Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.5.370

Study on Electrical Characteristics of Hafnium Silicate Films with Low Temperature O2 Annealing  

Lee, Jung-Chan (School of Information and Communication Engineering, Sungkyunkwan University)
Kim, Kwang-Sook (School of Information and Communication Engineering, Sungkyunkwan University)
Jeong, Seok-Won (School of Information and Communication Engineering, Sungkyunkwan University)
Roh, Yong-Han (School of Information and Communication Engineering, Sungkyunkwan University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.5, 2011 , pp. 370-373 More about this Journal
Abstract
We investigated the effects of low temperature ($500^{\circ}C$) $O_2$ annealing on the characteristics of hafnium silicate ($HfSi_xO_y$) films deposited on a Si substrate by atomic layer deposition (ALD). We found that the post deposition annealing under oxidizing ambient causes the oxidation of residual Hf metal components, resulting in the improvement of electrical characteristics such as flat band voltage shift (${\Delta}V_{fb}$) by hysteresis without oxide capacitance reduction. We suggest that post deposition annealing under oxidizing ambient is necessary to improve the electrical characteristics of $HfSi_xO_y$ films deposited by ALD.
Keywords
MOS capacitor; ALD; high-k; $HfSi_xO_y$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Punchaipetch, G. Pant, M. A. Quevedo-Lopez, C. Yao, M. El-Bouanani, M. J. Kim, R. M. Wallace, and B. E. Gnade, IEEE J. Quantum Electron., 10, 89(2004).   DOI
2 P. Punchaipetch, G. Pant, M. Quevedo-Lopez, H. Zhang, M. EI-Bouanani, M. J. Kim, R. M. Wallace, and B. E. Gnade, Thin Solid Films, 425, 68 (2003).   DOI
3 G. Pant, P. Punchaipetch, M. J. Kim, R. M. Wallace, and B. E. Gnade, Thin Solid Films, 460, 242 (2004).   DOI
4 K. Yamamoto, S. Hayashi, M. Niwa, M. Asai, S. Horii, and H. Miya, Appl. Phys. Lett., 83, 2229 (2003).   DOI
5 H. Nakashima, D. Wang, Y. Sugimoto, Y. Suehiro, K. Yamamoto, M. Kajiwara, and K. Hirayama, Semicond. Sci. Technol., 23, 1 (2008).
6 M. S. Jo, H. K Park, J. M. Lee, M. Chang, H. S. Jung, J. H. Lee, and H. S. Hwang, Elec. Dev. Lett., 29, 399 (2008).   DOI
7 M. Miyamura, K. Masuzaki, H. Watanabe, N. Ikarashi, and T. Tatsumi, Jpn. J. Appl. Phys., 43, 7843 (2004).   DOI
8 C. W. Hsu, Y. T. Chiang, F. R. Juang, C. T. Lin, and C. M. Lai, Microelectron. Reliab., 50, 618 (2010).   DOI
9 P. E. Blochl and J. H. Stathis, Phys. Rev. Lett., 83, 372 (1999).   DOI
10 Y. Sugimoto, H. Adachi, K. Yamamoto, D. Wang, H. Nakashima, and H. Nakashima, Mater. Sci. Semicon. Process., 9, 1031 (2006).   DOI
11 G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys., 89, 5243 (2001).   DOI
12 A. Callegari, E. Cartier, M. Gribelyuk, H. F. Okorn-Schmidt, and T. Zabel, J. Appl. Phys., 90, 6466 (2001).   DOI
13 J. F. Damlencourt, O. Renault, D. Samour, A. M. Papon, C. Leroux, F. Martin, S. Marthon, M. N. Semeria, and X. Garros, Solid State Electr.., 47, 1613 (2003).   DOI