• Title/Summary/Keyword: H-monotone operator

Search Result 13, Processing Time 0.022 seconds

GRAPH CONVERGENCE AND GENERALIZED CAYLEY OPERATOR WITH AN APPLICATION TO A SYSTEM OF CAYLEY INCLUSIONS IN SEMI-INNER PRODUCT SPACES

  • Mudasir A. Malik;Mohd Iqbal Bhat;Ho Geun Hyun
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.265-286
    • /
    • 2023
  • In this paper, we introduce and study a generalized Cayley operator associated to H(·, ·)-monotone operator in semi-inner product spaces. Using the notion of graph convergence, we give the equivalence result between graph convergence and convergence of generalized Cayley operator for the H(·, ·)-monotone operator without using the convergence of the associated resolvent operator. To support our claim, we construct a numerical example. As an application, we consider a system of generalized Cayley inclusions involving H(·, ·)-monotone operators and give the existence and uniqueness of the solution for this system. Finally, we propose a perturbed iterative algorithm for finding the approximate solution and discuss the convergence of iterative sequences generated by the perturbed iterative algorithm.

Approximation Solvability for a System of Nonlinear Variational Type Inclusions in Banach Spaces

  • Salahuddin, Salahuddin
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.101-123
    • /
    • 2019
  • In this paper, we consider a system of nonlinear variational type inclusions involving ($H,{\varphi},{\eta}$)-monotone operators in real Banach spaces. Further, we define a proximal operator associated with an ($H,{\varphi},{\eta}$)-monotone operator and show that it is single valued and Lipschitz continuous. Using proximal point operator techniques, we prove the existence and uniqueness of a solution and suggest an iterative algorithm for the system of nonlinear variational type inclusions. Furthermore, we discuss the convergence of the iterative sequences generated by the algorithms.

GENERAL NONLINEAR VARIATIONAL INCLUSIONS WITH H-MONOTONE OPERATOR IN HILBERT SPACES

  • Liu, Zeqing;Zheng, Pingping;Cai, Tao;Kang, Shin-Min
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.263-274
    • /
    • 2010
  • In this paper, a new class of general nonlinear variational inclusions involving H-monotone is introduced and studied in Hilbert spaces. By applying the resolvent operator associated with H-monotone, we prove the existence and uniqueness theorems of solution for the general nonlinear variational inclusion, construct an iterative algorithm for computing approximation solution of the general nonlinear variational inclusion and discuss the convergence of the iterative sequence generated by the algorithm. The results presented in this paper improve and extend many known results in recent literatures.

MANN-ITERATION PROCESS TO THE SOLUTION OF $y=x+Tx$ FOR AN ACDRETIVE OPERATOR T IN SOME BANACH SPACES

  • Park, Jong-An
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.819-823
    • /
    • 1994
  • If H is a Hilbert space, then an operator $T : D(T) \subset H \to H$ is said to be monotone if $$ (x-y, Tx-Ty) \geq 0$$ for any x, y in D(T). Many authors [1], [4] obtained the existence theorem for the equation $y = x + Tx$ for x, given an element y in H and a monotone operator T. On the other hand some iterative methods were applied to the approximations for the solution of the above equation [6], [8]. For example Bruck [2] obtained the iterative solution of the above equation with an explicit error estimate as follows.

  • PDF

ON NONLINEAR VARIATIONAL INCLUSIONS WITH ($A,{\eta}$)-MONOTONE MAPPINGS

  • Hao, Yan
    • East Asian mathematical journal
    • /
    • v.25 no.2
    • /
    • pp.159-169
    • /
    • 2009
  • In this paper, we introduce a generalized system of nonlinear relaxed co-coercive variational inclusions involving (A, ${\eta}$)-monotone map-pings in the framework of Hilbert spaces. Based on the generalized resol-vent operator technique associated with (A, ${\eta}$)-monotonicity, we consider the approximation solvability of solutions to the generalized system. Since (A, ${\eta}$)-monotonicity generalizes A-monotonicity and H-monotonicity, The results presented this paper improve and extend the corresponding results announced by many others.

A SYSTEM OF NONLINEAR VARIATIONAL INCLUSIONS WITH GENERAL H-MONOTONE OPERATORS IN BANACH SPACES

  • Li, Jinsong;Wang, Wei;Cho, Min-Hyung;Kang, Shin-Min
    • East Asian mathematical journal
    • /
    • v.26 no.5
    • /
    • pp.671-680
    • /
    • 2010
  • A system of nonlinear variational inclusions involving general H-monotone operators in Banach spaces is introduced. Using the resolvent operator technique, we suggest an iterative algorithm for finding approximate solutions to the system of nonlinear variational inclusions, and establish the existence of solutions and convergence of the iterative algorithm for the system of nonlinear variational inclusions.

ITERATIVE ALGORITHMS FOR GENERALIZED MONOTONE VARIATIONAL INEQUALITIES

  • H, M-U
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.89-98
    • /
    • 1999
  • We propose some new iterative methods for solving the generalized variational inequalities where the underlying operator T is monotone. These methods may be viewed as projection-type meth-ods. Convergence of these methods requires that the operator T is only monotone. The methods and the proof of the convergence are very simple. The results proved in this paper also represent a signif-icant improvement and refinement of the known results.

VARIATIONAL-LIKE INCLUSION SYSTEMS VIA GENERAL MONOTONE OPERATORS WITH CONVERGENCE ANALYSIS

  • Dadashi, Vahid;Roohi, Mehdi
    • East Asian mathematical journal
    • /
    • v.26 no.1
    • /
    • pp.95-103
    • /
    • 2010
  • In this paper using Lipschitz continuity of the resolvent operator associated with general H-maximal m-relaxed $\eta$-monotone operators, existence and uniqueness of the solution of a variational inclusion system is proved. Also, an iterative algorithm and its convergence analysis is given.

A SYSTEM OF NONLINEAR VARIATIONAL INCLUSIONS WITH (A, $\eta$)-MONOTONE MAPPINGS IN HILBERT SPACES

  • Shang, Meijuan;Qin, Xiaolong
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • In this paper, we introduce a system of nonlinear variational inclusions involving (A, $\eta$)-monotone mappings in the framework of Hilbert spaces. Based on the generalized resolvent operator technique associated with (A, $\eta$)-monotonicity, the approximation solvability of solutions using an iterative algorithm is investigated. Our results improve and extend the recent ones announced by many others.

  • PDF

APPROXIMATION-SOLVABILITY OF A CLASS OF A-MONOTONE VARIATIONAL INCLUSION PROBLEMS

  • Verma, Ram U.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.8 no.1
    • /
    • pp.55-66
    • /
    • 2004
  • First the notion of the A-monotonicity is applied to the approximation - solvability of a class of nonlinear variational inclusion problems, and then the convergence analysis is given based on a projection-like method. Results generalize nonlinear variational inclusions involving H-monotone mappings in the Hilbert space setting.

  • PDF