DOI QR코드

DOI QR Code

Preparation of Hafnium Oxide Thin Films grown by Atomic Layer Deposition

원자층 증착법으로 성장한 HfO2 박막의 제조

  • Kim Hie-Chul (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology) ;
  • Kim Min-Wan (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology) ;
  • Kim Hyung-Su (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology) ;
  • Kim Hyug-Jong (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology) ;
  • Sohn Woo-Keun (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology) ;
  • Jeong Bong-Kyo (LG. Philips Displays, Design Department) ;
  • Kim Suk-Whan (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology) ;
  • Lee Sang-Woo (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology) ;
  • Choi Byung-Ho (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology)
  • 김희철 (금오공과대학교 신소재시스템공학부) ;
  • 김민완 (금오공과대학교 신소재시스템공학부) ;
  • 김형수 (금오공과대학교 신소재시스템공학부) ;
  • 김혁종 (금오공과대학교 신소재시스템공학부) ;
  • 손우근 (금오공과대학교 신소재시스템공학부) ;
  • 정봉교 (LG. Philips Displays 설계실) ;
  • 김석환 (금오공과대학교 신소재시스템공학부) ;
  • 이상우 (금오공과대학교 신소재시스템공학부) ;
  • 최병호 (금오공과대학교 신소재시스템공학부)
  • Published : 2005.04.01

Abstract

The growth of hafnium oxide thin films by atomic layer deposition was investigated in the temperature range of $175-350^{\circ}C$ using $Hf[N(CH_3)_2]_4\;and\;O_2$ as precursors. A self-limiting growth of $0.6\AA/cycle$ was achieved at the substrate temperature of $240-280^{\circ}C$. The films were amorphous and very smooth (0.76-0.80 nm) as examined by X-ray diffractometer and atomic force microscopy, respectively. X-ray photoelectron spectroscopy analysis showed that the films grown at $300^{\circ}C$ was almost stoichiometric. Electrical measurements performed on $MoW/HfO_2$(20 nm)/Si MOS structures exhibited high dielectric constant$(\~17)$ and a remarkably low leakage current density of at an applied field of $1.5-6.2\times10^{-7}A/cm^2$ MV/cm, probably due to the stoichiometry of the films.

Keywords

References

  1. H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S.-I. Nakamura, M. Saito and H. Iwai, IEEE Trans. Electron Dev., 43, 1233 (1996) https://doi.org/10.1109/16.506774
  2. D. A. Muller, T. Sorsch, S. Moccio, FH. Baumann, K. Evans-Lutterodt and G. Timp, Nature, 399, 758 (1999) https://doi.org/10.1038/21602
  3. J.-Y. Zhang. I.W. Boyd. B. J. O'Sullivan, P. K. Hurley, P. V. Kelly and J. -P. senateur, J. Non-Cryst. Solids, 303, 134 (2002) https://doi.org/10.1016/S0022-3093(02)00973-0
  4. W.-J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon and J. C. Lee, Phys, Lett., 77, 3269 (2000) https://doi.org/10.1063/1.1326482
  5. S. K. Kang, D. H. Ko, E. H. Kim, M. H. Cho and C. N. Whang, Thin Solid Films, 353, 8 (1999) https://doi.org/10.1016/S0040-6090(99)00418-6
  6. B. H. Lee, L. Kang, R. Nieh and J.C. Lee, Appl. Phys. Lett., 76, 1926 (2000) https://doi.org/10.1063/1.126214
  7. K.J. Hubbard and D.G. Schlom, J. Mater. Tes., 11, 2757 (1996) https://doi.org/10.1557/JMR.1996.0350
  8. Y.-H. Lee, J.-C. Kwak, B.-S. Gang, H.-C. Kim, B.-H. Choi, B.-K. Jeong, S.-H. Park and K.-H. Lee, J. Electrochem. Soc., 151(1) C52 (2004) https://doi.org/10.1149/1.1629096
  9. J.-C. Kwak, Y.-H. Lee and B.-H. Choi, Appli. Surf. Sci., 230, 249 (2004) https://doi.org/10.1016/j.apsusc.2004.02.033
  10. W. D. Sprous, M. E. Graham, M.S. Wong and P. J. Rudnik, Surf. Coat. Technol., 89, 10 (1997) https://doi.org/10.1016/S0257-8972(96)02913-1
  11. T. Nishide, S. Honda, M. Matsuura and M. Ide, Thin Solid Films, 371, 61 (2000) https://doi.org/10.1016/S0040-6090(00)01010-5
  12. R. C. Smith, T. Ma, N. hoilien, L. Y. Tsung, M. J. Bevan, L. Colombo, J. Toberts, S. A. Campbell and W. L. Gladfelter, Adv. Mater. Opt. Electron., 10, 105 (2000) https://doi.org/10.1002/1099-0712(200005/10)10:3/5<105::AID-AMO402>3.0.CO;2-J
  13. Y. Oshita, A. Ogura, A. Hoshino, T. Suzuki, S. Hiiro and H. Machida, J. Cryst. Growth, 235, 365 (2002) https://doi.org/10.1016/S0022-0248(01)01833-4
  14. Q. Fang, J.-Y. Zhang, Z. M. Wang, J. X. Wu, B. J. O'Sullivan, P. K. Hurley, T. L. Leedham, H. Davies, M. A. Audier, C. Jimenez and J.-P. senateur, Ian w. Boyd. Thin Solid Films, 427, 391 (2003) https://doi.org/10.1016/S0040-6090(02)01181-1
  15. M. Cho, H. B. Park, J. Park, S. W. Lee and C. S. Hwang, Appl. Phys. Lett., 83, 26 (2003) https://doi.org/10.1063/1.1637128
  16. M. Cho, D. S. Jeong, J. Park, H. B. Park, S. W. Lee, T. J. Park and C. S. Hwang, Appl. Phys. Lett., 85, 24 (2004) https://doi.org/10.1063/1.1829773
  17. O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler and T. E. Seidel, Thin Solid Films, 402, 248 (2002) https://doi.org/10.1016/S0040-6090(01)01678-9
  18. J. Aarik, J. Sundqvist, A. Aidla, J. Lu, T. Sajavaara, K. Kukli and A. Harsta, Thin Solid Films, 418, 69 (2002) https://doi.org/10.1016/S0040-6090(02)00765-4
  19. J. Sundqvist, A. Harsta, J. Aarik, K. Kukli and A. Aidla, Thin Solid Films, 427, 147 (2003) https://doi.org/10.1016/S0040-6090(02)01165-3
  20. S. Tamimoto. M. Matsui. K. Karnisako. K. Kuroiwa and Y. Tarui, J. Electrochem. Soc., 139, 320 (1992) https://doi.org/10.1149/1.2069193
  21. G. Scarel, S. Spiga, C. Wiemer, G. Tallarida, S. Ferrari and M. Fanciulli, Materials Science and Engineering, B 109, 11 (2004) https://doi.org/10.1016/j.mseb.2003.10.021
  22. T. Lee, J. Ahn, J. Oh and Y. Kim, Korean J. Phys. Soc., 42, 272 (2003)
  23. K.-J. Choi, W.-C. Shin and S.-G. Yoon, J. Electrochem. Soc., 149, F18, (2002) https://doi.org/10.1149/1.1450617
  24. Q. Fang, J. Y. Zhang, Z. M. Wang, G. He, J. Yu and Ian W. Boyd, Microelectronic Engineering, 1, (2002) https://doi.org/10.1016/S0167-9317(02)00974-7
  25. D. Han, J. Kang, C. Lin and R. Han, Microelectronic Engineering, 66, 643 (2003) https://doi.org/10.1016/S0167-9317(02)00977-2
  26. W. D. Kinggery, 'Introduction to Ceramics', p.660-664, John Wiley & Sons, Inc., (1960)