• Title/Summary/Keyword: Hankel

Search Result 160, Processing Time 0.018 seconds

Rational Approximation of Multiple Input Delay Systems Using the Hankel Singular Values Vectors (한켈특이치와 특이벡터를 이용한 복수 입력 시간지연 시스템의 유리근사화)

  • 황이철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.299-304
    • /
    • 1996
  • This paper studies the rational approximation of multiple input delay systems using the Hankel singular values and vectors, which are the soultion of a transcendental equation. Rational approximatants are obtained from output normal realizations which are constructed by the Hankel singular values and vectors. Consequently, it is shown that rational approximants by output normal realization preserve intrinsic properties of time delay systems than Pade approximants.

  • PDF

A unified solution to optimal Hankel-Norm approximation problem (최적 한켈 놈 근사화 문제의 통합형 해)

  • Youn, Sang-Soon;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.170-177
    • /
    • 1998
  • In this paper, a unified solution of Hankel norm approximation problem is proposed by $\delta$-operator. To derive the main result, all-pass property is derived from the inner and co-inner property in the $\delta$-domain. The solution of all-pass becomes an optimal Hankel norm approximation problem in .delta.-domain through LLFT(Low Linear Fractional Transformation) inserting feedback term $\phi(\gamma)$, which is a free design parameter, to hold the error bound desired against the variance between the original model and the solution of Hankel norm approximation problem. The proposed solution does not only cover continuous and discrete ones depending on sampling interval but also plays a key role in robust control and model reduction problem. The verification of the proposed solution is exemplified via simulation for the zero-order Hankel norm approximation problem and the model reduction problem applied to a 16th order MIMO system.

  • PDF

Rational approximation of multiple input delay systems (복수입력 시간지연 시스템의 유리근사화)

  • HWANG, I Cheol;PARK, Kyoung Taik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.194-204
    • /
    • 1997
  • In this paper, we consider the rational approximation of multiple input delay systems. The method of computing Hankel singular values and vectors is firstly introduced, where explicitly shows the structure of the corresponding Hankel singular vectors. Secondly, rational approximants are obtained from output nor- mal relizations, which are constructed by Hankel singular values and vectors. As a result, it is shown that rational approximants by output normal realization preserve intrinsic properties of time delay systems than Pad'e approximants.

  • PDF

Determining the Size of a Hankel Matrix in Subspace System Identification for Estimating the Stiffness Matrix and Flexural Rigidities of a Shear Building (전단빌딩의 강성행렬 및 부재의 강성추정을 위한 부분공간 시스템 확인기법에서의 행켈행렬의 크기 결정)

  • Park, Seung-Keun;Park, Hyun Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.99-112
    • /
    • 2013
  • This paper presents a subspace system identification for estimating the stiffness matrix and flexural rigidities of a shear building. System matrices are estimated by LQ decomposition and singular value decomposition from an input-output Hankel matrix. The estimated system matrices are converted into a real coordinate through similarity transformation, and the stiffness matrix is estimated from the system matrices. The accuracy and the stability of an estimated stiffness matrix depend on the size of the associated Hankel matrix. The estimation error curve of the stiffness matrix is obtained with respect to the size of a Hankel matrix using a prior finite element model of a shear building. The sizes of the Hankel matrix, which are consistent with a target accuracy level, are chosen through this curve. Among these candidate sizes of the Hankel matrix, more proper one can be determined considering the computational cost of subspace identification. The stiffness matrix and flexural rigidities are estimated using the Hankel matrix with the candidate sizes. The validity of the proposed method is demonstrated through the numerical example of a five-story shear building model with and without damage.

Primary Solution Evaluations for Interpreting Electromagnetic Data (전자탐사 자료 해석을 위한 1차장 계산)

  • Kim, Hee-Joon;Choi, Ji-Hyang;Han, Nu-Ree;Song, Yoon-Ho;Lee, Ki-Ha
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.361-366
    • /
    • 2009
  • Layered-earth Green's functions in electormagnetic (EM) surveys play a key role in modeling the response of exploration targets. They are computed through the Hankel transforms of analytic kernels. Computational precision depends upon the choice of algebraically equivalent forms by which these kemels are expressed. Since three-dimensional (3D) modeling can require a huge number of Green's function evaluations, total computational time can be influenced by computational time for the Hankel transform evaluations. Linear digital filters have proven to be a fast and accurate method of computing these Hankel transforms. In EM modeling for 3D inversion, electric fields are generally evaluated by the secondary field formulation to avoid the singularity problem. In this study, three components of electric fields for five different sources on the surface of homogeneous half-space were derived as primary field solutions. Moreover, reflection coefficients in TE and TM modes were produced to calculate EM responses accurately for a two-layered model having a sea layer. Accurate primary fields should substantially improve accuracy and decrease computation times for Green's function-based problems like MT problems and marine EM surveys.

UPPER BOUND ON THE THIRD HANKEL DETERMINANT FOR FUNCTIONS DEFINED BY RUSCHEWEYH DERIVATIVE OPERATOR

  • Yavuz, Tugba
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.437-444
    • /
    • 2018
  • Let S denote the class of analytic and univalent functions in the open unit disk $D=\{z:{\mid}z{\mid}<1\}$ with the normalization conditions f(0) = 0 and f'(0) = 1. In the present article, an upper bound for third order Hankel determinant $H_3(1)$ is obtained for a certain subclass of univalent functions generated by Ruscheweyh derivative operator.

THIRD HANKEL DETERMINANTS FOR STARLIKE AND CONVEX FUNCTIONS OF ORDER ALPHA

  • Orhan, Halit;Zaprawa, Pawel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.165-173
    • /
    • 2018
  • In this paper we obtain the bounds of the third Hankel determinants for the classes $\mathcal{S}^*({\alpha})$ of starlike functions of order ${\alpha}$ and $\mathcal{K}({\alpha}$) of convex functions of order ${\alpha}$. Moreover,we derive the sharp bounds for functions in these classes which are additionally 2-fold or 3-fold symmetric.

$H^{\infty}$-Optimal Design Using Hankel-Approximation (Hankel-근사화를 이용한 $H^{\infty}$--최적설계)

  • 이경준;윤한오;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.34-39
    • /
    • 1991
  • In this paper, we provide a treatment of the $H^{\infty}$-mixed sensitivity optimization approach to feedback system design. With compromising between the effect of a disturbance at the plant output and the effect of plant perturbations, we propose an algorithm to design robust controller. A $H^{\infty}$-optimization problem is to be equivalent to a Hankel-approximation, this enables the problem to be solved using state-space methods based on balanced realizations.s.

  • PDF