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FOURTH HANKEL DETERMINANT FOR THE FAMILY OF

FUNCTIONS WITH BOUNDED TURNING

Muhammad Arif, Lubna Rani, Mohsan Raza, and Pawe l Zaprawa

Abstract. The main aim of this paper is to study the fourth Hankel

determinant for the class of functions with bounded turning. We also
investigate for 2-fold symmetric and 3-fold symmetric functions.

1. Introduction and definitions

Let A denote the family of all functions f that are analytic in the open unit
disc D = {z ∈ C : |z| < 1} having the Taylor series expansions

(1.1) f (z) = z +

∞∑
n=2

anz
n (z ∈ D) ,

while S represents a family of functions f ∈ A that are univalent in D. Let S∗, C
and R denote the classes of starlike, convex and bounded turning functions
respectively and are defined as:

S∗ =

{
f : f ∈ A and Re

(
zf ′ (z)

f (z)

)
> 0, z ∈ D

}
,

C =

{
f : f ∈ A and Re

(
1 +

zf ′′ (z)

f ′ (z)

)
> 0, z ∈ D

}
,

and

R = {f : f ∈ A and Re (f ′ (z)) > 0, z ∈ D} .
Let P denote the family of all analytic functions p of the form

(1.2) p (z) = 1 +

∞∑
n=1

cnz
n,

in D whose real parts are positive in D. It is known that the nth coefficient
for the functions belong to the family S, is bounded by n and this bound helps
to study its geometric properties. In particular, the growth and distortion
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properties of a normalized univalent function f ∈ S are determined by the
bound of its second coefficient.

The Hankel determinant Hq,n (f) (q, n ∈ N = {1, 2, . . .}) for a function f ∈ S
of the form (1.1) was defined by Pommerenke [21,22], (see also [2, 3]) as

(1.3) Hq,n (f) :=

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 an+2 . . . an+q
...

... . . .
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣ .
For fixed integer q and n, the growth of Hq,n (f) has been studied for differ-
ent subfamilies of univalent functions. We include here a few of them. The
sharp bounds of |H2,2 (f)| for the subfamilies S∗, C and R of the set S were
investigated by Janteng et al. [10, 11]. They proved the bounds

|H2,2 (f)| ≤

 1 for f ∈ S∗,
1
8 for f ∈ C,
4
9 for f ∈ R.

For the family of Bazilevič functions, the exact estimate of |H2,2 (f)| was ob-
tained by Krishna et al. [13]. For more works on H2,2 (f) for subfamilies of S
see the references [5, 9, 12,14,17,19,20].

Unfortunately, the sharp bound of |H2,2 (f)| for the whole class S is still not
known. In [26], Thomas conjectured that if f ∈ S, then |H2,n (f)| ≤ 1. As it
was shown by Li and Srivastava in [15], this conjecture is not true for n ≥ 4.
Similarly, Răducanu and Zaprawa in [23] proved that it is also false for n = 2.
In fact, they showed that max{|H2,2 (f)| : f ∈ S} ≥ 1.175 . . ..

The estimation of |H3,1 (f)| is much more difficult than the case of |H2,2 (f)|.
The first paper on H3,1 (f) appears in 2010 by Babalola [4] in which he obtained
the upper bound of H3,1 (f) for the families of S∗, C and R. Later on some
other authors [1, 6, 8, 24, 25, 27] published their works concerning |H3,1 (f)| for
different subfamilies of analytic and univalent functions. Recently in 2016,
Zaprawa [28] improved the results of Babalola [4] by proving

|H3,1 (f)| ≤

 1 for f ∈ S∗,
49
540 for f ∈ C,
41
60 for f ∈ R,

and claimed that these bounds are still not sharp. Further for the sharpness, he
considered the subfamilies of S∗, C and R consisting of functions with m-fold
symmetry and obtained the sharp bounds. In this paper, we contribute to the
fourth Hankel determinant for the class of functions with positive real part.

2. A set of lemmas

In order to find the bound of the fourth Hankel determinant, we need the
following sharp estimates for the class S∗ of starlike functions and P of functions
with positive real part.
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Lemma 2.1. If p ∈ P, then, for n, k ∈ N = {1, 2 . . .} , the following sharp
inequalities hold

|cn+k − λcnck| ≤ 2 for 0 ≤ λ ≤ 1,(2.1)

|cn| ≤ 2.(2.2)

The inequalities (2.1) and (2.2) are proved in [7] and [18] respectively.

Lemma 2.2. Let p ∈ P of the form (1.2). Then

2c2 = c21 + x
(
4− c21

)
for some x with |x| ≤ 1.

This result is due to Libera and Z lotkiewicz [16].
Let g ∈ S∗ of the form

(2.3) g (z) = z +

∞∑
n=2

bnz
n (z ∈ D) .

Then for the real number λ, consider the functional

Φg (λ) =
∣∣b22 (b3 − λb22)∣∣ .

Now we prove the upper bound of Φg (λ) as follows.

Theorem 2.3. Let g ∈ S∗ of the form (2.3) . Then

Φg (λ) ≤


4 (3− 4λ) , λ ≤ 5/8,

1
2(2λ−1) , λ ∈ [5/8, 3/4] ,

1
4(1−λ) , λ ∈ [3/4, 7/8] ,

4 (4λ− 3) , λ ≥ 7/8.

Proof. Let g ∈ S∗ of the form (2.3) . Then

zg′ (z)

g (z)
= p (z) ,

where p is in class P of functions with positive real part. Then it is easy to see
that

b2 = c1, 2b3 = c2 + c21.

Hence by applying Lemma 2.2, and the above relations, we get

Φg (λ) =
1

4

∣∣c21 [x (4− c21)+ (3− 4λ) c21
]∣∣

for some x such that |x| ≤ 1. Taking into account of the invariance of Φg
under rotation, we may assume that c1 is a non negative real number such that
c1 = 2r, r ∈ [0, 1] . Therefore

Φg (λ) = 4r2
∣∣(1− r2)x+ (3− 4λ) r2

∣∣ .
1. Now we suppose that λ ≤ 3/4. Then

Φg (λ) ≤ 4r2
[
2 (1− 2λ) r2 + 1

]
.
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Let q1 (r) = 4r2
[
2 (1− 2λ) r2 + 1

]
. Then for λ ≤ 1/2 and r ∈ [0, 1] , q1 (r) is

an increasing function. Hence q1 (r) ≤ q1 (1) . For λ ∈ (1/2, 3/4] , we have

q1 (r) ≤

{
q1 (1) , λ ∈ (1/2, 5/8] ,

q1

(
1/
√

4 (2λ− 1)
)
, λ ∈ [5/8, 3/4] .

2. For the case λ ≥ 3/4, we have

Φg (λ) ≤ 4r2
[
4 (λ− 1) r2 + 1

]
.

Again, letting q2 (r) = 4r2
[
4 (λ− 1) r2 + 1

]
and using similar arguments, we

have

q2 (r) ≤

{
q2

(
1/
√

8 (1− λ)
)
, λ ∈ [3/4, 7/8] ,

q2 (1) , λ ≥ 7/8.

Hence, we have the required result. �

3. Bounds of |H4,1 (f)| for the set R

First, for any f ∈ A of the form (1.1), we can write H4,1 (f) in the form

(3.1) H4,1 (f) := a7H3 (1)− a6∆1 + a5∆2 − a4∆3,

where ∆1, ∆2 and ∆3 are determinants of order 3 given by

∆1 = (a3a6 − a4a5)− a2 (a2a6 − a3a5) + a4
(
a2a4 − a23

)
,(3.2)

∆2 =
(
a4a6 − a25

)
− a2 (a3a6 − a4a5) + a3

(
a3a5 − a24

)
,(3.3)

∆3 = a2
(
a4a6 − a25

)
− a3 (a3a6 − a4a5) + a4

(
a3a5 − a24

)
.(3.4)

From (1.3), we observe that H4,1 (f) is a polynomial of six successive coefficients
a2, a3, a4, a5, a6 and a7 of a function f in a given class. However, in many
problems these coefficients are connected to the coefficients of the function p
in the set P.

Assume now that f ∈ R. We have

(3.5) f ′(z) = p (z) ,

where p ∈ P of the form (1.2). From (3.5), we can easily obtain

(3.6) nan = cn−1.

Using (3.6) in (3.2) , (3.3) and (3.4), it follows that

∆1 =
1

18
c2c5 −

1

20
c3c4 −

1

24
c21c5 +

1

30
c1c2c4 +

1

32
c1c

2
3 −

1

36
c22c3,(3.7)

∆2 =
1

24
c3c5 −

1

25
c24 +

1

40
c1c3c4 −

1

36
c1c2c5 +

1

45
c22c4 −

1

48
c2c

2
3,(3.8)

∆3 =
1

48
c1c3c5 −

1

50
c1c

2
4 +

1

30
c2c3c4 −

1

64
c33 −

1

54
c22c5.(3.9)

Now we can prove our main result.
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Theorem 3.1. If f ∈ R, then

|H4,1 (f)| ≤ 73757

94500
' 0.78050.

Proof. Let f ∈ R. Then we can rewrite (3.7), (3.8) and (3.9) in the following
ways

∆1 =
c5
(
c2 − c21

)
24

+
c3
(
c4 − c22

)
36

− c3 (c4 − c1c3)

32
− 67c4 (c3 − c1c2)

1440

+
19c2 (c5 − c1c4)

1440
+
c2c5
1440

,

∆2 =
c5 (c3 − c1c2)

36
−
c4
(
c4 − c22

)
45

+
c3 (c5 − c2c3)

48
− 4c4 (c4 − c1c3)

225

− 13c3 (c5 − c1c4)

1800
+
c3c5
3600

,

∆3 =
c5
(
c4 − c22

)
54

− c5 (c4 − c1c3)

48
+
c3
(
c6 − c23

)
64

− c3 (c6 − c2c4)

64

+
c4 (c5 − c1c4)

50
− 17c4 (c5 − c2c3)

960
+

c4c5
43200

.

Using the triangle inequality along with the inequalities (2.1) and (2.2), we
obtain

|∆1| ≤
1

6
+

1

9
+

1

8
+

67

360
+

19

360
+

1

360
=

29

45
,

|∆2| ≤
1

9
+

4

45
+

1

12
+

16

225
+

26

900
+

1

900
=

173

450
,

and

|∆3| ≤
2

27
+

1

12
+

1

16
+

1

16
+

2

25
+

17

240
+

1

10800
=

13

30
.

Now putting the values |H3,1 (f)| ≤ 41
60 , |∆1| ≤ 29

45 , |∆2| ≤ 173
450 , |∆3| ≤ 13

30 along

with the inequality |an| ≤ 2
n for n ≥ 2 in (3.1) , we obtain

|H4,1 (f)| ≤ |a7| |H3 (1)|+ |a6| |∆1|+ |a5| |∆2|+ |a4| |∆3|

≤ 2

7

41

60
+

1

3

29

45
+

2

5

173

450
+

1

2

13

30

=
73757

94500
' 0.7805

and this completes the proof. �

4. Bounds of |H4,1 (f)| for the sets R(2) and R(3)

Let m ∈ N = {1, 2, . . .} . A domain Λ is said to be m-fold symmetric if a
rotation of Λ about the origin through an angle 2π/m carries Λ on itself. A
function f is said to be m-fold symmetric in D, if

f
(
e2πi/mz

)
= e2πi/mf (z) , (z ∈ D) .
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By S(m), we mean the set of m-fold univalent functions having the following
Taylor series form

(4.1) f (z) = z +

∞∑
k=1

amk+1z
mk+1, (z ∈ D) .

The sub-family R(m) of S(m) is the set of m-fold symmetric bounded turning
functions. More intuitively, an analytic function f of the form (4.1) belongs to
the family R(m) if and only if

f ′ (z) = p (z) with p ∈ P(m),

where the set P(m) is defined by

(4.2) P(m) =

{
p ∈ P : p (z) = 1 +

∞∑
k=1

cmkz
mk, (z ∈ D)

}
.

Theorem 4.1. If f ∈ f ∈ R(3), then

|H4,1 (f)| ≤ 1

49
.

Proof. Now, let f ∈ R(3). Then there exists a function g̃ (z) = z + d4z
4 +

d7z
7 + · · · ∈ S∗(3) such that zg̃′(z)

g̃(z) = f ′ (z) . Since f ∈ R(3), using the series

form (4.1) for m = 3, we get

1 + 3d4z
3 + (6d7 − 3d24)z6 + · · · = 1 + 4a4z

3 + 7a7z
6 + · · · .

Comparing the coefficients of z3 and z6 on both sides, we obtain

(4.3) 3d4 = 4a4, 6d7 − 3d24 = 7a7.

Since g̃ ∈ S∗(3), there exists a function g in S∗ of the form (2.3) such that

g̃ (z) = 3
√
g (z3). Therefore

z + d4z
4 + d7z

7 + · · · = z +
1

3
b2z

4 +

(
1

3
b3 −

1

9
b22

)
z7 + · · · .

Comparing the coefficients of z4 and z7, we get

(4.4) d4 =
1

3
b2, d7 =

1

3
b3 −

1

9
b22.

Now from (4.3) and (4.4) , it follows that

(4.5) a4 =
b2
4
, a7 =

1

7

(
2b3 − b22

)
.

We observe that a2 = a3 = a5 = a6 = 0 for the function f ∈ R(3). Also it is
clear that H4,1 (f) = a24

(
a24 − a7

)
. This implies that

|H4,1 (f)| = 1

56

∣∣∣∣b22(b3 − 23

32
b22

)∣∣∣∣ .
Using Theorem 2.3 for λ = 23

32 ∈ [5/8, 3/4] , we have the required result. �
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Theorem 4.2. If f ∈ f ∈ R(2), then

|H4,1 (f)| ≤ 368

2625
.

Proof. It is clear that for f ∈ R(2) we have a2 = a4 = a6 = 0. Consequently

H4,1 (f) := a3a5a7 − a33a7 + a23a
2
5 − a35.

Since f ∈ R(2), there exists a function p ∈ P(2) such that f ′ (z) = p (z) . For
f ∈ R(2), using the series form (4.1) and (4.2) when m = 2, we can write

3a3 = c2, 5a5 = c4, 7a7 = c6.

Therefore

H4,1 (f) =
1

105
c2c4c6 −

1

189
c32c6 +

1

225
c22c

2
4 −

1

125
c34

=
1

105

(
c2c6 −

21

25
c24

)(
c4 −

5

9
c22

)
.

Using Lemma 2.1 and the triangle inequality, we get

|H4,1 (f)| ≤ 368

2625
.

Hence the proof is complete. �
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[1] S. Altinkaya and S. Yalçin, Third Hankel determinant for Bazilevič functions, Advances
in Math. 5 (2016), no. 2, 91–96.

[2] M. Arif, K. I. Noor, and M. Raza, Hankel determinant problem of a subclass of analytic

functions, J. Inequal. Appl. 2012 (2012), 22, 7 pp.
[3] M. Arif, K. I. Noor, M. Raza, and W. Haq, Some properties of a generalized class of

analytic functions related with Janowski functions, Abstr. Appl. Anal. 2012 (2012),

Art. ID 279843, 11 pp.
[4] K. O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions,

Inequal. Theory Appl. 6 (2007), 1–7.
[5] D. Bansal, Upper bound of second Hankel determinant for a new class of analytic func-

tions, Appl. Math. Lett. 26 (2013), no. 1, 103–107.

[6] D. Bansal, S. Maharana, and J. K. Prajapat, Third order Hankel determinant for certain
univalent functions, J. Korean Math. Soc. 52 (2015), no. 6, 1139–1148.
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