• Title/Summary/Keyword: Hafnium oxide [$HfO_2$]

Search Result 42, Processing Time 0.026 seconds

The Deposition of Hafnium Oxide Thin Film using MOCVD (MOCVD를 이용한 Hafnium Oxide 박막 증착)

  • 오재민;이태호;김영순;현광수;안진호
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.198-202
    • /
    • 2002
  • $HfO_2$films were grown on Si substrate in the temperature range $250~550^{\circ}C$ using metal organic chemical vapor deposition (MOCVD) technique for a gate dielectric. Hafnium tart-butoxide and Oxygen gas were used as precursors and N2 was used as carrier gas. Impurity distribution and film structure(including interfacial layer) were studied at the deposition temperature range between 25$0^{\circ}C$ and $550^{\circ}C$. The growth rate and impurty distribution decreased with increasing temperature. The electrical properties of $HfO_2$were investigated with C-V, 1-V method and showed it has a good properties as a gate dielectric.

  • PDF

Characteristics of Hafnium Silicate Films Deposited on Si by Atomic Layer Deposition Process

  • Lee, Jung-Chan;Kim, Kwang-Sook;Jeong, Seok-Won;Roh, Yong-Han
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.127-130
    • /
    • 2011
  • We investigated the effects of $O_2$ annealing (i.e., temperature and time) on the characteristics of hafnium silicate ($HfSi_xO_y$) films deposited on a Si substrate by atomic layer deposition process (ALD). We found that the post deposition annealing under oxidizing ambient causes the oxidation of residual Hf metal components, resulting in the improvement of electrical characteristics (e.g., hysteresis window and leakage current are decreased). In addition, we observed the annealing temperature is more important than the annealing time for post deposition annealing. Based on these observations, we suggest that post deposition annealing under oxidizing ambient is necessary to improve the electrical characteristics of $HfSi_xO_y$ films deposited by ALD. However, the annealing temperature has to be carefully controlled to minimize the regrowth of interfacial oxide, which degrades the value of equivalent oxide thickness.

Effect of Ultrathin Film HfO2 by Atomic Layer Deposition on the Propreties of ZnS:Cu,Cl Phosphors (ZnS:Cu,Cl 형광체의 특성에 미치는 원자층 증착 초박막 HfO2의 영향)

  • Kim, Min-Wan;Han, Sand-Do;Kim, Hyung-Su;Kim, Hyug-Jong;Kim, Hyu-Suk;Kim, Suk-Whan;Lee, Sang-Woo;Choi, Byung-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.248-252
    • /
    • 2006
  • An investigation is reported on the coating of ZnS:Cu,Cl phosphors by $HfO_2$ using atomic layer deposition method. Hafnium oxide films were prepared at the chamber temperature of $280^{\circ}C$ using $Hf[N(CH_3)_2]_4\;and\;O_2$ as precursors and reactant gas, respectively. XPS and ICP-MS analysis showed the surface composition of coated phosphor powder was hafnium oxide. In FE-SEM analysis, the surface morphology of uncoated phosphors became smoother and clearer as the number of ALD cycle increased from 900 to 1800. The photoluminescence intensity for coated phosphors showed $7.3{\sim}13.4%$ higher than that of uncoated. The effect means that the reactive surface is uniformly coated with stable hafnium oxide to reduce the dead surface layer without change of bulk properties and also its absorptance is almost negligible due to ultrathin(nano-scaled) films. The growth rate is about $1.1{\AA}/cycle$.

Analysis of Fin-Type SOHOS Flash Memory using Hafnium Oxide as Trapping Layer (Hafnium Oxide를 Trapping Layer로 적용한 Fin-Type SOHOS 플래시 메모리 특성연구)

  • Park, Jeong-Gyu;Oh, Jae-Sub;Yang, Seung-Dong;Jeong, Kwang-Seok;Kim, Yu-Mi;Yun, Ho-Jin;Han, In-Shik;Lee, Hi-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.449-453
    • /
    • 2010
  • In this paper, the electrical characteristics of Fin-type SONOS(silicon-oxide-nitride-oxide-silicon) flash memory device with different trapping layers are analyzed in depth. Two kinds of trapping layers i.e., silicon nitride($Si_3N_4$) and hafnium oxide($HfO_2$) are applied. Compared to the conventional Fin-type SONOS device using the $Si_3N_4$ trapping layer, the Fin-type SOHOS(silicon-oxide-high-k-oxide-silicon) device using the $HfO_2$ trapping layer shows superior program/erase speed. However, the data retention properties in SOHOS device are worse than the SONOS flash memory device. Degraded data retention in the SOHOS device may be attributed to the tunneling leakage current induced by interface trap states, which are supported by the subthreshold slope and low frequency noise characteristics.

Effect of Hydrogen Treatment on Electrical Properties of Hafnium Oxide for Gate Dielectric Application

  • Park, Kyu-Jeong;Shin, Woong-Chul;Yoon, Soon-Gil
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.2
    • /
    • pp.95-102
    • /
    • 2001
  • Hafnium oxide thin films for gate dielectric were deposited at $300^{\circ}C$ on p-type Si (100) substrates by plasma enhanced chemical vapor deposition (PECVD) and annealed in $O_2$ and $N_2$ ambient at various temperatures. The effect of hydrogen treatment in 4% $H_2$ at $350^{\circ}C$ for 30 min on the electrical properties of $HfO_2$for gate dielectric was investigated. The flat-band voltage shifts of $HfO_2$capacitors annealed in $O_2$ambient are larger than those in $N_2$ambient because samples annealed in high oxygen partial pressure produces the effective negative charges in films. The oxygen loss in $HfO_2$films was expected in forming gas annealed samples and decreased the excessive oxygen contents in films as-deposited and annealed in $O_2$ or $N_2$ambient. The CET of films after hydrogen forming gas anneal almost did not vary compared with that before hydrogen gas anneal. Hysteresis of $HfO_2$films abruptly decreased by hydrogen forming gas anneal because hysteresis in C-V characteristics depends on the bulk effect rather than $HfO_2$/Si interface. The lower trap densities of films annealed in $O_2$ambient than those in $N_2$were due to the composition of interfacial layer becoming closer to $SiO_2$with increasing oxygen partial pressure. Hydrogen forming gas anneal at $350^{\circ}C$ for samples annealed at various temperatures in $O_2$and $N_2$ambient plays critical role in decreasing interface trap densities at the Si/$SiO_2$ interface. However, effect of forming gas anneal was almost disappeared for samples annealed at high temperature (about $800^{\circ}C$) in $O_2$ or $N_2$ambient.

  • PDF

게이트 유전체용 $HfO_2$ 박막의 증착 및 열처리 조건에 따른 Nano-Mechanical 특성 연구

  • Kim, Ju-Yeong;Kim, Su-In;Lee, Gyu-Yeong;Gwon, Gu-Eun;Kim, Min-Seok;Eom, Seung-Hyeon;Jeong, Hyeon-Jin;Jo, Yong-Seok;Park, Seung-Ho;Lee, Chang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.291-292
    • /
    • 2012
  • MOSFET 구조에서 metal oxide에 기반을 둔 게이트 유전체의 연구는 실리콘(Si)을 기반으로 한 반도체 발명이래로 가장 인상적인 발전을 이뤄 왔다. 이는 metal oxide의 높은 유전상수 특성이 $SiO_2$보다 우수하고, 유전체 박막의 두께 감소로 인한 전기적 특성 저하를 보완하기 때문이다. 특히 지난 10년 동안, Hafnium에 기반을 둔 $HfO_2$는 차세대 반도체용 유전 물질로 전기적 구조적 특성에 대한 연구가 활발히 진행되어왔다. 그러나 현재까지 $HfO_2$에 대한 nano-mechanical 특성 연구는 미미하여 이에 대한 연구가 필요하다. 이에 본 연구에서는 Hf 및 $HfO_2$ 박막의 증착 및 열처리 조건을 다르게 하여 실험을 진행하였다. 시료는 rf magnetron sputter를 이용하여 Si 기판위에 Hafnium target으로 산소유량(4, 6 sccm)을 달리하여 증착하였고, 이후 furnace에서 400에서 $800^{\circ}C$까지 질소분위기에서 20분간 열처리를 실시하였다. 실험결과 산소 유량을 6 sccm으로 증착한 시료의 current density 성능이 모든 열처리 과정에서 증가하였다. Nano-indenter로 측정하고 Weibull distribution으로 정량적 계산을 한 경도 (Hardness)는 as-deposited 시료를 기준으로 $400^{\circ}C$에서는 감소했으나 온도가 높아질수록 증가하였다. 특히, $400^{\circ}C$ 열처리한 시료에서 산소농도에(4 sccm : 5.35 GPa, 6 sccm : 6.15 GPa)따른 두 시료간의 변화가 가장 두드러졌다. 반면에, 탄성계수 (Elastic modulus)는 산소농도 6 sccm을 넣고 증착된 시료들이 4 sccm을 넣고 증착한 시료보다 모두 높은 값을 나타냈다. 또한, $800^{\circ}C$ 열처리한 시료에서 산소농도에(4 sccm : 128.88 GPa, 6 sccm : 149.39 GPa)따라 표면의 탄성에 큰 차이가 있음을 확인하였다. 이는 증착된 $HfO_2$ 시료들이 비정질 상태에서 $HfO_2$로 결정화되는 과정에서 산소가 증가할수록 박막의 defect이 감소되기 때문으로 사료된다.

  • PDF

Characteristics of HfO2-Al2O3 Gate insulator films for thin Film Transistors by Pulsed Laser Deposition

  • Hwang, Jae Won;Song, Sang Woo;Jo, Mansik;Han, Kwang-hee;Kim, Dong woo;Moon, Byung Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.304.2-304.2
    • /
    • 2016
  • Hafnium oxide-aluminum oxide (HfO2-Al2O3) dielectric films have been fabricated by Pulsed Laser Deposition (PLD), and their properties are studied in comparison with HfO2 films. As a gate dielectric of the TFT, in spite of its high dielectric constant, HfO2 has a small energy band gap and microcrystalline structure with rough surface characteristics. When fabricated by the device, it has the drawback of generating a high leakage current. In this study, the HfAlO films was obtained by Pulsed Laser Deposition with HfO2-Al2O3 target(chemical composition of (HfO2)86wt%(Al2O3)14wt%). The characteristics of the thin Film have been investigated by x-ray diffraction (XRD), atomic force microscopy (AFM) and spectroscopic ellipsometer (SE) analyses. The X-ray diffraction studies confirmed that the HfAlO has amorphous structure. The RMS value can be compared to the surface roughness via AFM analysis, it showed HfAlO thin Film has more lower properties than HfO2. The energy band gap (Eg) deduced by spectroscopic ellipsometer was increased. HfAlO films was expected to improved the interface quality between channel and gate insulator. Apply to an oxide thin Film Transistors, HfAlO may help improve the properties of device.

  • PDF

Thermal Stability and Electrical Properties of $HfO_xN_y$ ($HfO_2$) Gate Dielectrics with TaN Gate Electrode (TaN 게이트 전극을 가진 $HfO_xN_y$ ($HfO_2$) 게이트 산화막의 열적 안정성)

  • Kim, Jeon-Ho;Choi, Kyu-Jeong;Yoon, Soon-Gil;Lee, Won-Jae;Kim, Jin-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.54-57
    • /
    • 2003
  • [ $HfO_xN_y$ ] films using a hafnium tertiary-butoxide $(Hf[OC(CH_3)_3]_4)$ in plasma and $N_2$ ambient were prepared to improve the thermal stability of hafnium-based gate dielectrics. A 10% nitrogen incorporation into $HfO_2$ films showed a smooth surface morphology and a crystallization temperature as high as $200^{\circ}C$ compared with pure $HfO_2$ films. The $TaN/HfO_xN_y/Si$ capacitors showed a stable capacitance-voltage characteristics even at post-metal annealing temperature of $1000^{\circ}C$ in $N_2$ ambient and a constant value of 1.6 nm EOT (equivalent oxide thickness) irrespective of an increase of PDA and PMA temperature. Leakage current densities of $HfO_xN_y$ capacitors annealed at PDA temperature of 800 and $900^{\circ}C$, respectively were approximately one order of magnitude lower than that of $HfO_2$ capacitors.

  • PDF

Study on Electrical Characteristics of Hafnium Silicate Films with Low Temperature O2 Annealing (저온 Osub2 어닐링 공정을 통한 HfSixOy의 전기적 특성 개선)

  • Lee, Jung-Chan;Kim, Kwang-Sook;Jeong, Seok-Won;Roh, Yong-Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.370-373
    • /
    • 2011
  • We investigated the effects of low temperature ($500^{\circ}C$) $O_2$ annealing on the characteristics of hafnium silicate ($HfSi_xO_y$) films deposited on a Si substrate by atomic layer deposition (ALD). We found that the post deposition annealing under oxidizing ambient causes the oxidation of residual Hf metal components, resulting in the improvement of electrical characteristics such as flat band voltage shift (${\Delta}V_{fb}$) by hysteresis without oxide capacitance reduction. We suggest that post deposition annealing under oxidizing ambient is necessary to improve the electrical characteristics of $HfSi_xO_y$ films deposited by ALD.

Preparation of Hafnium Oxide Thin Films grown by Atomic Layer Deposition (원자층 증착법으로 성장한 HfO2 박막의 제조)

  • Kim Hie-Chul;Kim Min-Wan;Kim Hyung-Su;Kim Hyug-Jong;Sohn Woo-Keun;Jeong Bong-Kyo;Kim Suk-Whan;Lee Sang-Woo;Choi Byung-Ho
    • Korean Journal of Materials Research
    • /
    • v.15 no.4
    • /
    • pp.275-280
    • /
    • 2005
  • The growth of hafnium oxide thin films by atomic layer deposition was investigated in the temperature range of $175-350^{\circ}C$ using $Hf[N(CH_3)_2]_4\;and\;O_2$ as precursors. A self-limiting growth of $0.6\AA/cycle$ was achieved at the substrate temperature of $240-280^{\circ}C$. The films were amorphous and very smooth (0.76-0.80 nm) as examined by X-ray diffractometer and atomic force microscopy, respectively. X-ray photoelectron spectroscopy analysis showed that the films grown at $300^{\circ}C$ was almost stoichiometric. Electrical measurements performed on $MoW/HfO_2$(20 nm)/Si MOS structures exhibited high dielectric constant$(\~17)$ and a remarkably low leakage current density of at an applied field of $1.5-6.2\times10^{-7}A/cm^2$ MV/cm, probably due to the stoichiometry of the films.