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SOME SUMS VIA EULER’S TRANSFORM

Neşe Ömür, Sibel Koparal∗, and Laid Elkhiri

Abstract. In this paper, we give some sums involving the generalized

harmonic numbers Hr
n (σ) and the (q, r)-binomial coefficient

(L
k

)
q,r

by

using Euler’s transform. For example, for (c, r) ∈ Z+× R+,

∞∑
n=0

n∑
k=0

(−1)k
(n+ r

n− k

) cn+1Hr−1
k (σ)

(n+ 1) (1 + c)n+1
= −

(
c+

1

σ

)
ln (1 + cσ) + c,

and
n∑

k=0

(n
k

)(L
k

)
2,r

=

n∑
j=0

j∑
k=0

(−1)k
(j − k + 2L+ r

j − k

)( r

n− j

)(L
k

)
2
,

where σ is appropriate parameter, Hr
n (σ) is the generalized hyperhar-

monic number of order r and
(L
k

)
q
is the q-binomial coefficient.

1. Introduction

For m ∈ Z, the polylogarithm( [1, 2]) is defined by

(1) Lim (t) =

∞∑
n=0

tn

nm
.

The harmonic numbers, denoted by Hn, are defined by

H0 = 0 and Hn =

n∑
k=1

1

k
for n ≥ 1,

and their generating function is given as
∞∑

n=0

Hnt
n =

− ln(1− t)

1− t
.

As known, harmonic numbers are interesting research objects( [9, 14, 20, 22,
25, 27]). Recently, these numbers have been generalized by several authors.
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There are a lot of works involving harmonic numbers and generalized of them
( [10–12,17,23,24]).

For instance, Guo and Cha [17] defined the generalized harmonic numbers
by

(2) H0(σ) = 0 and Hn(σ) =

n∑
k=1

σk

k
for n ≥ 1,

where σ is appropriate parameter, and their generating function is

(3)

∞∑
n=0

Hn(σ)t
n =

− ln (1− σt)

1− t
.

When σ = 1/α for α ∈ R+, Hn(1/α) :=
∑n

k=1
1

kαk are called the generalized
harmonic numbers given by Genčev [16].

In [25], Ömür et al. defined the generalized hyperharmonic numbers of order
r, Hr

n (σ) , as follows: H
r
n (σ) = 0, for r < 0 or n ≤ 0,

H0
n (σ) =

σn

n
and Hr

n (σ) =

n∑
i=1

Hr−1
i (σ) for n, r ≥ 1,

where σ is as above, and their generating function is

(4)

∞∑
n=0

Hr
n(σ)t

n =
− ln (1− σt)

(1− t)
r .

In [20], Koparal et al. defined the generalized harmonic numbers, Hn,m (σ)
by

(5) H0,m (σ) = 0 and Hn,m (σ) =

n∑
k=1

σk

km
for n,m ≥ 1,

where σ is as above.
For m = 1, (5) reduced to (2) as Hn,1 (σ) = Hn (σ). Their generating function
is

(6)

∞∑
n=0

Hn,m (σ) tn =
Lim (σt)

1− t
.

For a, b ∈ Z+, it is known that

(7)

∞∑
n=0

(
a+ n− b

n− b

)
tn =

tb

(1− t)
a+1 .

Let q ≥ 1 and L ≥ 0 be two integers. The q−binomial coefficient
(
L
k

)
q

defined by
∞∑

n=0

(
L

n

)
q

tn =
(
1 + t+ t2 + · · ·+ tq

)L
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is a natural extension of the binomial coefficient. For an appropriate introduc-
tion of these numbers see Smith and Hogatt [26], Bollinger [6] and Andrews
and Baxter [3].

Messahel et al. [21] defined the r− binomial coefficient
(
L
n

)
q,r

by

(8)

∞∑
n=0

(−1)
n

(
L

n

)
q,r

tn = (1 + t+ ...+ tq)
L (

1 + 2t+ ...+ qtq−1
)r

.

They established a connection between these coefficients and the partial r−Bell
polynomials, and many combinatorial properties of these new coefficients.

In [7], let f (x) be a function defined and integrable on (−r, λ] for some
r > 0, λ > 0. Also, let f (x) be analytic in a neighborhood of the origin with
Taylor series f (x) =

∑∞
n=0 fnx

n. Boyadzhiev gave that

(9)

λ∫
x=0

f (x) dx =

∞∑
n=0

(
λ

λ+ 1

)n+1 n∑
k=0

(
n

k

)
fk

k + 1
.

By using Euler’s transform for power series, some authors deal with various
binomial identities with harmonic numbers( [1, 2, 5, 7, 8, 14,15,18,19,25]).

Boyadzhiev [8] studied some binomial sums with harmonic numbers by using
the Euler transform. The author proved the identity as follows: For n ∈ N and
λ, µ ∈ C,
n∑

k=1

(
n

k

)
µkλn−kHk = (λ+µ)nHn−

(
λ (λ+ µ)

n−1
+

λ2

2
(λ+ µ)

n−2
+ ...+

λn

n

)
.

The author also gave the following expansion in a neighborhood of zero,

(10)

∞∑
n=1

βnHn

(
σ

β

)
tn =

− ln(1− σt)

1− βt
,

where σ, β are appropriate parameters. In particular β = 1, (10) reduces to
(3). Also there is the generating function given by

(11)

∞∑
n=1

(
β

n−1∑
k=0

(σ + β)n−k−1σkHk + σnHn

)
tn =

− ln(1− σt)

1− (σ + β)t
.

In [15], Frontczak proved a new expression for binomial sums with harmonic
numbers. His derivation is based on elementary analysis of the Euler’s trans-
form of these sums. The author discovered some known identities involving
skew-harmonic, and Fibonacci and Lucas numbers. For example, for n ∈ Z+,

n∑
k=0

(
n

k

)
µkλn−kH−

k = (µ− λ)nH−
n + λnHn + µ

n−1∑
k=0

(µ+ λ)kλn−k−1Hn−k−1

+2λ

n−1∑
k=0

(µ+ λ)k(µ− λ)n−k−1H−
n−k−1,
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where H−
k =

∑n
k=1

(−1)k+1

k with H−
0 = 0 are skew-harmonic numbers.

In [4], Batır and Sofo obtained some general combinatorics formulas. Ap-
plying these formulas, they obtained some new identities and gave some known
identities included in the works of Frontczak and Boyadzhiev. For example, for
n ∈ N and λ ∈ C,
n∑

k=0

(
n

k

)
λkH2

k = (1 + λ)n

(
H2

n −
n∑

k=1

Hn − 2Hk +Hn−k

k(1 + λ)k
− 2

n∑
k=1

1

k2(1 + λ)k

)
.

In [25], Ömür et al. gave that for r ≥ 2,

n∑
k=0

(
n+ r − 1

n− k

)(µ
λ

)k
Hr

k (σ)

=

n∑
k=0

n−k∑
i=0

(
k + r − 2

k

)(
n− k

i

)(µ
λ

)i(λ+ µ

λ

)k

Hi (σ) ,

and

(12)

∞∑
n=0

n∑
k=0

βn

(
r − 2 + k

k

)
Hn−k (σ/β) t

n =
− ln (1− σt)

(1− βt)
r ,

where σ, β are appropriate parameters.
The generalized derangement numbers dn,r are introduced by Munarini [22]

as

dn,r =

n∑
k=0

(−1)
k

(
r + n− k

n− k

)
n!

k!

and can be generated by

(13)

∞∑
n=0

dn,r
tn

n!
=

e−t

(1− t)
r+1 .

It is clear that dn,0 = dn. The first few generalized derangement numbers dn,r
are

d0,r = 1, d1,r = r, d2,r = r2 + r + 1, d3,r = r3 + 3r2 + 5r + 2.

In [13], Dağlı and Qi obtained identities involving generalized derangement
numbers and generalized harmonic numbers. For example, for n, r ∈ N,

n∑
k=0

(−1)
n−k

(n− k)!
Hr+1

k

(
1

α

)
=

n∑
k=0

dn−k,r−1

(n− k)!
Hk

(
1

α

)
.

The Stirling numbers of the second kind S2(n, k) are defined by

xn =

n∑
k=0

S2(n, k)x
k,
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where xn stands for the falling factorial defined by x0 = 1 and xn = x(x −
1)...(x− n+ 1). Their generating function is given by

(14)

∞∑
n=k

S2 (n, k)
tn

n!
=

1

k!

(
et − 1

)k
for k ≥ 0.

2. Main Results

In this section, we will give some sums involving the generalized harmonic
numbers Hn,m (σ) and Hr

n (σ) , and the (q, r)− binomial coefficient
(
L
k

)
q,r

by

using Euler’s transform.

Lemma 2.1. [8] Let a function analytical on the unit disk be f(t) =∑∞
n=0 fnt

n. The Euler’s transform can be given as

1

(1− λt)
m f

(
µt

1− λt

)
=

∞∑
n=0

n∑
k=0

(
m− 1 + n

n− k

)
µkλn−kfkt

n,

where λ, µ are appropriate parameters.

Theorem 2.2. Let a function analytical on the unit disk be f(t) =
∑∞

n=0 fnt
n.

For positive integer c, we have

(15)

c∫
x=0

(1 + x)
r−1

f (x) dx =

∞∑
n=0

n∑
k=0

(
n+ r

n− k

)
cn+1fk

(n+ 1) (c+ 1)
n+1 ,

and

(16)

∞∫
x=0

(1 + x)
r−1

f (x) dx =

∞∑
n=0

n∑
k=0

(
n+ r

n− k

)(
1

n+ 1

)
fk.

Proof. Using Lemma 2.1, with the substitution x = t
1−t , we have

c∫
x=0

(1 + x)
r−1

f (x) dx =

c/(1+c)∫
t=0

1

(1− t)
r+1 f

(
t

1− t

)
dt

=

c/(1+c)∫
t=0

∞∑
n=0

n∑
k=0

(
n+ r

n− k

)
fkt

ndt =

∞∑
n=0

n∑
k=0

(
n+ r

n− k

)
cn+1fk

(n+ 1) (c+ 1)
n+1 .

The proof of (16) is similar to the proof of (15).

If we take r = 1 in (15), we have (9).
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Corollary 2.3. For positive integer c, we have
∞∑

n=0

n∑
k=0

(
n+ r

n− k

)
(−1)

k
dk,r−2c

n+1

k! (n+ 1) (c+ 1)
n+1 = ec − 1.

Proof. Taking f (x) = ex

(1+x)r−1 in (15), by (13), we have

c∫
x=0

(1 + x)
r−1

f (x) dx =

c∫
x=0

exdx = ec − 1,

and
∞∑

n=0

n∑
k=0

(
n+ r

n− k

)
cn+1fk

(n+ 1) (1 + c)
n+1 =

∞∑
n=0

n∑
k=0

(
n+ r

n− k

)
(−1)

k
dk,r−2c

n+1

k! (n+ 1) (c+ 1)
n+1 .

From here, we have the proof.

Corollary 2.4. For (c, r) ∈ Z+× R+, we have
∞∑

n=0

n∑
k=0

(−1)
k

(
n+ r

n− k

)
cn+1Hr−1

k (σ)

(n+ 1) (1 + c)
n+1 = −

(
c+

1

σ

)
ln (1 + cσ) + c,

where σ is as above.

Proof. From (4), taking

f (x) = − ln (1 + σx)

(1 + x)
r−1 =

∞∑
n=1

(−1)
n
Hr−1

n (σ)xn

in (15), we have
c∫

x=0

(1 + x)
r−1

f (x) dx = −
c∫

x=0

ln (1 + σx) dx

= − (x ln (1 + σx))|cx=0 +

c∫
x=0

(
1− 1

1 + σx

)
dx

= −
(
x+

1

σ

)
ln (1 + σx) + x

∣∣∣∣c
x=0

= −
(
c+

1

σ

)
ln (1 + cσ) + c,(17)

and
∞∑

n=0

n∑
k=0

(
n+ r

n− k

)
cn+1fk

(n+ 1) (c+ 1)
n+1

=

∞∑
n=0

n∑
k=0

(−1)
k

(
n+ r

n− k

)
cn+1Hr−1

k (σ)

(n+ 1) (c+ 1)
n+1 .(18)
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Thus, from (17) and (18), the proof is complete.

Note that for σ = 1, Corollary 2.4 becomes

(19)

∞∑
n=0

n∑
k=0

(−1)
k

(
n+ r

n− k

)
cn+1Hr−1

k

(n+ 1) (c+ 1)
n+1 = − (c+ 1) ln (c+ 1) + c

and when c = 1 and e− 1 in (19), respectively,

∞∑
n=0

n∑
k=0

(−1)
k

(
n+ r

n− k

)
Hr−1

k

(n+ 1) 2n+1
= −2 ln 2 + 1,

and
∞∑

n=0

n∑
k=0

n+1∑
i=0

(−1)
k+i

(
n+ r

k + r

)(
n+ 1

i

)
Hr−1

k

n+ 1
e−i = −1.

Now, using (12) in (15) and partial integration, we have the following result.

Corollary 2.5. For positive integer c and integers m, r such that m ̸= r
and r ≥ 2, we have

∞∑
n=0

n∑
k=0

k∑
i=0

(−1)
k

(
m− 2 + i

i

)(
n+ r

n− k

)
cn+1

(n+ 1) (c+ 1)
n+1Hk−i

=
(c+ 1)

r−m − 1

(r −m)
2 − (c+ 1)

r−m

r −m
ln (c+ 1) .

For example, for r = 3, m = 2 and c = e− 1, then

∞∑
n=0

n∑
k=0

k∑
i=0

n+1∑
j=0

(−1)
k+j 1

n+ 1

(
n+ 1

j

)(
n+ 3

n− k

)
e−jHk−i = −1.

Theorem 2.6. Let n and m be any positive integers. Then

n∑
k=0

(−1)
k

(
m− 1 + n

n− k

)
Hk,m (σ) =

n∑
j=0

j∑
i=0

(−1)
i σ

i

im

(
j − 1

i− 1

)(
n− j +m− 2

n− j

)
,

where σ is as above.

Proof. For (6), by applying Lemma 2.1, the left hand side is

1

(1 + t)
m f

(
t

1 + t

)
=

1

(1 + t)
m

Lim

(
σt
1+t

)
1− t

1+t

=
1

(1 + t)
m−1Lim

(
σt

1 + t

)
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From (1) and (7), we have

1

(1 + t)
m f

(
t

1 + t

)
=

1

(1 + t)
m−1

∞∑
i=0

σiti

im
1

(1 + t)
i

=

∞∑
k=0

(−1)
k

(
k +m− 2

k

)
tk

∞∑
i=0

σiti

im

∞∑
k=0

(−1)
k

(
k + i− 1

k

)
tk

=

∞∑
k=0

(−1)
k

(
k +m− 2

k

)
tk

∞∑
i=0

∞∑
k=i

σi

im
(−1)

k−i

(
k − 1

k − i

)
tk

=

∞∑
k=0

(−1)
k

(
k +m− 2

k

)
tk

∞∑
k=0

k∑
i=0

σi

im
(−1)

k−i

(
k − 1

k − i

)
tk

=

∞∑
n=0

n∑
j=0

j∑
i=0

(−1)
n−i σ

i

im

(
j − 1

i− 1

)(
n− j +m− 2

n− j

)
tn.(20)

At the same time, by using Euler’s transform, the right hand side is

∞∑
n=0

n∑
k=0

(−1)
n−k

(
m− 1 + n

n− k

)
fkt

n

=

∞∑
n=0

n∑
k=0

(−1)
n−k

(
m− 1 + n

n− k

)
Hk,m (σ) tn.(21)

Thus, comparing coefficients in (20) and (21), the proof is obtained.

Corollary 2.7. Let n and m be any positive integers. Then

n∑
i=0

i∑
k=0

(−1)
n+i−k

(
m− 1 + i

i− k

)
i!Hk,m (σ)S2 (n, i)

=

n∑
i=1

i∑
k=1

(−1)
k

(
n

i

)
σk (m− 1)

n−i

km
k!S2 (i, k) ,

where σ is as above.

Proof. From (6), by applying Lemma 2.1, we have

1

(1 + t)
m−1Lim

(
σt

1 + t

)
=

∞∑
n=0

n∑
k=0

(−1)
n−k

(
m− 1 + n

n− k

)
Hk,m (σ) tn.
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From here, when t = e−x − 1, by (1) and (14), the left hand side is

ex(m−1)Lim (σ (1− ex))

=

∞∑
k=0

(m− 1)
k

k!
xk

∞∑
k=1

(−1)
k σkk!

km
(ex − 1)

k

k!

=

∞∑
k=0

(m− 1)
k

k!
xk

∞∑
n=1

n∑
k=1

(−1)
k σk

km
k!

n!
S2 (n, k)x

n

=

∞∑
n=1

n∑
i=1

i∑
k=1

(−1)
k

(
n

i

)
σk (m− 1)

n−i

km
k!

n!
S2 (i, k)x

n.(22)

At the same time, by using Euler’s transform and by (14), the right hand side
is

∞∑
i=0

i∑
k=0

(−1)
i−k

(
m− 1 + i

i− k

)
Hk,m (σ)

(
e−x − 1

)i
=

∞∑
i=0

i∑
k=0

(−1)
i−k

(
m− 1 + i

i− k

)
i!Hk,m (σ)

(e−x − 1)
i

i!

=

∞∑
n=0

n∑
i=0

i∑
k=0

(−1)
n+i−k

(
m− 1 + i

i− k

)
i!Hk,m (σ)S2 (n, i)

xn

n!
.(23)

Thus, comparing coefficients in (22) and (23), the proof is obtained.

Theorem 2.8. Let n and r be any positive integers. Then

(24)

n∑
k=0

(
n

k

)(
L

k

)
2,r

=

n∑
j=0

j∑
k=0

(−1)
k

(
j − k + 2L+ r

j − k

)(
r

n− j

)(
L

k

)
2

,

and

n∑
k=0

k∑
i=0

(−1)
i+k

(
n

k

)(
r

k − i

)(
L

i

)
2

(25)

= (−2)
n

n∑
k=0

k∑
i=0

(−1)
i+k

2−k

(
k − i+ 2L+ r

k − i

)(
r

n− k

)(
L

i

)
2

.

Proof. For

f (t) =

∞∑
n=0

(
L

n

)
2,r

tn =
(
1 + t+ t2

)L
(1 + 2t)

r
,
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by applying Lemma 2.1, the left hand side is

1

1− t
f

(
t

1− t

)
=

1

1− t

(
1− t+ t2

(1− t)
2

)L(
1 + t

1− t

)r

=
1

(1− t)
2L+r+1

(
1− t+ t2

)L
(1 + t)

r
.

From Binomial Theorem, (7) and (8), we have

1

1− t
f

(
t

1− t

)
=

∞∑
k=0

(
k + 2L+ r

k

)
tk

∞∑
k=0

(−1)
k

(
L

k

)
2

tk
∞∑
k=0

(
r

k

)
tk

=

∞∑
i=0

i∑
k=0

(−1)
k

(
L

k

)
2

(
i− k + 2L+ r

i− k

)
ti

∞∑
k=0

(
r

k

)
tk

=

∞∑
n=0

n∑
j=0

j∑
k=0

(−1)
k

(
L

k

)
2

(
j − k + 2L+ r

j − k

)(
r

n− j

)
tn.(26)

At the same time, by using Euler’s transform, the right hand side is

(27)

∞∑
n=0

n∑
k=0

(
n

k

)
fkt

n =

∞∑
n=0

n∑
k=0

(
n

k

)(
L

k

)
2,r

tn.

Thus, comparing coefficients in (26) and (27), the proof of (24) is obtained.
Similarly, using

f (t) =
(
1 + t+ t2

)L
(1− t)

r
=

∞∑
n=0

n∑
i=0

(−1)
n−i

(
L

i

)
2

(
r

n− i

)
tn,

the proof of (25) is similar to the proof of (24).

Corollary 2.9. Let n and r be any positive integers. Then

n∑
i=0

i∑
j=0

j∑
k=0

(−1)
k+i

i!

(
L

k

)
2

(
j − k + 2L+ r

j − k

)(
r

i− j

)
S2 (n, i)

=

n∑
i=0

i∑
k=0

(−1)
i
i!

(
i

k

)(
L

k

)
2,r

S2 (n, i) .

Proof. When t = 1− e−x in (26) and (27), we have

∞∑
n=0

n∑
j=0

j∑
k=0

(−1)
k

(
L

k

)
2

(
j − k + 2L+ r

j − k

)(
r

n− j

)(
1− e−x

)n
(28)

=

∞∑
n=0

n∑
k=0

(
n

k

)(
L

k

)
2,r

(
1− e−x

)n
.



Some sums via Euler’s transform 375

From (14), we have

∞∑
n=0

n∑
j=0

j∑
k=0

(−1)
k

(
L

k

)
2

(
j − k + 2L+ r

j − k

)(
r

n− j

)(
1− e−x

)n
=

∞∑
i=0

i∑
j=0

j∑
k=0

(−1)
k+i

i!

(
L

k

)
2

(
j − k + 2L+ r

j − k

)(
r

i− j

) ∞∑
n=i

(−1)
n
S2 (n, i)

xn

n!

=

∞∑
n=0

n∑
i=0

i∑
j=0

j∑
k=0

i!

(
L

k

)
2

(
j − k + 2L+ r

j − k

)(
r

i− j

)
S2 (n, i)

(−1)
n+k+i

xn

n!
,(29)

and
∞∑
i=0

i∑
k=0

(
i

k

)(
L

k

)
2,r

(
1− e−x

)i
=

∞∑
i=0

i∑
k=0

(−1)
i
i!

(
i

k

)(
L

k

)
2,r

∞∑
n=i

(−1)
n
S2 (n, i)

xn

n!

=

∞∑
n=0

n∑
i=0

i∑
k=0

(−1)
i
i!

(
i

k

)(
L

k

)
2,r

(−1)
n
S2 (n, i)

xn

n!
.(30)

Thus, by (28), comparing coefficients in (29) and (30), the proof is obtained.
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