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A NOTE ON THE FIRST ORDER COMMUTATOR C2

Wenjuan Li and Suying Liu

Abstract. This paper gives a counterexample to show that the first or-

der commutator C2 is not bounded from H1(R) × H1(R) into L1/2(R).

Then we introduce the atomic definition of abstract weighted Hardy
spaces H1

ato,ω(R) and study its properties. At last, we prove that C2
maps H1

ato,w(R)×H1
ato,w(R) into L

1/2
ω (R).

1. Introduction

Calderón commutators first appeared in the study of the Cauchy integral
along Lipschitz curves and led to the first proof of the L2-boundedness of
the latter. Let A be a Lipschitz function on R (i.e., A′ = a ∈ L∞) and let
Γ = (t, A(t)) be a plane curve. With this parameterization we can regard any
function f defined on Γ as a function of t and conversely. Given f ∈ S(R), the
Cauchy integral

CΓf(z) =
1

2πi

∫ ∞
∞

f(t)(1 + ia(t))

t+ iA(t)− z
dt

defines an analytic function in the open set Ω+ = {z = x+ iy ∈ C : y > A(x)}.
It can be shown that the limit of CΓf(z), as z approaches Γ from above and
nontangentially, is given by

1

2

[
f(x) +

i

π
lim
ε→0

∫
|x−t|>ε

f(t)(1 + ia(t))

x− t+ i(A(x)−A(t))
dt

]
.

This lead to consider the operator

Tf(x) = lim
ε→0

∫
|x−y|>ε

f(y)

x− y + i(A(x)−A(y))
dy,
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whose kernel

K(x, y) =
1

x− y + i(A(x)−A(y))
.

If ‖a‖∞ < 1, then we can expand this kernel as

K(x, y) =

∞∑
m=0

imKm(x, y),

where

Km(x, y) =
(A(x)−A(y))m

(x− y)m+1
.

Therefore, it is natural to consider the boundedness of the following Calderón
commutators:

(1.1) Cm+1(a, f)(x) :=

∫
R

(A(x)−A(y))m

(x− y)m+1
f(y)dy, where A′ = a.

In this article, we mainly study the first order commutator as follows:

(1.2) C2(a, f)(x) :=

∫
R

A(x)−A(y)

(x− y)2
f(y)dy.

It is known that C2 is bounded from Lp(R) × Lq(R) to Lr(R), when 1 <
p, q ≤ ∞ and 1

p + 1
q = 1

r , r 6= ∞. Moreover, if either p or q equals to 1, then

C2(a, f2) maps Lp(R)×Lq(R) to Lr,∞(R), in particular, it maps L1(R)×L1(R)
to L1/2,∞(R) . For these results, we refer the articles [3], [4] and [5].

Define

e(x) =

{
1, x > 0,

−1, x < 0.
(1.3)

The first order commutator can be written as

C2(a, f2)(x) =

∫
R

∫
R
K(x, y1, y2)a(y1)f2(y2)dy1dy2,(1.4)

where the kernel K is

(1.5) K(x, y1, y2) =
e(x− y1)− e(y2 − y1)

(x− y2)2
.

It is natural for us to consider whether the first order commutator C2 is
bounded from Hp1(R) × Hp2(R) into Lp(R), when 0 < p1, p2 ≤ 1, and 1

p1
+

1
p2

= 1
p . In this paper, we first give a counterexample to illustrate that C2

is not bounded from H1(R) × H1(R) into L1/2(R). Therefore, we want to
seek proper Hardy space to make sure the truth of the boundedness of C2.
Then we introduce the atomic definition of abstract weighted Hardy spaces
and obtain the boundedness of C2 from the abstract weighted Hardy spaces

H1
ato,w(R)×H1

ato,w(R) into L
1/2
w (R).

The layout of the paper is as follows. In Section 2, we will give an example
to show that it is not true for the boundedness of C2 from H1(R) × H1(R)
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into L1/2(R). In Section 3, we firstly introduce some notations and atomic
definition of abstract weighted Hardy spaces and study related basic properties.
Then we also get its dual spaces BMOw. In Section 4, in order to obtain the
boundedness of C2 on abstract weighted Hardy spaces, we establish a weighted
version of Proposition 4.7 in [1]. Based on the methods of [1] and [6], we prove
the boundedness of C2 from the abstract weighted Hardy spaces H1

ato,w(R) ×
H1
ato,w(R) into L

1/2
w (R).

Throughout, the letter “C” will denote (possibly different) constants that
are independent of the essential variables.

2. A counterexample

Theorem 2.1. The first order commutator C2 is not bounded from H1(R) ×
H1(R) into L1/2(R).

Proof. Considering the following two functions

f1(x) :=

{
1, x ∈ [0, 1

2 ),

−1, x ∈ [ 1
2 , 1],

and

f2(x) :=

{
1, x ∈ [0, 1),

−1, x ∈ [1, 2],

it is not difficult to check that f1, f2 ∈ H1(R).
Furthermore, by the definition of the kernel K, one can write (1.4) as

C2(f1, f2)(x)

=

∫ ∫
K(x, y1, y2)f1(y1)f2(y2)dy1dy2

=

∫ ∫ (
−1

(x− y2)2
χ{x<y1<y2} +

1

(x− y2)2
χ{y2<y1<x}

)
f1(y1)f2(y2)dy1dy2.

In what follows, we first consider the case of x < −4, then consider the case
of x > 4 for the first order commutator C2.

Case 1. x < −4.
By the definition of f1 and f2, we write

C2(f1, f2)(x) =

∫ ∫
−1

(x− y2)2
χ({x<y1<y2}f1(y1)f2(y2)dy1dy2

=

∫ 1

0

∫ 1

0

−1

(x− y2)2
χ{x<y1<y2}f1(y1)f2(y2)dy1dy2

+

∫ 2

1

∫ 1

0

−1

(x− y2)2
f1(y1)f2(y2)dy1dy2

:= I + II.
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For the term II, using the vanishing property of f1, together with the Mean
Value Theorem, one obtains

|II| =
∣∣∣∣∫ 2

1

∫ 1

0

( 1

(x− 1)2
− −1

(x− y2)2

)
f1(y1)dy1dy2

∣∣∣∣(2.1)

6 C
∫ 2

1

∫ 1

0

|y2 − 1|
|x− ξ|3

|f1(y1)|dy1dy2(2.2)

6 C
1

|x|3
,(2.3)

where ξ ∈ (1, y2).
For the term I, we write

I =

∫ 1

0

∫ 1

0

−1

(x− y2)2
χ{x<y1<y2}f1(y1)f2(y2)dy1dy2

=

∫ 1
2

0

∫ y2

0

−1

(x− y2)2
dy1dy2 +

∫ 1

1
2

∫ 1
2

0

−1

(x− y2)2
dy1dy2

+

∫ 1

1
2

∫ y2

1
2

1

(x− y2)2
dy1dy2

=

∫ 1
2

0

−1

(x− y2)2
y2dy2 +

1

2

∫ 1

1
2

−1

(x− y2)2
dy2 +

∫ 1

1
2

1

(x− y2)2
(y2 −

1

2
)dy2

=

∫ 1
2

0

−1

(x− y2)2
y2dy2 +

∫ 1

1
2

1

(x− y2)2
y2dy2 +

∫ 1

1
2

−1

(x− y2)2
dy2

=

∫ 1
2

0

−1

(x− y2)2
y2dy2 +

∫ 1
2

0

1

(x− (y2 + 1
2 ))2

(y2 +
1

2
)dy2

+

∫ 1

1
2

−1

(x− y2)2
dy2

=

∫ 1
2

0

(
−y2

(x− y2)2
+

y2

(x− (y2 + 1/2))2

)
dy2 +

1

2

∫ 1

1
2

−1

(x− y2)2
dy2

:= I1 + I2.

By the Mean Value Theorem, we have

|I1| 6
∫ 1

2

0

| y2

(x− ζ)3
|dy2 6 C

1

|x|3
, ζ ∈ (y2, y2 +

1

2
)

and

|I2| = |
1

4(x− 1)(x− 1
2 )
| ∼ 1

|x|2
, x→ −∞.

Case 2. x > 4.
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In this case, proceeding with an argument similar to Case 1, we give the
following details.

C2(f1, f2)(x) =

∫ 2

0

∫ 1

0

1

(x− y2)2
χ{y2<y1<x}f1(y1)f2(y2)dy1dy2

=

∫ 1

0

∫ 1

0

1

(x− y2)2
χ{y2<y1<x}f1(y1)f2(y2)dy1dy2

+

∫ 2

1

∫ 1

0

1

(x− y2)2
f1(y1)f2(y2)dy1dy2

:= III + IV.

Similarly to II, we have

|IV| = |
∫ 2

1

∫ 1

0

(
1

(x− y2)2
− 1

(x− 1)2
)f1(y1)dy1dy2|

6 C
∫ 2

1

∫ 1

0

|y2 − 1|
|x− η|3

|f1(y1)|dy1dy2

6 C
1

|x|3
,

where η ∈ (1, y2).
Next, we estimate the term III.

III =

∫ 1

0

∫ 1

0

1

(x− y2)2
χ(y2<y1<x)f1(y1)f2(y2)dy1dy2

=

∫ y1

0

∫ 1
2

0

1

(x− y2)2
dy1dy2 +

∫ 1
2

0

∫ 1

1
2

−1

(x− y2)2
dy1dy2

+

∫ y1

1
2

∫ 1

1
2

−1

(x− y2)2
dy1dy2

=

∫ 1
2

0

( 1

x
− 1

x− y1

)
dy1 +

1

2

( 1

x− 1/2
− 1

x

)
+

∫ 1

1
2

( 1

x− y1
− 1

x− 1/2

)
dy1

=

∫ 1
2

0

−1

x− y1
dy1 +

∫ 1

1
2

1

x− y1
dy1

= ln
(x2 − x+ 1

4

x(x− 1)

)
= ln

(
1 +

1

4(x2 − x)

)
.

It is obvious that when x→∞, ln
(
1+ 1

4(x2−x)

)
∼ 1

4(x2−x) . According to the

estimates of I and III, it is obvious that∫
|x|>4

|C2(f1, f2)|1/2dx =∞,

which implies
∫
R |C2(f1, f2)|1/2dx =∞.
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The proof of the theorem is completed. �

3. Abstract weighted Hardy space

3.1. Definition of abstract weighted Hardy spaces

In this section, based on the definition and theory of abstract Hardy spaces
in [2], we introduce abstract weighted Hardy spaces.

We first recall the definition of weights. A weight w is a non-negative locally
integrable function on Rn. We say that w ∈ Ap, 1 < p < ∞, if there exists a
constant C such that for every ball B ⊆ Rn,( 1

|B|

∫
B

w(x) dx
)( 1

|B|

∫
B

w(x)−1/(p−1) dx
)p−1

≤ C.

For p = 1, we say that w ∈ A1 if there is a constant C such that for every ball
B ⊆ Rn,

1

|B|

∫
B

w(y) dy ≤ Cw(x) for a.e. x ∈ B.

From [11], we know that whenever ω ∈ Ap, 1 < p < ∞, then ω(x)dx is a
doubling measure, which means that for ∀x ∈ Rn, r > 0 and t ≥ 1, there exists
a constant C > 0 such that

(3.4)
ω(B(x, tr))

ω(B(x, r))
≤ Ctnp,

where B(x, r) is the open ball with radius r > 0 centered at x ∈ Rn. Further-
more, ω ∈ Ap if and only if

(3.5)

(
1

|Q|

∫
Q

f(x)dx

)p
≤ C

ω(Q)

∫
Q

fp(x)ω(x)dx

holds for all nonnegative f and all balls B.
Denote by Q the collection of balls Q = {B(x, r), x ∈ Rn, r > 0}. Let

β ∈ (1,∞] be a fixed exponent and B := (BQ)Q∈Q be a collection of Lβw-
bounded linear operator. We suppose that these operators BQ are uniformly
bounded on Lβw: for ∀f ∈ Lβw, and ∀ ball Q, there exists a constant C such
that ‖BQ(f)‖Lβw ≤ C‖f‖Lβw .

For arbitrary ball Q, we write Si(Q):

Si(Q) :=

{
x, 2i ≤ 1 +

|x− c(Q)|
r

< 2i+1

}
,∀i ≥ 0,

with the radius r and center c(Q) of the ball Q. Note that S0(Q) corresponds
to the ball Q and Si(Q) ⊂ 2i+1Q for i ≥ 1.

Now we characterize abstract weighted Hardy spaces in terms of atoms in
the following way.
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Definition 3.1. Suppose that ε is a fixed parameter and w ∈ Ap, 1 ≤ p <∞.
A function m ∈ L1

loc is called ε-atom with respect to ω associated to a ball
Q (or ω-ε-atom associated to a ball Q) if there exists a real function fQ with
suppfQ ⊂ Q such that

m = BQ(fQ),

with

∀i ≥ 0, ‖fQ‖Lβω(Si(Q) ≤ 2−εiw(2iQ)−1/β′
.

It is easy to show that

(3.6) ‖fQ‖Lβω . ω(Q)−1/β′
.

Then we give the definition of abstract weighted Hardy spaces.

Definition 3.2. A measurable function h belongs to the abstract weighted
Hardy space H1

ato,w(Rn) if there exists a decomposition

h =
∑
i∈N

λibi µ-a.e.,

where for all i,mi is a ω-ε-atom and λi are real numbers satisfying∑
i∈N
|λi| <∞.

We equip H1
ato,w with the norm:

‖h‖H1
ato,w

:= inf
h=

∑
i∈N

λimi

∑
i

|λi|.

We will see that the “finite abstract weighted Hardy space” are more prac-
ticable.

Definition 3.3. A measurable function f ∈ H1
F,ato,w(Rn) if f admits a finite

atomic decomposition. We equip this space with the norm

‖f‖H1
F,ato,w

:= inf

f=
N∑
i=1

λimi

N∑
i=1

|λi|,

where we take the infimum over all the finite atomic decomposition.

Remark 3.4. Similar argument as in [2] implies that
(a) ∀ε > 0, H1

F,ato,w ↪→ H1
ato,w.

(b) H1
F,ato,w ⊂ Lβ ∩H1

ato,w is dense in H1
ato,w.

(c) Abstract weighted Hardy spaces H1
ato,w are Banach spaces.

(d) Assume that B satisfies some decay estimates: for a large enough expo-
nent M ′′, there exists a constant C such that for ∀i ≥ 0, ∀k ≥ 0 and f ∈ L2

ω

with supp(f) ⊂ 2iQ,

‖BQ(f)‖L2
ω,Sk(2iQ) ≤ C2−M

′′k‖f‖L2
ω,2

iQ.
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Then we have the following imbedding:

∀ε > 0, H1
ato,w ↪→ L1

ω.

(e) In order to well understand our abstract weighted Hardy spaces, we
compare it with classical weighted Hardy spaces. By the definition of atomic of
weighted Hardy space H1

w of J. Garcia-Cuerva in [8], if we choose the operator
BQ as follows

BQ(f)(x) = f(x)χQ(x)− 1

|Q|

∫
Q

f(y)dyχQ(x).

It is easy to check that BQ is a ω-(1, q, 0)-atom with the following properties:
(i) suppBQ(f) ⊂ Q;
(ii)

∫
BQ(f)(x)dx = 0;

(iii) ‖BQ(f)‖Lqw ≤ C‖f‖Lqw ≤ Cω(Q)−1/q′ .
Therefore, our weighted atom are the same as the ones in [8], that is to say

H1
ato,w(Rn) = H1

w(Rn).

3.2. The duality of abstract Hardy space

In this section, we want to study the dual spaces of the weighted Hardy
spaces. We firstly give the following weighted definition.

Definition 3.5. Suppose that f ∈ L2
loc(Rn) and w ∈ Ap, 1 ≤ p < ∞. For an

element f is said to belong to BMOw if

‖f‖BMOw =: sup
Q⊂Rn

(
1

w(Q)

∫
Q

|B∗Q(f)|2w−1 dx

)1/2

<∞,

where the sup is taken over all balls Q in Rn and denote the adjoint operation
by *.

We have the following inclusion.

Theorem 3.6. BMOw ↪→ (H1
ato,w)∗.

Proof. Let g ∈ BMOw and m = BQ(fQ), by the property of atoms we have

〈g,m〉 =

∫
g(x)BQ(fQ)(x)dx

=

∫
B∗Q(g)(x)fQ(x)dx

≤
(∫
|B∗Q(g)(x)|2w−1dx

)1/2

‖fQ‖L2
w

≤
(∫
|B∗Q(g)(x)|2w−1dx

)1/2

w(Q)−1/2

≤ ‖g‖BMOw ,

which completes the proof of the first inclusion. �
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4. Boundedness of the first order commutator

In this section, we will give the proof of the boundedness of the first order
commutator C2 on abstract weighted Hardy spaces as follows. We firstly give
some preliminaries.

We choose two collection B1 := (B1
Q)Q∈Q and B2 := (B2

Q)Q∈Q and two

exponents β1, β2 ∈ (1,∞]. We assume that B1 is a collection of Lβ1
ω -bounded

operators and that B2 is a collection of Lβ2
ω -bounded operators. We can also

define two kind of Hardy space H1
B1,ato,ω and H1

B2,ato,ω. According to Definition

3.3, we can construct the spaces H1
F,B1,ato,ω and H1

F,B2,ato,ω. In this context,
we have the following weighted bilinear results:

Lemma 4.1. Let T be a bilinear operator with coefficients (γj)j≥0 such that
for all ball Q1, Q2 and for all functions f, g separately supported in Q1, Q2, we
have for ∀ ω ∈ Ap, 1 < p <∞ and all j1, j2 ≥ 0

1

ω(2jl+1Ql)

∫
Sj1 (Q1)∩Sj2 (Q2)

|T (B1
Q1

(f), B2
Q2

(g))|ω(x)dx

≤ Cγj1γj2
ω(Q1)

ω(2j1Q1)

ω(Q2)

ω(2j2Q2)

(
1

ω(Q1)

∫
Q1

|f |β1ω(x)dx

)1/β1

(
1

ω(Q2)

∫
Q2

|g|β2ω(x)dx

)1/β2

with coefficients γl satisfying
∑
l≥0 γl ≤ C. Then the operator T is continuous

from H1
F,B1,ω(R)×H1

F,B2,ω(R) into L
1/2
ω (R).

Proof. We mainly follow the idea of proof of Proposition 4.7 in [1]. For the
sake of completeness and for the reader’s convenience we give the details of the
proof of this theorem.

Let f ∈ H1
F,B1,ato,ω and f ∈ H1

F,B2,ato,ω, we can also write them with a finite
atomic decomposition:

(4.7) f =
∑
Q

λQB
1
Q(fQ), g =

∑
R

τRB
2
R(gR)

with the appropriate properties for fQ and gR: fQ is supported in Q with

(4.8) ‖fQ‖Lβ1ω ≤ ω(Q)−1/β′
1 ,

∑
Q

|λQ| ≤ 2‖f‖H1
B1,ω

,

and similarly for gR, relatively to the ball R. So it is sufficient to estimate

‖T (f, g)‖
L

1/2
ω

=

∥∥∥∥∑
Q,R

∑
i,j≥0

λQτRT (B1
QfQ, B

2
RfR)1Si(Q)∩Sj(R)

∥∥∥∥
L

1/2
ω

.

By symmetry, we just need to study the sum over the extra condition

(4.9) 2irQ ≤ 2jrR,
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where r denotes the radius of the ball. Meanwhile, we recall following lemma
in [10].

Lemma 4.2 ([10]). For r ≤ 1 and ω ∈ Ap, 1 ≤ p < ∞, there exist constants
C and δ > 1 such that for all collection (Qk)k of balls and (gk)k collection of
nonnegative Lrω functions supported in Qk, we have

(4.10)

∥∥∥∥∑
k

gk

∥∥∥∥
Lrω

≤ C‖
∑
k

(
1

ω(Qk)

∫
gk(x)ω(x)dx

)
1δQk‖Lrω .

Next we use this lemma with r = 1/2 and the doubling property (3.4) of the
weight ω, together with Lemma 4.1 and the estimate (4.9), then finally we get

‖T (f, g)‖
L

1/2
ω

≤
∥∥∥∥∑
Q,R

∑
i,j≥0

|λQ||τR||T (B1
QfQ, B

2
RgR)|1Si(Q)∩Sj(R)

∥∥∥∥
L

1/2
ω

≤
∥∥∥∥∑
Q,i

|λQ|
(∑
R,j

|τR||T (B1
QfQ, B

2
RgR)|1Si(Q)∩Sj(R)

)
12i+1Q

∥∥∥∥
L

1/2
ω

≤
∥∥∥∥∑
Q,R

∑
i,j≥0

|λQ||τR|
(

1

ω(2i+1Q)

∫
Si(Q)∩Sj(R)

|T (B1
QfQ, B

2
RgR)(x)|ω(x)dx

)
1δ2i+1Q

∥∥∥∥
L

1/2
ω

≤ C

∥∥∥∥∑
Q,R

∑
i,j≥0

|λQ||τR|γiγj
ω(Q)ω(R)

ω(2iQ)ω(2jR)

(
1

ω(Q)

∫
Q

|fQ(x)|β1ω(x)dx

)1/β1

×
(

1

ω(R)
|gR(x)|β2ω(x)dx

)1/β2

1δ2i+1Q12δ2j+1R

∥∥∥∥
L

1/2
ω

≤ C

∥∥∥∥∑
Q,R

∑
i,j≥0

|λQ||τR|
γiγj

ω(2iQ)ω(2jR)
1δ2i+1Q12δ2j+1R

∥∥∥∥
L

1/2
ω

= C

∥∥∥∥∑
Q,i

|λQ|
γi

ω(2iQ)
1δ2i+1Q

∑
R,j

|τR|
γj

ω(2jR)
12δ2j+1R

∥∥∥∥
L

1/2
ω

≤ C

∥∥∥∥∑
Q,i

|λQ|
γi

ω(2iQ)
1δ2i+1Q

∥∥∥∥
L1
ω

∥∥∥∥∑
R,j

|τR|
γj

ω(2jR)
12δ2j+1R

∥∥∥∥
L1
ω

.

Then the proof is finished with the properties (4.8), the assumption
∑
l γl ≤ C

in Lemma 4.1 and the doubling property of the wight ω. �

In order to use Lemma 4.1 to obtain the boundedness of the commutator C2

on abstract weighted Hardy spaces, we still need to introduce a class of integral
operators At, t > 0, which play the role of approximations to the identity as in
[7]. We assume that the operators At can be represented by kernels at(x, y) in
the sense that

Atf(x) =

∫
Rn
at(x, y)f(y)dy
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for every function f ∈ L2(R) ∩ L1(R), and the kernel at(x, y) satisfy the fol-
lowing size conditions

(4.11) |at(x, y)| 6 ht(x, y) = t−1/sh

(
|x− y|s

t

)
,

where s is a positive fixed constant and h is a positive, bounded, decreasing
function satisfying

(4.12) lim
r→∞

r1+ηh(rs) = 0.

Theorem 4.3 ([7]). The first order commutator C2 satisfies: for each i =

1, 2, there exist operators {A(i)
t }t>0 with kernels a

(i)
t (x, y) that satisfy condition

(4.11) and (4.12) with constants s and η and there exist kernels K
(i)
t such that

〈C2(f1, A
(i)
t fi), g〉 =

∫
R

∣∣∣∣∫
R2

K
(i)
t (x, y1, y2)

2∏
i=1

fi(yi)d~y

∣∣∣∣g(x)dx

for f1, f2, and g in S(R) with
⋂2
k=1 suppfk∩ suppg = ∅. There exist a function

ϕ ∈ C(R) with suppϕ ∈ [−1, 1] and a constant ε > 0 so that for every i = 1, 2,
we have

(4.13) |K(x, ~y)−K(i)
t (x, ~y)| ≤ A

(
2∑
j=1

|x− yj |)2

ϕ(
|y1 − y2|
t1/s

) +
Atε/s

(
2∑
j=1

|x− yj |)2+ε

,

whenever t1/s ≤ |x− yi|/2.

In fact, from the proof of inequality (4.13) in [7], we can see that the oper-

ators A
(i)
t are of form

(4.14) A
(i)
t (f)(x) =

∫
R
a

(i)
t (x, y)f(y)dy, a

(i)
t (x, y) = Φt(x− y)χ(−∞,x)(y),

where Φ = φ′ and φ ∈ C∞(R) be even, 0 ≤ φ ≤ 1, φ(0) = 1 and suppφ ⊂
[−1, 1]. It is not difficult to check that a

(i)
t (x, y) satisfy conditions (4.11) and

(4.12) with constant s = η = 1, specifically,

|a(i)
t (x, y)| ≤ C t

(t+ |x− y|)2
.(4.15)

In the sequel, we will obtain the main theorem:

Theorem 4.4. Let 1 < p < min {2, 1 + ε}, where ε is decided in Theorem 4.3.
If ω ∈ Ap, then the first order commutator C2 is bounded from H1

F,ato,ω(R) ×
H1
F,ato,ω(R) into L

1/2
ω (R).

Proof. We mainly follow the idea of Chapter 5.2 in [1]. Set ri = r
1/s
Qi

, where
rQi is the radius of the ball Qi, i = 1, 2. Let β1 = β2 = ∞. We define
BQi = Id−Ari . By the estimate (4.15) we can define our Hardy space H1

ato,ω.
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We claim that the first order commutator C2 satisfies Lemma 4.1, which gives
us that the boundedness of the commutator C2 from H1

F,ato,ω(R)×H1
F,ato,ω(R)

into L
1/2
ω (R).

In fact, for j1 = j2 = 0, by Theorem 4.3 and Theorem 1.2 in [9], we know
that C2 is a bounded operator from Lpω×L∞ω → Lpω. So using Hölder inequality,
we have

1

ω(2Q1)

∫
Q1∩Q2

|C2(BQ1f1, BQ2f2)(x)|ω(x)dx

≤ C
1

ω(2Q1)1/p

(∫
Q1∩Q2

|C2(BQ1
f1, BQ2

f2)(x)|pω(x)dx

)1/p

≤ C
1

ω(2Q1)1/p
‖BQ1

f1‖Lpω‖BQ2
f2‖L∞

ω

≤ C‖f1‖L∞
ω
‖f2‖L∞

ω
.

For j1 > 0 and j2 = 0, x ∈ Sj1(Q1) ∩ Q2, and suppfi ⊂ Qi, i = 1, 2. Set
g = BQ2(f2). Hence by (4.13) we have

|C2(BQ1
(f1), g)| = |

∫ ∫
(K(x, y1, y2)−K(1)

Q1
(x, y1, y2))f1(y1)g(y2)dy1dy2|

6
∫ ∫ ( A

(|x− y1|+ |x− y2|)2
ϕ

(
|y1 − y2|

r1

)
+

A rε1
(|x− y1|+ |x− y2|)2+ε

)
|f1(y1)||g(y2)|dy1dy2

:= I + II.

It is easy to see that g = BQ2
(f2) ≤ Mf2, where M is the Hardy-Littlewood

maximal operator. Together with the property of ϕ, |x− y1| & 2j1r1 = 2j1 |Q1|
and the estimates (3.5) and (3.4), we have

I =

∫ ∫
A

(|x− y1|+ |x− y2|)2
ϕ

(
|y1 − y2|

r1

)
|f1(y1)||g(y2)|dy1dy2

≤ C‖f2‖∞2−2j1
1

|Q1|

∫
Q1

|f1(y1)|dy1

≤ C‖f2‖∞2−2j1

(
1

ω(Q1)

∫
Q1

|f1(y1)|pω(y1)dy1

)1/p

≤ C2−j1(2−p) ω(Q1)

ω(2jQ1)
‖f1‖∞‖f2‖∞.

Similarly, we have

II ≤ CA‖f2‖∞
rε

|2jQ1|

∫
Q1

|f1(y1)|dy1

∫
R

(|2j1Q1|+ |x− y2|)1+εdy2

≤ CA2−j(1+ε)‖f2‖∞
1

|Q1|

∫
Q1

f1(y1)dy1
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≤ CA2−j(1+ε−p)‖f2‖∞
ω(Q1)

ω(2jQ1)

(
1

ω(Q1)

∫
Q1

|f1(y1)|pω(y1)dy1

)1/p

≤ CA2−j(1+ε−p) ω(Q1)

ω(2jQ1)
‖f1‖∞‖f2‖∞.

According to the above two inequalities, we choose

γj = C min{2−j1(2−p), 2−j(1+ε−p)}.

Since 1 < p < min {2, 1 + ε},
∑
j γj <∞.

Symmetrically, we can discuss the case of j1 = 0 and j2 > 0. For the case of
j1 > 0 and j2 > 0, we can deduce it to the above cases, and just consider the
smaller ball.

The proof of the theorem is completed. �
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