z − w] : f ⊥ z, f ⊥ zw, f ⊥ w}.
We have zw(z − w) ∈ ˜M and zw(z − w) /∈ M , so M 6= ˜M . We have Σ =
{(1, 1)}, so M1 = [z(z − w), w(z − w)]. We have z2 − 2zw + w2 ∈ M1 ⊖ M

and z(z2 − 2zw + w2) /∈ M . Hence M1 ⊖ M 6⊂ ˜Ω(N) and compare with the
assertion of Theorem 3.8. By calculation, we have

˜Ω(N) = C ·
(

(z3 + zw2)− (z2w + w3)
)

and

Ω(M) = C · (z2 − w2) + C · (2z4 − 3z3w + 2z2w2 − 3zw3 + 2w4).

By Example 2.13 and Lemma 4.3, FM
z is Fredholm and indFM

z = −1.
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