DOI QR코드

DOI QR Code

Evaluation for Rock Cleavage Using Distribution of Microcrack Lengths and Spacings (2)

미세균열의 길이 및 간격 분포를 이용한 결의 평가(2)

  • Park, Deok-Won (Climate Change Mitigation and Sustainability Division, Korea Institute of Geoscience and Mineral Resources)
  • 박덕원 (한국지질자원연구원 전략기술연구본부)
  • Received : 2018.01.05
  • Accepted : 2018.02.04
  • Published : 2018.03.31

Abstract

The characteristics of the rock cleavage of Jurassic Geochang granite were analysed using the distribution of microcrack lengths and spacings. The length and spacing-cumulative diagrams for the six directions of rock cleavages were arranged in increasing order ($H2{\rightarrow}R1$) on the density (${\rho}$) of microcrack length. The various parameters were extracted through the combination of above two types of diagrams. The evaluation for the six directions of rock cleavages was performed using the four groups (I~IV) of parameters such as (I) intersection angle (${\alpha}-{\beta}$), exponent difference (${\lambda}_S-{\lambda}_L$), length of line (ol and ll'), length ratio (ol/os and ll'/sl'), mean length ((ss'+ll')/2), area of right-angled triangle (${\Delta}oaa_a^{\prime}$ and ${\Delta}obb_a^{\prime}$) and area difference (${\Delta}obb^{\prime}-{\Delta}oaa^{\prime}$ and ${\Delta}obb_a^{\prime}-{\Delta}oaa_a^{\prime}$), (II) length of line (oa and os) and area (${\Delta}oaa^{\prime}$), (III) length of line (sl') and length ratio (ss'/ll') and (IV) length of line (ob, ss' and ls') and area (${\Delta}obb^{\prime}$, ${\Delta}ll^{\prime}s^{\prime}$, ${\Delta}ss^{\prime}l^{\prime}$ and ⏢ll'ss'). The results of correlation analysis between the values of parameters for three rock cleavages and those for three planes are as follows. The values of parameters for three rock cleavages are in orders of (I) H(hardway, (H1 + H2)/2) < G(grain, (G1 + G2)/2) < R(rift, (R1 + R2)/2), (II) R < G < H, (III) G < H < R and (IV) H < G < R. On the contrary, the values of parameters for three planes are in orders of (I) R' < G' < H', (II) H' < G' < R' and (III and IV) R' < H' < G'. Especially the values of parameters belonging to group I and group II show mutual reverse orders. In conclusion, this type of correlation analysis is useful for discriminating three quarrying planes.

미세균열의 길이와 간격의 분포를 이용하여 쥬라기 거창화강암의 결의 특성을 분석하였다. 여섯 방향의 결에 대한 길이 및 간격-누적빈도 도표를 미세균열의 길이의 밀도(${\rho}$)가 증가하는 순(($H2{\rightarrow}R1$)으로 배열하였다. 상기 두 유형의 도표의 결합을 통하여 다양한 파라미터를 추출하였다. 여섯 방향의 결에 대한 평가는 (I) 교차각(${\alpha}-{\beta}$), 지수차(${\lambda}_S-{\lambda}_L$), 선의 길이(ol 및 ll'), 길이 비(ol/os 및 ll'/sl'), 평균 길이((ss'+ll')/2), 직각삼각형의 면적(${\Delta}oaa_a^{\prime}$${\Delta}obb_a^{\prime}$) 그리고 면적차(${\Delta}obb^{\prime}-{\Delta}oaa^{\prime}$${\Delta}obb_a^{\prime}-{\Delta}oaa_a^{\prime}$), (II) 선의 길이(oa 및 os) 그리고 면적(${\Delta}oaa^{\prime}$), (III) 선의 길이(sl') 및 길이 비(ss'/ll') 그리고 (IV) 선의 길이(ob, ss' 및 ls') 및 면적(${\Delta}obb^{\prime}$, ${\Delta}ll^{\prime}s^{\prime}$, ${\Delta}ss^{\prime}l^{\prime}$ 및 ⏢ll'ss')과 같은 4개 그룹(I~IV)의 파라미터를 이용하여 수행하였다. 3개 결 및 3개 면에 대한 파라미터의 값 사이의 상관성 분석의 결과는 다음과 같다. 3개 결에 대한 파라미터의 값은 (I) H(3번 결, (H1 + H2)/2) < G(2번 결, (G1 + G2)/2) < R(1번 결, (R1 + R2)/2), (II) R < G < H, (III) G < H < R 및 (IV) H < G < R의 순서이다. 반면에, 3개 면에 대한 파라미터의 값은 (I) R' < G' < H', (II) H' < G' < R' 및 (III 및 IV) R' < H' < G'의 순서이다. 특히, 그룹 I 및 그룹 II에 속하는 파라미터의 값은 상호 역순을 보여준다. 결론적으로, 이러한 유형의 상관성 분석은 3개 채석면의 판별에 유용하다.

Keywords

References

  1. Baecher, G.B., Lanney, N.A., and Einstein, H.H., 1978, Statistical description of rock properties and sampling. 18th US symposium on rock mechanics.
  2. Barton, C.A. and Zoback, M.D., 1992, Self-similar distribution and properties of macroscopic fractures at depth in crystalline rock in the Cajon Pass Scientific Hole. Journal of Geophysical Research, 97, 5181-5200. https://doi.org/10.1029/91JB01674
  3. Bloomfield, J., 1996, Characterization of hydrogeologically significant fracture distributions in the Chalk: an example from the Upper Chalk of southern England. Journal of hydrology, 184, 355-379. https://doi.org/10.1016/0022-1694(95)02954-0
  4. Cladouhos, T.T. and Marrett, R., 1996, Are fault growth and linkage models consistent with power-law distributions of fault lengths?. Journal of Structural Geology, 18, 281-293. https://doi.org/10.1016/S0191-8141(96)80050-2
  5. Flodin, E.A. and Aydin, A., 2004, Evolution of a strike-slip fault network, Valley of Fire State Park, southern Nevada. Geological Society of America Bulletin, 116, 42-59. https://doi.org/10.1130/B25282.1
  6. Fossen, H. and Rornes. A., 1996, Properties of fault populations in the Gullfaks Field, northern North Sea. Journal of Structural Geology, 18, 179-190. https://doi.org/10.1016/S0191-8141(96)80043-5
  7. Freire-Lista, D.M. and Fort, R., 2015, Anisotropy in Alpedrete granite cutting (Rift, Grain and Hardway directions) and effect on bush hammered heritage ashlars. Geophysical Research Abstracts, 17, EGU2015-9426-1, EGU General Assembly.
  8. Freire-Lista, D. M. and Fort, R., 2017, Exfoliation microcracks in building granite. Implications for anisotropy. Engineering Geology, 220, 85-93. https://doi.org/10.1016/j.enggeo.2017.01.027
  9. Gale, J.E., Schaefer, R.A., Carpenter, A.B., and Herbert, A., 1991, Collection, analysis, and integration of discrete fracture data from the Monterey Formation for fractured reservoir. SPE Annual Technical Conference and Exhibition Formation Evaluation and Reservoir Geology.
  10. Galla, B.L., Tshosoa, G., Dymentb, J., Kampunzuc, A.B., Jourdand, F., Feraudd, G., Bertrande, H., Aubourgf, C., and Vetela, W., 2005, The Okavango giant mafic dyke swarm (NE Botswana): its structural significance within the Karoo Large Igneous Province. Journal of Structural Geology, 27, 2234-2255. https://doi.org/10.1016/j.jsg.2005.07.004
  11. Gillespie, P.A., Howard, C.B., Walsh, J.J., and Watterson, J., 1993, Measurement and characterisation of spatial distributions of fractures. Tectonophysics, 226, 113-141. https://doi.org/10.1016/0040-1951(93)90114-Y
  12. Gross, M.R. and Engelder, T., 1995, Strain accommodated by brittle failure in adjacent units of the Monterey Formation, U.S.A.: scale effects and evidence for uniform displacement boundary conditions. Journal of Structural Geology, 17, 1303-1318. https://doi.org/10.1016/0191-8141(95)00011-2
  13. Jang, T.W., Kim, C.S. and Bae, D.S., 2003, Characteristics of fracture systems in Southern Korea. The Journal of Engineering Geology, 13, 207-225.
  14. Kim, Y.K. and Ro, B.D., 1989, Mechanical properties of discontinuous rocks in Upper Kyeongsang Supergroup. Journal of the Geological Society of Korea, 25, 392-404.
  15. Koike, K., Ichikawa, Y. 2006, Spatial correlation structures of fracture systems for deriving a scaling law and modeling fracture distributions. Computer & Geosciences, 32, 1079-1-1095.
  16. Koukouvelas, I., Asimakopoulos, M. and Doutsos, T., 1999, Fractal characteristics of active normal faults: an example of the eastern Gulf of Corinth, Greece. Tectonophysics, 308, 263-274. https://doi.org/10.1016/S0040-1951(99)00087-6
  17. Lee, S.E., Cho, S.H., Yang, H.S. and Park, H.M., 1999, Estimation of micro-discontinuity distribution using scanline survey in granites. Journal of Korean Society for Rock Mechanics, 9, 364-372.
  18. Mansfield, C. and Cartwright, J., 2001, Fault growth by linkage: observation and implications from analogue models. Journal of Structural Geology, 23, 745-763. https://doi.org/10.1016/S0191-8141(00)00134-6
  19. Miller, N.C., 1993, Predicting flow characteristics of a lixiviant in a fractured crystalline rock mass. Report of investigations 9457, US Bureau of Mines, 24.
  20. Odling, N., 1997, Scaling and connectivity of joint system in sandstones from Western Norway. Journal of Structural Geology, 19, 1257-1271. https://doi.org/10.1016/S0191-8141(97)00041-2
  21. Olson, J.E., Qiu, Y., Holder, J., and Rijken, P., 2001, Constraining the spatial distribution of fracture networks in naturally fractured reservoirs using fracture mechanics and core measurements. Society of Petroleum Engineers(SPE). SPE annual technical conference and exhibition, New Orleans, Louisiana, SPE 71342.
  22. Park, D.W., 2007, Orientations of vertical rift and grain planes in Mesozoic granites, Korea. The Journal of the Petrological Society of Korea, 16, 12-26.
  23. Park, D.W., 2011a, Characteristics of the rock cleavage in Jurassic granite, Hapcheon. The Journal of the Petrological Society of Korea, 20, 219-230. https://doi.org/10.7854/JPSK.2011.20.4.219
  24. Park, D.W., 2011b, Statistical analysis on microcrack length distribution in Tertiary crystalline tuff. The Journal of the Petrological Society of Korea, 20, 23-37. https://doi.org/10.7854/JPSK.2011.20.1.023
  25. Park, D.W., 2015a, Characteristics of the rock cleavage in Jurassic granite, Geochang. The Journal of the Petrological Society of Korea, 24, 149-160. https://doi.org/10.7854/JPSK.2015.24.3.149
  26. Park, D.W., 2015b, Evaluation for rock cleavage using distribution of microcrack lengths. The Journal of the Petrological Society of Korea, 24, 161-176.
  27. Park, D.W., 2016a, Evaluation for rock cleavage using distribution of microcrack spacings (I). The Journal of the Petrological Society of Korea, 25, 13-27. https://doi.org/10.7854/JPSK.2016.25.1.13
  28. Park, D.W., 2016b, Evaluation for rock cleavage using distribution of microcrack spacings (II). The Journal of the Petrological Society of Korea, 25, 151-163. https://doi.org/10.7854/JPSK.2016.25.2.151
  29. Park, D.W., 2016c, Evaluation for rock cleavage using distribution of microcrack spacings (III). The Journal of the Petrological Society of Korea, 25, 311-324. https://doi.org/10.7854/JPSK.2016.25.4.311
  30. Park, D.W., 2017a, Evaluation for rock cleavage using distribution of microcrack lengths and spacings (1). The Journal of the Petrological Society of Korea, 26, 1-10. https://doi.org/10.7854/JPSK.2017.26.1.1
  31. Park, D.W., 2017b, Evaluation for rock cleavage using distribution of microcrack spacings (IV). The Journal of the Petrological Society of Korea, 26. 127-141.
  32. Park, D.W., 2017c, Evaluation for rock cleavage using distribution of microcrack spacings (V). The Journal of the Petrological Society of Korea, 26. 297-309.
  33. Park, D.W. and Lee, C.B., 2010, Characteristics of fracture system in Precambrian metamorphic rocks and Mesozoic granites from Seokmo-do, Ganghwagun. The Journal of the Petrological Society of Korea, 19, 123-139.
  34. Park, D.W., Kim, H.C., Lee, C.B., Hong, S.S., Chang, S.W. and Lee, C.W., 2004, Characteristics of the rock cleavage in Jurassic granite, Pocheon. The Journal of the Petrological Society of Korea, 13, 133-141.
  35. Park, D.W., Seo, Y.S., Jeong, G.C. and Kim, Y.K., 2001, Microscopic analysis of the rock cleavage for Jurassic granite in Korea. The Journal of Engineering Geology, 11, 51-62.
  36. Pearce, M.A., Jones, R.R., Smith, S.A.F., and McCaffrey, K.J.W., 2011, Quantification of fold curvature and fracturing using terrestrial laser scanning. AAPG Bulletin, 95, 771-794. https://doi.org/10.1306/11051010026
  37. Priest, S.D. and Hudson, J.A., 1976, Discontinuity spacings in rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 13, 135-148.
  38. Rives, T., Razack, M., Petit, J.P., and Rawnsley, K.D., 1992, Joint spacing: analogue and numerical simulations. Journal of Structural Geology, 14, 925-937. https://doi.org/10.1016/0191-8141(92)90024-Q
  39. Rouleau, A. and Gale, J.E., 1985, Statistical characterization of the fracture system in the Stripa Granite, Sweden. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 22, 353-367. https://doi.org/10.1016/0148-9062(85)90001-4
  40. Sanderson, D.J., Roberts, S., Gumiel, P., and Greenfield. C., 2008, Quantitative analysis of tin- and tungsten-bearing sheeted vein systems. Economic Geology, 103, 1043-1056. https://doi.org/10.2113/gsecongeo.103.5.1043
  41. Seok, C.K. and Kim, Y.K., 1991, Discontinuous properties of Jurassic and Cretaceous granites, Korea. Journal of the Geological Society of Korea, 27, 123-135.
  42. Swanson, M.T., 2006, Late Paleozoic strike-slip faults and related vein array of Cape Elizabeth, Maine. Journal of Structural Geology, 28, 456-473. https://doi.org/10.1016/j.jsg.2005.12.009
  43. Watterson, J., Walsh, J.J., Gillespie, P.A. and Easten, S., 1996, Scaling systematics of fault sizes on a large-scale range fault map. Journal of Structural Geology, 18, 199-214. https://doi.org/10.1016/S0191-8141(96)80045-9
  44. Wojtal, S., 1994, Fault scaling laws and the temporal evolution of fault systems. Journal of Structural Geology, 603-612.