• 제목/요약/키워드: H1R

검색결과 8,465건 처리시간 0.039초

A NOTE ON THE FIRST ORDER COMMUTATOR C2

  • Li, Wenjuan;Liu, Suying
    • 대한수학회보
    • /
    • 제56권4호
    • /
    • pp.885-898
    • /
    • 2019
  • This paper gives a counterexample to show that the first order commutator $C_2$ is not bounded from $H^1({\mathbb{R}}){\times}H^1({\mathbb{R}})$ into $L^{1/2}({\mathbb{R}})$. Then we introduce the atomic definition of abstract weighted Hardy spaces $H^1_{ato,{\omega}}$$({\mathbb{R}})$ and study its properties. At last, we prove that $C_2$ maps $H^1_{ato,{\omega}}$$({\mathbb{R}}){\times}H^1_{ato,{\omega}}$$({\mathbb{R}})$ into $L^{1/2}_{\omega}$$({\mathbb{R}})$.

ALMOST COHEN-MACAULAYNESS OF KOSZUL HOMOLOGY

  • Mafi, Amir;Tabejamaat, Samaneh
    • 대한수학회보
    • /
    • 제56권2호
    • /
    • pp.471-477
    • /
    • 2019
  • Let (R, m) be a commutative Noetherian ring, I an ideal of R and M a non-zero finitely generated R-module. We show that if M and $H_0(I,M)$ are aCM R-modules and $I=(x_1,{\cdots},x_{n+1})$ such that $x_1,{\cdots},x_n$ is an M-regular sequence, then $H_i(I,M)$ is an aCM R-module for all i. Moreover, we prove that if R and $H_i(I,R)$ are aCM for all i, then R/(0 : I) is aCM. In addition, we prove that if R is aCM and $x_1,{\cdots},x_n$ is an aCM d-sequence, then depth $H_i(x_1,{\cdots},x_n;R){\geq}i-1$ for all i.

Stabilizing Solutions of Algebraic Matrix riccati Equations in TEX>$H_\infty$ Control Problems

  • Kano, Hiroyuki;Nishimura, Toshimitsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.364-368
    • /
    • 1994
  • Algebraic matrix Riccati equations of the form, FP+PF$^{T}$ -PRP+Q=0. are analyzed with reference to the stability of closed-loop system F-PR. Here F, R and Q are n * n real matrices with R=R$^{T}$ and Q=Q$^{T}$ .geq.0 (nonnegative-definite). Such equations have been playing key roles in optimal control and filtering problems with R .geq. 0. and also in the solutions of in H$_{\infty}$ control problems with R taking the form R=H$_{1}$$^{T}$ H$_{1}$-H$_{2}$$^{T}$ H$_{2}$. In both cases an existence of stabilizing solution, i.e. the solution yielding asymptotically stable closed-loop system, is an important problem. First, we briefly review the typical results when R is of definite form, namely either R .geq. 0 as in LQG problems or R .leq. 0. They constitute two extrence cases of Riccati to the cases H$_{2}$=0 and H$_{1}$=0. Necessary and sufficient conditions are shown for the existence of nonnegative-definite or positive-definite stabilizing solution. Secondly, we focus our attention on more general case where R is only assumed to be symmetric, which obviously includes the case for H$_{\infty}$ control problems. Here, necessary conditions are established for the existence of nonnegative-definite or positive-definite stabilizing solutions. The results are established by employing consistently the so-called algebraic method based on an eigenvalue problem of a Hamiltonian matrix.x.ix.x.

  • PDF

장방형 역유동층의 동력학적 특성 (Hydrodynamic Characteristics in a Hexagonal Inverse Fluidized Bed)

  • 박영식;안갑환
    • 한국환경과학회지
    • /
    • 제5권1호
    • /
    • pp.93-102
    • /
    • 1996
  • Hydrodynamic characteristics such as gas holdup, liquid circulation velocity and bed expansion in a hexagonal inverse fluidized bed were investigated using air-water system by changing the ratio ($A_d$/$A_r$) of cross-sectional area between the riser and the downcomer, the liquid level($H_1$/H), and the superficial gas velocity($U_g$). The gas holdup and the liquid circulation velocity were steadily increased with the superficial gas velocity increasing, but at high superficial gas velocity, some of gas bubbles were carried over to a downcomer and circulated through the column. When the superficial gas velocity was high, the $A_d$/$A_r$ ratio in the range of 1 to 2.4 did not affect the liquid circulation velocity, but the maximum bed expansion was obtained at $A_d$/$A_r$ ratio of 1.25. The liquid circulation velocity was expressed as a model equation below with variables of the cross-sectional area ratio($A_d$/$A_r$) between riser to downcomer, the liquid level($H_1$/H), the superficial gas velocity($U_g$), the sparser height[(H-$H_s$)/H], and the draft Plate level($H_b$/H). $U_{ld}$ = 11.62U_g^{0.75}$${(\frac{H_1}{H})}^{10.30}$${(\frac{A_d}{A_r})}^{-0.52}$${(\frac({H-H_s}{H})}^{0.91}$${(\frac{H_b}{H})}^{0.13}$

  • PDF

Interference-filter-based stereoscopic 3D LCD

  • Simon, Arnold;Prager, M. G.;Schwarz, S.;Fritz, M.;Jorke, H.
    • Journal of Information Display
    • /
    • 제11권1호
    • /
    • pp.24-27
    • /
    • 2010
  • A novel stereo 3D LCD for passive interference filter glasses is presented. A demonstrator based on a standard 120Hz LCD was set up. Stereoscopic image separation was realized in a time-sequential mode using a LED-based scanning backlight with two complementary spectra. A stereo brightness of 3 cd/$m^2$ and a channel separation of 30:1 were achieved.

선형 요소에 의해 생성된 부분그룹의 크기에 관한 연구 (On The Size of The Subgroup Generated by Linear Factors)

  • 취쳉;황선태
    • 대한전자공학회논문지TC
    • /
    • 제45권6호
    • /
    • pp.27-33
    • /
    • 2008
  • 차수가 h인 다항식 ${\hbar}(x){\in}F_q[x]$에서, $x-s_1,\;x-s_2,\;{\cdots},\;x-s_n$에 의해 생성된 $\(F_q[x]/({\hbar(x))\)*$의 multiplicative subgroup의 크기를 결정하는 것은 대단히 중요한 과제이다. 여기서 $\{s_1,\;s_2,\;{\cdots},\;s_n\}{\sebseteq}F_q$이고 모든 i 에 대해서, ${\hbar}(x){\neq}0$이다. 지금까지 알려진 asymptotic lower bound는 $(rh)^{O(1)}\(2er+O(\frac{1}{r})\)^h$이며, 여기서 $r=\frac{n}{h}$이고 e(=2.718...)는 natural logarithm의 기저이다. 본 논문에서는, coding theory 문제와 연계해서 더 낳은 lower bound인 $(rh)^{O(1)}\(2er+{\frac{e}{2}}{\log}r-{\frac{e}{2}}{\log}{\frac{e}{2}}+O{(\frac{{\log}^2r}{r})}\)^h$를 증명하고자 한다. 여기서 log는natural logarithm을 나타내며, 또한 이방식의 제약점에 대해서도 논의한다.

미세균열의 길이 및 간격 분포를 이용한 결의 평가(2) (Evaluation for Rock Cleavage Using Distribution of Microcrack Lengths and Spacings (2))

  • 박덕원
    • 암석학회지
    • /
    • 제27권1호
    • /
    • pp.1-15
    • /
    • 2018
  • 미세균열의 길이와 간격의 분포를 이용하여 쥬라기 거창화강암의 결의 특성을 분석하였다. 여섯 방향의 결에 대한 길이 및 간격-누적빈도 도표를 미세균열의 길이의 밀도(${\rho}$)가 증가하는 순(($H2{\rightarrow}R1$)으로 배열하였다. 상기 두 유형의 도표의 결합을 통하여 다양한 파라미터를 추출하였다. 여섯 방향의 결에 대한 평가는 (I) 교차각(${\alpha}-{\beta}$), 지수차(${\lambda}_S-{\lambda}_L$), 선의 길이(ol 및 ll'), 길이 비(ol/os 및 ll'/sl'), 평균 길이((ss'+ll')/2), 직각삼각형의 면적(${\Delta}oaa_a^{\prime}$${\Delta}obb_a^{\prime}$) 그리고 면적차(${\Delta}obb^{\prime}-{\Delta}oaa^{\prime}$${\Delta}obb_a^{\prime}-{\Delta}oaa_a^{\prime}$), (II) 선의 길이(oa 및 os) 그리고 면적(${\Delta}oaa^{\prime}$), (III) 선의 길이(sl') 및 길이 비(ss'/ll') 그리고 (IV) 선의 길이(ob, ss' 및 ls') 및 면적(${\Delta}obb^{\prime}$, ${\Delta}ll^{\prime}s^{\prime}$, ${\Delta}ss^{\prime}l^{\prime}$ 및 ⏢ll'ss')과 같은 4개 그룹(I~IV)의 파라미터를 이용하여 수행하였다. 3개 결 및 3개 면에 대한 파라미터의 값 사이의 상관성 분석의 결과는 다음과 같다. 3개 결에 대한 파라미터의 값은 (I) H(3번 결, (H1 + H2)/2) < G(2번 결, (G1 + G2)/2) < R(1번 결, (R1 + R2)/2), (II) R < G < H, (III) G < H < R 및 (IV) H < G < R의 순서이다. 반면에, 3개 면에 대한 파라미터의 값은 (I) R' < G' < H', (II) H' < G' < R' 및 (III 및 IV) R' < H' < G'의 순서이다. 특히, 그룹 I 및 그룹 II에 속하는 파라미터의 값은 상호 역순을 보여준다. 결론적으로, 이러한 유형의 상관성 분석은 3개 채석면의 판별에 유용하다.

Synthesis and Characterization of Group 13 Compounds of 2-Acetylpyridine Thiosemicarbazone. Single-Crystal Structure of $(iC_4H_9)-2Al(NC_5H_4C(CH_3)$NNC(S)NHPh)

  • 강영진;강상옥;고재정;손정인
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권1호
    • /
    • pp.65-68
    • /
    • 1999
  • Novel mononuclear group 13 metal complexes with the formula (R2M){NC5H4C(CH3)NNC(S)NH(C6H5)} (M=Al, R=iC4H9 (1); M=Ga, R=iC4H9 (2); M=Al, R=CH2SiMe3 (3); M=Ga, R=CH2SiMe3 (4)) result when 2-acetyl pyridine 4-phenyl-thiosemicarbazone ligand is mixed with trialkyl aluminum or trialkylgallium. These compounds 1-4 are characterized by microanalysis, NMR (1H, 13C) spectroscopy, mass spectra, and singlecrystal X-ray diffraction. X-ray single-crystal diffraction analysis reveals that 1 is mononuclear metal compound with coordination number of 5 and N, N, S-coordination mode.

ON LEFT α-MULTIPLIERS AND COMMUTATIVITY OF SEMIPRIME RINGS

  • Ali, Shakir;Huang, Shuliang
    • 대한수학회논문집
    • /
    • 제27권1호
    • /
    • pp.69-76
    • /
    • 2012
  • Let R be a ring, and ${\alpha}$ be an endomorphism of R. An additive mapping H : R ${\rightarrow}$ R is called a left ${\alpha}$-multiplier (centralizer) if H(xy) = H(x)${\alpha}$(y) holds for all x,y $\in$ R. In this paper, we shall investigate the commutativity of prime and semiprime rings admitting left ${\alpha}$-multiplier satisfying any one of the properties: (i) H([x,y])-[x,y] = 0, (ii) H([x,y])+[x,y] = 0, (iii) $H(x{\circ}y)-x{\circ}y=0$, (iv) $H(x{\circ}y)+x{\circ}y=0$, (v) H(xy) = xy, (vi) H(xy) = yx, (vii) $H(x^2)=x^2$, (viii) $H(x^2)=-x^2$ for all x, y in some appropriate subset of R.

SOME SUMS VIA EULER'S TRANSFORM

  • Nese Omur;Sibel Koparal;Laid Elkhiri
    • 호남수학학술지
    • /
    • 제46권3호
    • /
    • pp.365-377
    • /
    • 2024
  • In this paper, we give some sums involving the generalized harmonic numbers Hrn (σ) and the (q, r)-binomial coefficient $\left({L \atop k}\right)_{q,r}$ by using Euler's transform. For example, for (c, r) ∈ ℤ+ × ℝ+, $${\sum_{n=0}^{\infty}}{\sum_{k=0}^{n}}\,(-1)^k\,\left({n+r \atop n-k}\right)\frac{c^{n+1}H^{r-1}_k({\sigma})}{(n+1)(1+c)^{n+1}}=-(c+{\frac{1}{{\sigma}}})\,{\ln}\,(1+c{\sigma})+c,$$ and $${\sum_{k=0}^{n}}\left({n \atop k}\right)\left({L \atop k}\right)_{2,r}={\sum_{j=0}^{n}}{\sum_{k=0}^{j}}(-1)^k\left({j-k+2L+r \atop j-k}\right)\left({r \atop n-j}\right)\left({L \atop k}\right)_2,$$ where σ is appropriate parameter, Hrn (σ) is the generalized hyperharmonic number of order r and $\left({L \atop k}\right)_q$ is the q-binomial coefficient.