FOURTH HANKEL DETERMINANT FOR THE FAMILY OF FUNCTIONS WITH BOUNDED TURNING

Muhammad Arif, Lubna Rani, Mohsan Raza, and Pawe€ Zaprawa

Abstract

The main aim of this paper is to study the fourth Hankel determinant for the class of functions with bounded turning. We also investigate for 2 -fold symmetric and 3 -fold symmetric functions.

1. Introduction and definitions

Let \mathfrak{A} denote the family of all functions f that are analytic in the open unit disc $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ having the Taylor series expansions

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in \mathbb{D}) \tag{1.1}
\end{equation*}
$$

while \mathcal{S} represents a family of functions $f \in \mathfrak{A}$ that are univalent in \mathbb{D}. Let $\mathcal{S}^{*}, \mathcal{C}$ and \mathcal{R} denote the classes of starlike, convex and bounded turning functions respectively and are defined as:

$$
\begin{aligned}
\mathcal{S}^{*} & =\left\{f: f \in \mathfrak{A} \text { and } \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0, \quad z \in \mathbb{D}\right\}, \\
\mathcal{C} & =\left\{f: f \in \mathfrak{A} \text { and } \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0, \quad z \in \mathbb{D}\right\},
\end{aligned}
$$

and

$$
\mathcal{R}=\left\{f: f \in \mathfrak{A} \text { and } \operatorname{Re}\left(f^{\prime}(z)\right)>0, \quad z \in \mathbb{D}\right\} .
$$

Let \mathcal{P} denote the family of all analytic functions p of the form

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n} \tag{1.2}
\end{equation*}
$$

in \mathbb{D} whose real parts are positive in \mathbb{D}. It is known that the nth coefficient for the functions belong to the family \mathcal{S}, is bounded by n and this bound helps to study its geometric properties. In particular, the growth and distortion

Received November 10, 2017; Revised July 10, 2018; Accepted August 16, 2018.
2010 Mathematics Subject Classification. 30C45, 30C50.
Key words and phrases. bounded turning functions, Hankel determinant.
properties of a normalized univalent function $f \in \mathcal{S}$ are determined by the bound of its second coefficient.

The Hankel determinant $H_{q, n}(f)(q, n \in \mathbb{N}=\{1,2, \ldots\})$ for a function $f \in \mathcal{S}$ of the form (1.1) was defined by Pommerenke [21,22], (see also [2,3]) as

$$
H_{q, n}(f):=\left|\begin{array}{llll}
a_{n} & a_{n+1} & \ldots & a_{n+q-1} \tag{1.3}\\
a_{n+1} & a_{n+2} & \ldots & a_{n+q} \\
\vdots & \vdots & \ldots & \vdots \\
a_{n+q-1} & a_{n+q} & \ldots & a_{n+2 q-2}
\end{array}\right|
$$

For fixed integer q and n, the growth of $H_{q, n}(f)$ has been studied for different subfamilies of univalent functions. We include here a few of them. The sharp bounds of $\left|H_{2,2}(f)\right|$ for the subfamilies $\mathcal{S}^{*}, \mathcal{C}$ and \mathcal{R} of the set \mathcal{S} were investigated by Janteng et al. [10,11]. They proved the bounds

$$
\left|H_{2,2}(f)\right| \leq\left\{\begin{array}{lll}
1 & \text { for } & f \in \mathcal{S}^{*} \\
\frac{1}{8} & \text { for } & f \in \mathcal{C}, \\
\frac{4}{9} & \text { for } & f \in \mathcal{R}
\end{array}\right.
$$

For the family of Bazilevič functions, the exact estimate of $\left|H_{2,2}(f)\right|$ was obtained by Krishna et al. [13]. For more works on $H_{2,2}(f)$ for subfamilies of \mathcal{S} see the references $[5,9,12,14,17,19,20]$.

Unfortunately, the sharp bound of $\left|H_{2,2}(f)\right|$ for the whole class \mathcal{S} is still not known. In [26], Thomas conjectured that if $f \in \mathcal{S}$, then $\left|H_{2, n}(f)\right| \leq 1$. As it was shown by Li and Srivastava in [15], this conjecture is not true for $n \geq 4$. Similarly, Răducanu and Zaprawa in [23] proved that it is also false for $n=2$. In fact, they showed that $\max \left\{\left|H_{2,2}(f)\right|: f \in \mathcal{S}\right\} \geq 1.175 \ldots$.

The estimation of $\left|H_{3,1}(f)\right|$ is much more difficult than the case of $\left|H_{2,2}(f)\right|$. The first paper on $H_{3,1}(f)$ appears in 2010 by Babalola [4] in which he obtained the upper bound of $H_{3,1}(f)$ for the families of $\mathcal{S}^{*}, \mathcal{C}$ and \mathcal{R}. Later on some other authors $[1,6,8,24,25,27]$ published their works concerning $\left|H_{3,1}(f)\right|$ for different subfamilies of analytic and univalent functions. Recently in 2016, Zaprawa [28] improved the results of Babalola [4] by proving

$$
\left|H_{3,1}(f)\right| \leq\left\{\begin{array}{lll}
1 & \text { for } & f \in \mathcal{S}^{*} \\
\frac{49}{540} & \text { for } & f \in \mathcal{C}, \\
\frac{41}{60} & \text { for } & f \in \mathcal{R},
\end{array}\right.
$$

and claimed that these bounds are still not sharp. Further for the sharpness, he considered the subfamilies of $\mathcal{S}^{*}, \mathcal{C}$ and \mathcal{R} consisting of functions with m-fold symmetry and obtained the sharp bounds. In this paper, we contribute to the fourth Hankel determinant for the class of functions with positive real part.

2. A set of lemmas

In order to find the bound of the fourth Hankel determinant, we need the following sharp estimates for the class \mathcal{S}^{*} of starlike functions and \mathcal{P} of functions with positive real part.

Lemma 2.1. If $p \in \mathcal{P}$, then, for $n, k \in \mathbb{N}=\{1,2 \ldots\}$, the following sharp inequalities hold

$$
\begin{align*}
\left|c_{n+k}-\lambda c_{n} c_{k}\right| & \leq 2 \quad \text { for } 0 \leq \lambda \leq 1 \tag{2.1}\\
\left|c_{n}\right| & \leq 2 \tag{2.2}
\end{align*}
$$

The inequalities (2.1) and (2.2) are proved in [7] and [18] respectively.
Lemma 2.2. Let $p \in P$ of the form (1.2). Then

$$
2 c_{2}=c_{1}^{2}+x\left(4-c_{1}^{2}\right)
$$

for some x with $|x| \leq 1$.
This result is due to Libera and Złotkiewicz [16].
Let $g \in \mathcal{S}^{*}$ of the form

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \quad(z \in \mathbb{D}) \tag{2.3}
\end{equation*}
$$

Then for the real number λ, consider the functional

$$
\Phi_{g}(\lambda)=\left|b_{2}^{2}\left(b_{3}-\lambda b_{2}^{2}\right)\right|
$$

Now we prove the upper bound of $\Phi_{g}(\lambda)$ as follows.
Theorem 2.3. Let $g \in \mathcal{S}^{*}$ of the form (2.3). Then

$$
\Phi_{g}(\lambda) \leq \begin{cases}4(3-4 \lambda), & \lambda \leq 5 / 8, \\ \frac{1}{2(2 \lambda-1)}, & \lambda \in[5 / 8,3 / 4], \\ \frac{1}{4(1-\lambda)}, & \lambda \in[3 / 4,7 / 8], \\ 4(4 \lambda-3), & \lambda \geq 7 / 8 .\end{cases}
$$

Proof. Let $g \in \mathcal{S}^{*}$ of the form (2.3). Then

$$
\frac{z g^{\prime}(z)}{g(z)}=p(z)
$$

where p is in class \mathcal{P} of functions with positive real part. Then it is easy to see that

$$
b_{2}=c_{1}, \quad 2 b_{3}=c_{2}+c_{1}^{2}
$$

Hence by applying Lemma 2.2, and the above relations, we get

$$
\Phi_{g}(\lambda)=\frac{1}{4}\left|c_{1}^{2}\left[x\left(4-c_{1}^{2}\right)+(3-4 \lambda) c_{1}^{2}\right]\right|
$$

for some x such that $|x| \leq 1$. Taking into account of the invariance of Φ_{g} under rotation, we may assume that c_{1} is a non negative real number such that $c_{1}=2 r, r \in[0,1]$. Therefore

$$
\Phi_{g}(\lambda)=4 r^{2}\left|\left(1-r^{2}\right) x+(3-4 \lambda) r^{2}\right| .
$$

1. Now we suppose that $\lambda \leq 3 / 4$. Then

$$
\Phi_{g}(\lambda) \leq 4 r^{2}\left[2(1-2 \lambda) r^{2}+1\right] .
$$

Let $q_{1}(r)=4 r^{2}\left[2(1-2 \lambda) r^{2}+1\right]$. Then for $\lambda \leq 1 / 2$ and $r \in[0,1], q_{1}(r)$ is an increasing function. Hence $q_{1}(r) \leq q_{1}(1)$. For $\lambda \in(1 / 2,3 / 4]$, we have

$$
q_{1}(r) \leq \begin{cases}q_{1}(1), & \lambda \in(1 / 2,5 / 8] \\ q_{1}(1 / \sqrt{4(2 \lambda-1)}), & \lambda \in[5 / 8,3 / 4]\end{cases}
$$

2 . For the case $\lambda \geq 3 / 4$, we have

$$
\Phi_{g}(\lambda) \leq 4 r^{2}\left[4(\lambda-1) r^{2}+1\right]
$$

Again, letting $q_{2}(r)=4 r^{2}\left[4(\lambda-1) r^{2}+1\right]$ and using similar arguments, we have

$$
q_{2}(r) \leq \begin{cases}q_{2}(1 / \sqrt{8(1-\lambda)}), & \lambda \in[3 / 4,7 / 8] \\ q_{2}(1), & \lambda \geq 7 / 8 .\end{cases}
$$

Hence, we have the required result.

3. Bounds of $\left|H_{4,1}(f)\right|$ for the set \mathcal{R}

First, for any $f \in \mathfrak{A}$ of the form (1.1), we can write $H_{4,1}(f)$ in the form

$$
\begin{equation*}
H_{4,1}(f):=a_{7} H_{3}(1)-a_{6} \Delta_{1}+a_{5} \Delta_{2}-a_{4} \Delta_{3}, \tag{3.1}
\end{equation*}
$$

where Δ_{1}, Δ_{2} and Δ_{3} are determinants of order 3 given by

$$
\begin{align*}
& \Delta_{1}=\left(a_{3} a_{6}-a_{4} a_{5}\right)-a_{2}\left(a_{2} a_{6}-a_{3} a_{5}\right)+a_{4}\left(a_{2} a_{4}-a_{3}^{2}\right) \tag{3.2}\\
& \Delta_{2}=\left(a_{4} a_{6}-a_{5}^{2}\right)-a_{2}\left(a_{3} a_{6}-a_{4} a_{5}\right)+a_{3}\left(a_{3} a_{5}-a_{4}^{2}\right) \tag{3.3}\\
& \Delta_{3}=a_{2}\left(a_{4} a_{6}-a_{5}^{2}\right)-a_{3}\left(a_{3} a_{6}-a_{4} a_{5}\right)+a_{4}\left(a_{3} a_{5}-a_{4}^{2}\right) \tag{3.4}
\end{align*}
$$

From (1.3), we observe that $H_{4,1}(f)$ is a polynomial of six successive coefficients $a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$ and a_{7} of a function f in a given class. However, in many problems these coefficients are connected to the coefficients of the function p in the set \mathcal{P}.

Assume now that $f \in \mathcal{R}$. We have

$$
\begin{equation*}
f^{\prime}(z)=p(z) \tag{3.5}
\end{equation*}
$$

where $p \in \mathcal{P}$ of the form (1.2). From (3.5), we can easily obtain

$$
\begin{equation*}
n a_{n}=c_{n-1} . \tag{3.6}
\end{equation*}
$$

Using (3.6) in (3.2), (3.3) and (3.4), it follows that

$$
\begin{align*}
\Delta_{1} & =\frac{1}{18} c_{2} c_{5}-\frac{1}{20} c_{3} c_{4}-\frac{1}{24} c_{1}^{2} c_{5}+\frac{1}{30} c_{1} c_{2} c_{4}+\frac{1}{32} c_{1} c_{3}^{2}-\frac{1}{36} c_{2}^{2} c_{3} \tag{3.7}\\
\Delta_{2} & =\frac{1}{24} c_{3} c_{5}-\frac{1}{25} c_{4}^{2}+\frac{1}{40} c_{1} c_{3} c_{4}-\frac{1}{36} c_{1} c_{2} c_{5}+\frac{1}{45} c_{2}^{2} c_{4}-\frac{1}{48} c_{2} c_{3}^{2} \tag{3.8}\\
\Delta_{3} & =\frac{1}{48} c_{1} c_{3} c_{5}-\frac{1}{50} c_{1} c_{4}^{2}+\frac{1}{30} c_{2} c_{3} c_{4}-\frac{1}{64} c_{3}^{3}-\frac{1}{54} c_{2}^{2} c_{5} \tag{3.9}
\end{align*}
$$

Now we can prove our main result.

Theorem 3.1. If $f \in \mathcal{R}$, then

$$
\left|H_{4,1}(f)\right| \leq \frac{73757}{94500} \simeq 0.78050
$$

Proof. Let $f \in \mathcal{R}$. Then we can rewrite (3.7), (3.8) and (3.9) in the following ways

$$
\begin{aligned}
\Delta_{1}= & \frac{c_{5}\left(c_{2}-c_{1}^{2}\right)}{24}+\frac{c_{3}\left(c_{4}-c_{2}^{2}\right)}{36}-\frac{c_{3}\left(c_{4}-c_{1} c_{3}\right)}{32}-\frac{67 c_{4}\left(c_{3}-c_{1} c_{2}\right)}{1440} \\
& +\frac{19 c_{2}\left(c_{5}-c_{1} c_{4}\right)}{1440}+\frac{c_{2} c_{5}}{1440}, \\
\Delta_{2}= & \frac{c_{5}\left(c_{3}-c_{1} c_{2}\right)}{36}-\frac{c_{4}\left(c_{4}-c_{2}^{2}\right)}{45}+\frac{c_{3}\left(c_{5}-c_{2} c_{3}\right)}{48}-\frac{4 c_{4}\left(c_{4}-c_{1} c_{3}\right)}{225} \\
& -\frac{13 c_{3}\left(c_{5}-c_{1} c_{4}\right)}{1800}+\frac{c_{3} c_{5}}{3600}, \\
\Delta_{3}= & \frac{c_{5}\left(c_{4}-c_{2}^{2}\right)}{54}-\frac{c_{5}\left(c_{4}-c_{1} c_{3}\right)}{48}+\frac{c_{3}\left(c_{6}-c_{3}^{2}\right)}{64}-\frac{c_{3}\left(c_{6}-c_{2} c_{4}\right)}{64} \\
& +\frac{c_{4}\left(c_{5}-c_{1} c_{4}\right)}{50}-\frac{17 c_{4}\left(c_{5}-c_{2} c_{3}\right)}{960}+\frac{c_{4} c_{5}}{43200} .
\end{aligned}
$$

Using the triangle inequality along with the inequalities (2.1) and (2.2), we obtain

$$
\begin{aligned}
& \left|\Delta_{1}\right| \leq \frac{1}{6}+\frac{1}{9}+\frac{1}{8}+\frac{67}{360}+\frac{19}{360}+\frac{1}{360}=\frac{29}{45} \\
& \left|\Delta_{2}\right| \leq \frac{1}{9}+\frac{4}{45}+\frac{1}{12}+\frac{16}{225}+\frac{26}{900}+\frac{1}{900}=\frac{173}{450}
\end{aligned}
$$

and

$$
\left|\Delta_{3}\right| \leq \frac{2}{27}+\frac{1}{12}+\frac{1}{16}+\frac{1}{16}+\frac{2}{25}+\frac{17}{240}+\frac{1}{10800}=\frac{13}{30}
$$

Now putting the values $\left|H_{3,1}(f)\right| \leq \frac{41}{60},\left|\Delta_{1}\right| \leq \frac{29}{45},\left|\Delta_{2}\right| \leq \frac{173}{450},\left|\Delta_{3}\right| \leq \frac{13}{30}$ along with the inequality $\left|a_{n}\right| \leq \frac{2}{n}$ for $n \geq 2$ in (3.1), we obtain

$$
\begin{aligned}
\left|H_{4,1}(f)\right| & \leq\left|a_{7}\right|\left|H_{3}(1)\right|+\left|a_{6}\right|\left|\Delta_{1}\right|+\left|a_{5}\right|\left|\Delta_{2}\right|+\left|a_{4}\right|\left|\Delta_{3}\right| \\
& \leq \frac{2}{7} \frac{41}{60}+\frac{1}{3} \frac{29}{45}+\frac{2}{5} \frac{173}{450}+\frac{1}{2} \frac{13}{30} \\
& =\frac{73757}{94500} \simeq 0.7805
\end{aligned}
$$

and this completes the proof.

4. Bounds of $\left|H_{4,1}(f)\right|$ for the sets $\mathcal{R}^{(2)}$ and $\mathcal{R}^{(3)}$

Let $m \in \mathbb{N}=\{1,2, \ldots\}$. A domain Λ is said to be m-fold symmetric if a rotation of Λ about the origin through an angle $2 \pi / \mathrm{m}$ carries Λ on itself. A function f is said to be m-fold symmetric in \mathbb{D}, if

$$
f\left(e^{2 \pi i / m} z\right)=e^{2 \pi i / m} f(z),(z \in \mathbb{D})
$$

By $\mathcal{S}^{(m)}$, we mean the set of m-fold univalent functions having the following Taylor series form

$$
\begin{equation*}
f(z)=z+\sum_{k=1}^{\infty} a_{m k+1} z^{m k+1}, \quad(z \in \mathbb{D}) \tag{4.1}
\end{equation*}
$$

The sub-family $\mathcal{R}^{(m)}$ of $\mathcal{S}^{(m)}$ is the set of m-fold symmetric bounded turning functions. More intuitively, an analytic function f of the form (4.1) belongs to the family $\mathcal{R}^{(m)}$ if and only if

$$
f^{\prime}(z)=p(z) \text { with } p \in \mathcal{P}^{(m)}
$$

where the set $\mathcal{P}^{(m)}$ is defined by

$$
\begin{equation*}
\mathcal{P}^{(m)}=\left\{p \in \mathcal{P}: p(z)=1+\sum_{k=1}^{\infty} c_{m k} z^{m k}, \quad(z \in \mathbb{D})\right\} \tag{4.2}
\end{equation*}
$$

Theorem 4.1. If $f \in f \in \mathcal{R}^{(3)}$, then

$$
\left|H_{4,1}(f)\right| \leq \frac{1}{49}
$$

Proof. Now, let $f \in \mathcal{R}^{(3)}$. Then there exists a function $\widetilde{g}(z)=z+d_{4} z^{4}+$ $d_{7} z^{7}+\cdots \in \mathcal{S}^{*(3)}$ such that $\frac{z \widetilde{g}^{\prime}(z)}{\tilde{g}(z)}=f^{\prime}(z)$. Since $f \in \mathcal{R}^{(3)}$, using the series form (4.1) for $m=3$, we get

$$
1+3 d_{4} z^{3}+\left(6 d_{7}-3 d_{4}^{2}\right) z^{6}+\cdots=1+4 a_{4} z^{3}+7 a_{7} z^{6}+\cdots
$$

Comparing the coefficients of z^{3} and z^{6} on both sides, we obtain

$$
\begin{equation*}
3 d_{4}=4 a_{4}, \quad 6 d_{7}-3 d_{4}^{2}=7 a_{7} \tag{4.3}
\end{equation*}
$$

Since $\widetilde{g} \in \mathcal{S}^{*(3)}$, there exists a function g in \mathcal{S}^{*} of the form (2.3) such that $\widetilde{g}(z)=\sqrt[3]{g\left(z^{3}\right)}$. Therefore

$$
z+d_{4} z^{4}+d_{7} z^{7}+\cdots=z+\frac{1}{3} b_{2} z^{4}+\left(\frac{1}{3} b_{3}-\frac{1}{9} b_{2}^{2}\right) z^{7}+\cdots .
$$

Comparing the coefficients of z^{4} and z^{7}, we get

$$
\begin{equation*}
d_{4}=\frac{1}{3} b_{2}, \quad d_{7}=\frac{1}{3} b_{3}-\frac{1}{9} b_{2}^{2} \tag{4.4}
\end{equation*}
$$

Now from (4.3) and (4.4), it follows that

$$
\begin{equation*}
a_{4}=\frac{b_{2}}{4}, \quad a_{7}=\frac{1}{7}\left(2 b_{3}-b_{2}^{2}\right) . \tag{4.5}
\end{equation*}
$$

We observe that $a_{2}=a_{3}=a_{5}=a_{6}=0$ for the function $f \in \mathcal{R}^{(3)}$. Also it is clear that $H_{4,1}(f)=a_{4}^{2}\left(a_{4}^{2}-a_{7}\right)$. This implies that

$$
\left|H_{4,1}(f)\right|=\frac{1}{56}\left|b_{2}^{2}\left(b_{3}-\frac{23}{32} b_{2}^{2}\right)\right|
$$

Using Theorem 2.3 for $\lambda=\frac{23}{32} \in[5 / 8,3 / 4]$, we have the required result.

Theorem 4.2. If $f \in f \in \mathcal{R}^{(2)}$, then

$$
\left|H_{4,1}(f)\right| \leq \frac{368}{2625}
$$

Proof. It is clear that for $f \in \mathcal{R}^{(2)}$ we have $a_{2}=a_{4}=a_{6}=0$. Consequently

$$
H_{4,1}(f):=a_{3} a_{5} a_{7}-a_{3}^{3} a_{7}+a_{3}^{2} a_{5}^{2}-a_{5}^{3}
$$

Since $f \in \mathcal{R}^{(2)}$, there exists a function $p \in \mathcal{P}^{(2)}$ such that $f^{\prime}(z)=p(z)$. For $f \in \mathcal{R}^{(2)}$, using the series form (4.1) and (4.2) when $m=2$, we can write

$$
3 a_{3}=c_{2}, 5 a_{5}=c_{4}, 7 a_{7}=c_{6} .
$$

Therefore

$$
\begin{aligned}
H_{4,1}(f) & =\frac{1}{105} c_{2} c_{4} c_{6}-\frac{1}{189} c_{2}^{3} c_{6}+\frac{1}{225} c_{2}^{2} c_{4}^{2}-\frac{1}{125} c_{4}^{3} \\
& =\frac{1}{105}\left(c_{2} c_{6}-\frac{21}{25} c_{4}^{2}\right)\left(c_{4}-\frac{5}{9} c_{2}^{2}\right)
\end{aligned}
$$

Using Lemma 2.1 and the triangle inequality, we get

$$
\left|H_{4,1}(f)\right| \leq \frac{368}{2625} .
$$

Hence the proof is complete.

References

[1] S. Altinkaya and S. Yalçin, Third Hankel determinant for Bazilevič functions, Advances in Math. 5 (2016), no. 2, 91-96.
[2] M. Arif, K. I. Noor, and M. Raza, Hankel determinant problem of a subclass of analytic functions, J. Inequal. Appl. 2012 (2012), 22, 7 pp.
[3] M. Arif, K. I. Noor, M. Raza, and W. Haq, Some properties of a generalized class of analytic functions related with Janowski functions, Abstr. Appl. Anal. 2012 (2012), Art. ID 279843, 11 pp.
[4] K. O. Babalola, On $H_{3}(1)$ Hankel determinant for some classes of univalent functions, Inequal. Theory Appl. 6 (2007), 1-7.
[5] D. Bansal, Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett. 26 (2013), no. 1, 103-107.
[6] D. Bansal, S. Maharana, and J. K. Prajapat, Third order Hankel determinant for certain univalent functions, J. Korean Math. Soc. 52 (2015), no. 6, 1139-1148.
[7] C. Caratheodory, Uber den variabilitätsbereich der fourier'schen konstanten von positiven harmonischen funktionen, Rend. Circ. Mat. Palermo. 32 (1911), 193-127.
[8] N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko, and J. Sim, Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha, J. Math. Inequal. 11 (2017), no. 2, 429-439.
[9] W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. London Math. Soc. (3) 18 (1968), 77-94.
[10] A. Janteng, S. A. Halim, and M. Darus, Coefficient inequality for a function whose derivative has a positive real part, JIPAM. J. Inequal. Pure Appl. Math. 7 (2006), no. 2, Article 50, 5 pp.
[11] , Hankel determinant for starlike and convex functions, Int. J. Math. Anal. N.S. 1 (2007), no. 13-16, 619-625.
[12] D. V. Krishna and T. Ramreddy, Hankel determinant for starlike and convex functions of order alpha, Tbilisi Math. J. 5 (2012), 65-76.
[13] , Second Hankel determinant for the class of Bazilevic functions, Stud. Univ. Babeş-Bolyai Math. 60 (2015), no. 3, 413-420.
[14] S. K. Lee, V. Ravichandran, and S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl. 2013 (2013), 281, 17 pp.
[15] J.-L. Li and H. M. Srivastava, Some questions and conjectures in the theory of univalent functions, Rocky Mountain J. Math. 28 (1998), no. 3, 1035-1041.
[16] R. J. Libera and E. J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (1982), no. 2, 225-230.
[17] M.-S. Liu, J.-F. Xu, and M. Yang, Upper bound of second Hankel determinant for certain subclasses of analytic functions, Abstr. Appl. Anal. 2014 (2014), Art. ID 603180, 10 pp.
[18] A. E. Livingston, The coefficients of multivalent close-to-convex functions, Proc. Amer. Math. Soc. 21 (1969), 545-552.
[19] J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337-346.
[20] H. Orhan, N. Magesh, and J. Yamini, Bounds for the second Hankel determinant of certain bi-univalent functions, Turkish J. Math. 40 (2016), no. 3, 679-687.
[21] Ch. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc. 41 (1966), 111-122.
[22] , On the Hankel determinants of univalent functions, Mathematika 14 (1967), 108-112.
[23] D. Răducanu and P. Zaprawa, Second Hankel determinant for close-to-convex functions, C. R. Math. Acad. Sci. Paris 355 (2017), no. 10, 1063-1071.
[24] M. Raza and S. N. Malik, Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. Inequal. Appl. 2013 (2013), 412, 8 pp .
[25] G. Shanmugam, B. A. Stephen, and K. O. Babalola, Third Hankel determinant for α-starlike functions, Gulf J. Math. 2 (2014), no. 2, 107-113.
[26] R. Parvatham and S. Ponnusamy, New Trends in Geometric Function Theory and Application, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1981.
[27] D. Vamshee Krishna, B. Venkateswarlu, and T. RamReddy, Third Hankel determinant for bounded turning functions of order alpha, J. Nigerian Math. Soc. 34 (2015), no. 2, 121-127.
[28] P. Zaprawa, Third Hankel determinants for subclasses of univalent functions, Mediterr. J. Math. 14 (2017), no. 1, Art. 19, 10 pp.

Muhammad Arif
Department of Mathematics
Abdul Wali Khan University
Mardan, Pakistan
Email address: marifmaths@awkum.edu.pk
Lubna Rani
Department of Mathematics
Abdul Wali Khan University
Mardan, Pakistan
Email address: lubna4maths@gmail.com

Mohsan Raza

Department of Mathematics
Government College University
Faisalabad, Pakistan
Email address: mohsan976@yahoo.com
Pawé Zaprawa
Department of Mathematics
Faculty of Mechanical Engineering
Lublin University of Technology
Poland
Email address: p.zaprawa@pollub.pl

