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1. Introduction

Variational inclusions, as the generalization of variational inequalities, have
been widely studied in recent years because of their wide applications in op-
timization and control, economic and transportation equilibrium, and engi-
neering sciences. It is well known that monotonicity and accretivity of the
underlying mappings plays an important role in the theory and algorithms of
variational inclusions. Many researchers investigated several classes of vari-
ational inclusions through generalized monotone and accretive operators and
their corresponding resolvent operators, see for example [6, 7, 8, 10, 11, 12,
14, 15, 23, 24, 25, 28].

In 2011, Li and Huang [17] studied the graph convergence forH(·, ·)-accretive
mappings and showed the equivalence between graph convergence and proximal-
point mapping convergence for the H(·, ·)-accretive mappings in a Banach
space. Since then many authors studied graph convergence for maximal mono-
tone mappings and established the equivalence between the graph convergence
and the proximal-point mapping convergence in different spaces, see for ex-
ample [1, 9, 16, 21, 22, 26]. They extended the concept of graph convergence
introduced and considered by Attouch [5]. Very recently, Ahmad et al. [3]
and Akram et al. [4] generalized the notion of graph convergence to Yosida
approximation operators to solve a new type of variational inclusions known
as Yosida inclusions.

It is well known that most of the results and techniques in Hilbert spaces are
developed in terms of the inner product space structure. On the other hand,
this type of notion finds no real parallel in the general Banach space setting.
With the aim of carrying over Hilbert space type arguments to the theory
of Banach spaces, Lumer [18] defined a new type of inner product known as
semi-inner product with a more general axiom system than that of Hilbert
space. It is pertinent to mention that a semi-inner product provides one with
sufficient structure to obtain certain nontrivial general results.

Motivated and inspired by the above research work and knowing the impor-
tance of Caylay operator to approximate the solution of variational inclusion
problems, in this paper, we introduce and study a generalized Cayley operator
associated to H(·, ·)-monotone operator in semi-inner product spaces. Using
the notion of graph convergence, we establish an equivalence result between
graph convergence and convergence of generalized Cayley operator for the
H(·, ·)-monotone operators without using the convergence of the associated
resolvent operator. In support of our claim, we construct a numerical exam-
ple. As an application, we consider a system of generalized Cayley inclusions
involving the H(·, ·)-monotone operators and give the existence and uniqueness
of the of solution for this system. Finally, we propose a perturbed iterative



Graph convergence and generalized Cayley operator 267

algorithm for finding the approximate solution and discuss the convergence
of iterative sequences generated by the perturbed iterative algorithm. Our
results refine, unify and generalize some known results in literature.

First we afford a view of semi-inner product and its important features that
we use in our work.

Definition 1.1. ([18]) Let X be a vector space over the field F of real or
complex numbers. A functional [·, ·] : X × X → F is called a semi-inner
product if it satisfies the following conditions:

(i) [x+ y, z] = [x, z] + [y, z], ∀x, y, z ∈ X;
(ii) [λx, y] = λ[x, y], ∀λ ∈ F and x, y ∈ X;

(iii) [x, x] > 0, for x 6= 0;

(iv)
∣∣[x, y]

∣∣2 ≤ [x, x][y, y].

The pair (X, [·, ·]) is said to be a semi-inner product space.

Every semi-inner product space X is a normed linear space with the norm

‖x‖ = [x, x]
1
2 . On the other hand, in a normed linear space, we can define

semi-inner product in infinitely many ways. In 1967, Giles [13] had proved
that if the underlying space X is a uniformly convex smooth Banach space,
then it is possible to define a semi-inner product uniquely.

The sequence space `p, p > 1 and the function space Lp, p > 1 are uniformly
convex smooth Banach spaces. So we can define a semi-inner product on these
spaces uniquely.

Example 1.2. ([20]) The real sequence space `p for 1 < p <∞ is a semi-inner
product space with the semi-inner product defined by

[x, y] =
1

‖y‖p−2p

∑
i

xiyi|yi|p−2, x, y ∈ `p.

Example 1.3. ([13]) The real Banach space Lp(R) for 1 < p < ∞ is a semi-
inner product space with the semi-inner product defined by

[f, g] =
1

‖g‖p−2p

∫
R
f(t)|g(t)|p−1sgn (g(t)) dt, f, g ∈ Lp(R).

Definition 1.4. ([27]) Let X be a real Banach space. The modulus of smooth-
ness of X is the function ρX : [0,+∞)→ [0,+∞) defined by

ρX(t) = sup

{
‖x+ y‖+ ‖x− y‖

2
− 1 : x, y ∈ X, ‖x‖ = 1, ‖y‖ = t, t > 0

}
.

(i) X is said to be uniformly smooth, if lim
t→0

ρX(t)

t
= 0.
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(ii) X is said to be q-uniformly smooth, if there exists a positive real con-
stant c such that

ρX(t) ≤ ctq, q > 1.

(iii) X is said to be 2-uniformly smooth, if there exists a positive real con-
stant c such that

ρX(t) ≤ ct2.

Lemma 1.5. ([27]) Let X be a smooth Banach space. Then the following
statements are equivalent:

(i) X is 2-uniformly smooth;
(ii) There is a constant c > 0 such that

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, fx〉+ c‖y‖2, ∀x, y ∈ X, (1.1)

where fx ∈ J(x) and J(x)=
{
x∗ ∈ X∗ :〈x, x∗〉 = ‖x‖2and ‖x∗‖ = ‖x‖

}
,

is the normalized duality mapping.

Remark 1.6. Every normed linear space X is a semi-inner product space
[18]. In fact, by Hahn-Banach theorem, for each x ∈ X, there exists at least
one functional fx ∈ X∗ such that 〈x, fx〉 = ‖x‖2. Given any such mapping
f from X into X∗, it has been show that [y, x] = 〈y, fx〉 defines a semi-inner
product. Hence inequality (1.1) can be written as

‖x+ y‖2 ≤ ‖x‖2 + 2[y, x] + c‖y‖2, ∀x, y ∈ X. (1.2)

The constant c is called a constant of smoothness of X and is chosen with best
possible minimum value.

Example 1.7. The function space Lp is 2-uniformly smooth for p ≥ 2 and
it is p-uniformly smooth for 1 < p < 2. If 2 ≤ p < ∞, then we have for all
x, y ∈ Lp,

‖x+ y‖2 ≤ ‖x‖2 + 2[y, x] + (p− 1)‖y‖2,
where (p− 1) is the constant of smoothness of Lp.

2. Preliminaries

Throughout the paper, unless otherwise stated, we assume that X is a real
2-uniformly smooth space equipped with norm ‖ · ‖ and semi-inner product
[·, ·], 2X is the power set of X.

First, we recall some known definitions and results which are important to
achieve the goal of this paper.

Definition 2.1. Let A,B, T : X → X and H : X ×X → X be single-valued
mappings. Then
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(i) T is said to be monotone, if

[Tx− Ty, x− y] ≥ 0, ∀x, y ∈ X;

(ii) T is said to be strictly monotone, if it is monotone and equality holds
if and only if x = y;

(iii) T is said to be r-strongly monotone, if there exists a constant r > 0
such that

[Tx− Ty, x− y] ≥ r‖x− y‖2, ∀x, y ∈ X;

(iv) T is said to be m-relaxed monotone, if there exists a constant m > 0
such that

[Tx− Ty, x− y] ≥ (−m)‖x− y‖2, ∀x, y ∈ X;

(v) T is said to be s-Lipschitz continuous, if there exists a constant s > 0
such that

‖Tx− Ty‖ ≤ s‖x− y‖, ∀x, y ∈ X;

(vi) H(A, ·) is said to be α-strongly monotone, if there exists a constant
α > 0 such that

[H(Ax, u)−H(Ay, u), x− y] ≥ α‖x− y‖2, ∀x, y, u ∈ X;

(vii) H(·, B) is said to be β-relaxed monotone, if there exists a constant
β > 0 such that

[H(u,Bx)−H(u,By), x− y] ≥ −β‖x− y‖2, ∀x, y, u ∈ X;

(viii) H(A,B) is said to be αβ-symmetric monotone, if H(A, ·) is α-strongly
monotone and H(·, B) is β-relaxed monotone with α ≥ β and α = β
if and only if x = y, for all x, y ∈ X;

(ix) H(A, ·) is said to be τ1-Lipschitz continuous, if there exists a constant
τ1 > 0 such that

‖H(Ax, u)−H(Ay, u)‖ ≤ τ1‖x− y‖, ∀x, y, u ∈ X;

(x) H(·, B) is said to be τ2-Lipschitz continuous, if there exists a constant
τ2 > 0 such that

‖H(u,Bx)−H(u,By)‖ ≤ τ2‖x− y‖, ∀x, y, u ∈ X.

Definition 2.2. A set-valued mapping M : X → 2X is said to be

(i) monotone, if

[u− v, x− y] ≥ 0, ∀x, y ∈ X,u ∈M(x), v ∈M(y);

(ii) r-strongly monotone, if there exists a constant r > 0 such that

[u− v, x− y] ≥ r‖x− y‖2, ∀x, y ∈ X,u ∈M(x), v ∈M(y);
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(iii) m-relaxed monotone, if there exists a constant m > 0 such that

[u− v, x− y] ≥ (−m)‖x− y‖2, ∀ x, y ∈ X,u ∈M(x), v ∈M(y).

Definition 2.3. Let A,B : X → X,H : X ×X → X be single-valued map-
pings. A set-valued mapping M : X → 2X is said to be H(·, ·)-monotone
with respect to A and B (or simply H(·, ·)-monotone in the sequel), if M is
monotone and (H(A,B) + λM) (X) = X, for all λ > 0.

Remark 2.4. IfX is a Banach space, then the definition ofH(·, ·)-monotonicity
reduces to the definition of H(·, ·)-accretivity considered in [3, 17].

Lemma 2.5. Let A,B : X → X,H : X ×X → X be single-valued mappings
such that H(A,B) is αβ-symmetric monotone and M : X → 2X be an H(·, ·)-
monotone operator. Then the operator (H(A,B) + λM)−1 is single-valued.

Based on Lemma 2.5, we define the generalized resolvent operator forH(·, ·)-
monotone operator M as follows:

Definition 2.6. Let A,B : X → X,H : X × X → X be single-valued
mappings such that H(A,B) is αβ-symmetric monotone and M : X → 2X

be an H(·, ·)-monotone operator. Then the generalized resolvent operator

R
H(·,·)
M,λ : X → X is defined by

R
H(·,·)
M,λ (x) =

[
(H(A,B) + λM

]−1
(x), ∀x ∈ X. (2.1)

Definition 2.7. The generalized Cayley operator C
H(·,·)
M,λ : X → X associated

with H(·, ·)-monotone operator M is defined as:

C
H(·,·)
M,λ (x) =

[
2R

H(·,·)
M,λ − I

]
(x), ∀x ∈ X and λ > 0, (2.2)

where R
H(·,·)
M,λ is the generalized resolvent operator defined by (2.1).

Remark 2.8. The resolvent and the Cayley operators are connected by means
of the following relation

C
H(·,·)
M,λ (x) ∈

[
2I −

(
H(A,B) + λM

)]
R
H(·,·)
M,λ (x).

The following lemmas give the Lipschitz continuity of generalized resolvent
and generalized Cayley operators. For the sake of brevity, we omit the proofs.

Lemma 2.9. Let H(A,B) be αβ-symmetric monotone. Then, the generalized

resolvent operator R
H(·,·)
M,λ : X → X is 1

α−β -Lipschitz continuous, that is,∥∥∥RH(·,·)
M,λ (x)−RH(·,·)

M,λ (y)
∥∥∥ ≤ 1

α− β
‖x− y‖, ∀x, y ∈ X.
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Lemma 2.10. Let H(A,B) be αβ-symmetric monotone. Then, the general-

ized Cayley operator C
H(·,·)
M,λ : X → X is θ-Lipschitz continuous, that is,∥∥∥CH(·,·)

M,λ (x)− CH(·,·)
M,λ (y)

∥∥∥ ≤ θ‖x− y‖, ∀x, y ∈ X,
where θ = 2+(α−β)

α−β .

Lemma 2.11. Let {cn} and {tn} be two non-negative real sequences satisfying

cn+1 ≤ dcn + tn,

with 0 < d < 1 and tn → 0. Then lim
n→∞

cn = 0.

3. Graph convergence for H(·, ·)-monotone operators

Let M : X → 2X be a set-valued mapping. The graph of the mapping M
is defined by

graph(M) = {(x, y) ∈ X ×X : y ∈M(x)} .

Definition 3.1. ([17]) LetA,B : X → X andH : X×X → X be single-valued
mappings. Let Mn,M : X → 2X be H(·, ·)-monotone set-valued operators for
n = 0, 1, 2, ... . The sequence {Mn} is said to be graph convergent to M ,

denoted by Mn
G−→ M , if for every (x, y) ∈ graph(M), there exist sequences

{xn}, {yn} ⊂ X with (xn, yn) ∈ graph(Mn) such that

xn → x, yn → y as n→∞.

Theorem 3.2. ([17]) Let Mn,M : X → 2X be H(·, ·)-monotone operators for
n = 0, 1, 2, ... . Assume that H : X ×X → X is a single-valued mapping such
that

(i) H(A,B) is αβ-symmetric monotone with α > β;
(ii) H(A, ·) is τ1-Lipschitz continuous and H(·, B) is τ2-Lipschitz contin-

uous.

Then Mn
G−→ M if and only if R

H(·,·)
Mn,λ

(x) → R
H(·,·)
M,λ (x), where R

H(·,·)
Mn,λ

(x) =[
(H(A,B) + λMn

]−1
(x).

Next, we prove an equivalence result between graph convergence and conver-
gence of generalized Cayley operator for the H(·, ·)-monotone operator without
using convergence of the associated resolvent operator.

Theorem 3.3. Let Mn,M : X → 2X be H(·, ·)-monotone operators for
n = 0, 1, 2, ... and H : X × X → X be a single-valued mapping such that

assumptions (i) and (ii) of Theorem 3.2 hold. Then Mn
G−→ M if and only

if C
H(·,·)
Mn,λ

(x)→ C
H(·,·)
M,λ (x), where C

H(·,·)
Mn,λ

(x) =
[
2R

H(·,·)
Mn,λ

− I
]
(x).
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Proof. Suppose Mn
G−→M . For any given x ∈ X, let

zn = C
H(·,·)
Mn,λ

(x) and z = C
H(·,·)
M,λ (x).

Now, z = C
H(·,·)
M,λ (x) =

[
2R

H(·,·)
M,λ − I

]
(x). It follows that

u =
x+ z

2
= R

H(·,·)
M,λ (x) = [H(A,B) + λM ]−1 (x),

which implies that

1

λ
[x−H(Au, Bu)] ∈M (u) .

That is (
u,

1

λ
[x−H(Au, Bu)]

)
∈ graph(M).

By definition of graph convergence there exist (wn, yn) ∈ graph(Mn), such
that

wn → u, yn →
1

λ
[x−H(Au, Bu)] . (3.1)

Since yn ∈Mn(wn), we can write

H(Awn, Bwn) + λyn ∈ [H(A,B) + λMn] (wn).

It follows that

wn = R
H(·,·)
Mn,λ

[H(Awn, Bwn) + λyn]

=
1

2

(
I + C

H(·,·)
Mn,λ

)
[H(Awn, Bwn) + λyn] ,

which implies that

2wn = H(Awn, Bwn) + λyn + C
H(·,·)
Mn,λ

[H(Awn, Bwn) + λyn] . (3.2)

Note that

‖zn − z‖ =
∥∥CH(·,·)

Mn,λ
(x)− 2wn + 2wn − z

∥∥
=
∥∥CH(·,·)

Mn,λ
(x)−H(Awn, Bwn)− λyn

− CH(·,·)
Mn,λ

[H(Awn, Bwn) + λyn] + 2wn − z
∥∥

≤
∥∥CH(·,·)

Mn,λ
(x)− CH(·,·)

Mn,λ
[H(Awn, Bwn) + λyn]

∥∥
+ ‖x−H(Awn, Bwn)− λyn + 2wn − x− z‖ .
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Using the Lipschitz continuity of the Cayley operator, we have

‖zn − z‖ ≤ θ ‖x−H(Awn, Bwn)− λyn‖+ ‖x−H(Awn, Bwn)− λyn‖
+ ‖2wn − x− z‖

= (θ + 1) ‖x−H(Awn, Bwn)− λyn‖+ ‖2wn − x− z‖
= (θ + 1) ‖x−H(Awn, Bwn) +H(Au, Bu)−H(Au, Bu)− λyn‖

+ ‖2wn − x− z‖
≤ (θ + 1) ‖x−H(Au, Bu)− λyn‖

+ (θ + 1) ‖H(Au, Bu)−H(Awn, Bwn)‖+ ‖2wn − x− z‖. (3.3)

Since H is τ1-Lipschitz continuous with respect to A and τ2-Lipschitz contin-
uous with respect to B, we have

‖H(Au, Bu)−H(Awn, Bwn)‖ ≤ ‖H (Au, Bu)−H (Awn, Bu)‖
+ ‖H (Awn, Bu)−H(Awn, Bwn)‖
≤ (τ1 + τ2) ‖u− wn‖ . (3.4)

Thus it follows from (3.3) and (3.4) that

‖zn − z‖ ≤ (θ + 1) ‖x−H(Au, Bu)− λyn‖
+ (θ + 1)(τ1 + τ2) ‖u− wn‖+ ‖2wn − x− z‖
≤ (θ + 1) ‖x−H(Au, Bu)− λyn‖

+
(
(θ + 1)(τ1 + τ2) + 2

)
‖u− wn‖ . (3.5)

In view of (3.1), it follows that

‖wn − u‖ → 0 and ‖x−H(Au, Bu)− λyn‖ → 0 as n→∞.

Thus, it follows from (3.5) that ‖zn − z‖ → 0 as n→∞, which implies that

C
H(·,·)
Mn,λ

(x) −→ C
H(·,·)
M,λ (x).

Conversely, suppose that

C
H(·,·)
Mn,λ

(x) −→ C
H(·,·)
M,λ (x), ∀x ∈ X, λ > 0.

For any (x, y) ∈ graph(M), where y ∈M(x) and hence

H(Ax,Bx) + λy ∈ [H(A,B) + λM ] (x).

Therefore,

x = R
H(·,·)
M,λ [H(Ax,Bx) + λy] =

1

2

(
C
H(·,·)
M,λ + I

)
[H(Ax,Bx) + λy] .
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Let xn =
1

2

(
C
H(·,·)
Mn,λ

+ I
)

[H(Ax,Bx) + λy]. This implies that

1

λ
[H(Ax,Bx)−H(Axn, Bxn) + λy] ∈Mn(xn).

Let yn = 1
λ [H(Ax,Bx)−H(Axn, Bxn) + λy] and using the same arguments

as for (3.4), we have

‖yn − y‖ =

∥∥∥∥ 1

λ
[H(Ax,Bx)−H(Axn, Bxn) + λy]− y

∥∥∥∥
=

1

λ
‖H(Ax,Bx)−H(Axn, Bxn)‖

≤ 1

λ

{
‖H(Ax,Bx)−H(Axn, Bx)‖

+ ‖H(Axn, Bx)−H(Axn, Bxn)‖
}

≤
(
τ1 + τ2
λ

)
‖xn − x‖. (3.6)

Using above arguments, we have

‖xn − x‖ =
1

2

∥∥∥(CH(·,·)
Mn,λ

+ I
)

[H(Ax,Bx) + λy]

−
(
C
H(·,·)
M,λ + I

)
[H(Ax,Bx) + λy]

∥∥∥
=

1

2

∥∥∥(CH(·,·)
Mn,λ

− CH(·,·)
M,λ

)
[H(Ax,Bx) + λy]

∥∥∥ . (3.7)

Since C
H(·,·)
Mn,λ

(x) → C
H(·,·)
M,λ (x), we have ‖xn − x‖ → 0 as n → ∞. Thus from

(3.6), it follows that ‖yn − y‖ → 0 as n → ∞. That is, Mn
G−→ M . This

completes the proof. �

Remark 3.4. One can easily verify that the convergence of the resolvent

operator R
H(·,·)
Mn,λ

(x) → R
H(·,·)
M,λ (x) and the convergence of generalized Cayley

operator C
H(·,·)
Mn,λ

(x)→ C
H(·,·)
M,λ (x) are equivalent if and only if Mn

G−→M .

We now construct the following example which shows that the mapping M

is H(·, ·)-monotone with respect to A and B, Mn
G−→ M and C

H(·,·)
Mn,λ

(x) →
C
H(·,·)
M,λ (x). Through MATLAB programming, we show some graphics for the

convergence of H(·, ·)-monotone and generalized Cayley operators.
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Example 3.5. Let X = R and A,B : R → R be single-valued mappings
defined by

A(x) =
x3

4
, B(x) =

2x

5
, ∀x ∈ R.

Let H : R× R→ R be a mapping defined by

H
(
A(x), B(x)

)
=

1

2
[A(x)−B(x)] , ∀x ∈ R

with the condition that x2 + y2 + xy ≥ 1. Then for any u ∈ R, we have

[H(A(x), u)−H(A(y), u), x− y] =
1

2
[A(x)−A(y), x− y]

=
1

8

[
x3 − y3, x− y

]
=

1

8

[
(x2 + y2 + xy)(x− y), x− y

]
≥ 1

8
‖x− y‖2.

Hence, H(A, ·) is
1

8
-strongly monotone and

[H(u,B(x))−H(u,B(y)), x− y] = −1

2
[B(x)−B(y), x− y]

= −1

5
‖x− y‖2

≥ −1

4
‖x− y‖2.

Hence, H(·, B) is
1

4
-relaxed monotone. Thus, H(A,B) is αβ-symmetric mono-

tone with α =
1

8
and β =

1

4
.

Let M : R → R be a mapping defined by M(x) =
{x

5

}
, for all x ∈ R. It

can be easily verified that M is monotone. Also, for any x ∈ R and λ > 0, we
have (

H(A,B) + λM
)
(x) = H(A(x), B(x)) + λM(x) =

x3

8
+ (λ− 1)

x

5
.

Clearly the right hand side of above equation generates the whole space R,
that is,

(H(A,B) + λM) (R) = R, ∀ λ > 0.
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Hence, M is H(·, ·)-monotone with respect to A and B. Further, let Mn : R→
R be a sequence of mappings defined by

Mn(x) =
x

5
+

3

n2
, ∀n ∈ N.

By using the same arguments as above one can easily show that {Mn} is a
sequence of H(·, ·)-monotone operators.

Now, we show that Mn
G−→ M . For any (x, y) ∈ graph(M), there exist

(xn, yn) ∈ graph(Mn), where let

xn =

(
1 +

3

n

)
x and yn = Mn(xn) =

xn
5

+
3

n2
, ∀n ∈ N.

Since

lim
n→∞

xn = lim
n→∞

[(
1 +

3

n

)
x

]
= x,

we have xn → x as n→∞. Also

lim
n→∞

yn = lim
n→∞

(
xn
5

+
3

n2

)
=
x

5
= M(x) = y,

which shows that yn → y as n→∞ and consequently Mn
G−→M .

Finally, we show that C
H(·,·)
Mn,λ

→ C
H(·,·)
M,λ as Mn

G−→ M . Now for λ = 1, the

resolvent operators are given by

R
H(·,·)
Mn,λ

(x) =
(
H(A,B) + λMn

)−1
(x) = 2 3

√(
x− 3

n2

)
and

R
H(·,·)
M,λ (x) =

(
H(A,B) + λM

)−1
(x) = 2 3

√
x.

Also, for λ = 1, the Cayley operators are given by

C
H(·,·)
Mn,λ

(x) =
(

2R
H(·,·)
Mn,λ

− I
)

(x) = 4 3

√(
x− 3

n2

)
− x

and

C
H(·,·)
M,λ (x) =

(
2R

H(·,·)
M,λ − I

)
(x) = 4 3

√
x− x.

From above, it is clear that∥∥∥CH(·,·)
Mn,λ

(x)− CH(·,·)
M,λ (x)

∥∥∥→ 0, as n→∞.

Thus C
H(·,·)
Mn,λ

→ C
H(·,·)
M,λ as Mn

G−→M .
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Using the above example, the convergence of H(·, ·)-monotone operators

Mn(x) to M(x) and convergence of generalized Cayley operators C
H(·,·)
Mn,λ

(x) to

C
H(·,·)
M,λ (x) is illustrated in the following figure for n = 2, 3, 5, 10.
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Figure 1. Convergence of Mn(x) and C
H(·,·)
Mn,λ

(x).

4. System of generalized Cayley inclusions, existence of
solution and perturbed iterative algorithm

In what follows, we assume that X1 and X2 are 2-uniformly smooth Banach
spaces. Let A1, B1 : X1 → X1, A2, B2 : X2 → X2, F : X1×X2 → X1, G : X1×
X2 → X2, H1 : X1×X1 → X1, H2 : X2×X2 → X2 be single-valued mappings.
Let M : X1 → 2X1 be an H1(A1, B1)-monotone operator and N : X2 → 2X2

be an H2(A2, B2)-monotone operator. We consider the following system of
generalized Cayley inclusions (SGCI): Find (x, y) ∈ X1 ×X2 such that{

0 ∈ CH1(·,·)
M,λ (x) + F (x, y) +M(x),

0 ∈ CH2(·,·)
N,ρ (x) +G(x, y) +N(x),

(4.1)

where C
H1(·,·)
M,λ and C

H2(·,·)
N,ρ are the generalized Cayley operators.

By taking F ≡ G ≡ 0, N ≡ M and A-monotonicity of the set-valued map-
ping M instead of H(·, ·)-monotonicity, SGCI (4.1) reduces to the problem of
finding x ∈ X such that

0 ∈ CAM,λ(x) +M(x).

This problem was considered and studied by Ahmad et al. [2] in the setting
of q-uniformly smooth Banach spaces.
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Here we remark that for suitable choices of the mappings involved in the
formulation of SGCI (4.1), one can obtain different classes of variational inclu-
sions present in the literature, see for example [3, 6, 12, 16, 17, 19, 20, 22, 26],
which can be efficiently solved using the techniques presented in this paper.

Lemma 4.1. The system of generalized Cayley inclusions (4.1) admits a so-
lution (x, y) ∈ X1 ×X2 if and only if it satisfies the following equations:

x = R
H1(·,·)
M,λ

[
H1(A1, B1)x− λ

(
F (x, y) + C

H1(·,·)
M,λ (x)

)]
,

y = R
H2(·,·)
N,ρ

[
H2(A2, B2)y − ρ

(
G(x, y) + C

H2(·,·)
N,ρ (y)

)]
,

where R
H1(·,·)
M,λ (x) =

[
H1(A1, B1) + λM

]−1
(x) and R

H2(·,·)
N,ρ (x) =

[
H2(A2, B2)

+ ρN
]−1

(x).

Proof. The proof immediately follows from the definition of resolvent operator.
So, we omit the proof here. �

Theorem 4.2. Let A1, B1 : X1 → X1, A2, B2 : X2 → X2, H1 : X1 × X1 →
X1, H2 : X2×X2 → X2, F : X1×X2 → X1, G : X1×X2 → X2 be single-valued
mappings such that H1(A1, B1) is α1β1-symmetric monotone and H2(A2, B2)
is α2β2-symmetric monotone, H1(A1, B1) is τ1, τ2-Lipschitz continuous with
respect to A1, B1 and H2(A2, B2) is γ1, γ2-Lipschitz continuous with respect to
A2, B2, respectively, F (·, ·) is k1-Lipschitz continuous and σ1-strongly mono-
tone with respect to first argument and k2-Lipschitz continuous with respect
to second argument, G(·, ·) is ξ1-Lipschitz continuous and σ2-strongly mono-
tone with respect to first argument and ξ2-Lipschitz continuous with respect to
second argument. Let M : X1 → 2X1 be an H1(A1, B1)-monotone set-valued
operator and N : X2 → 2X2 be an H2(A2, B2)-monotone set-valued operator.
In addition, if the constants satisfy the following inequalities:{

ϑ1 = m1 + η2ρξ2 < 1,

ϑ2 = m2 + η1λk2 < 1,
(4.2)

where,

m1 = η1
{√

1 + c(τ1 + τ2)2 − 2(α1 − β1) +
√

1 + cλ2k21 − 2λσ1 + λθ1
}
,

m2 = η2
{√

1 + c(γ1 + γ2)2 − 2(α2 − β2) +
√

1 + cρ2ξ21 − 2ρσ2 + ρθ2
}
,

η1 =
1

α1 − β1
and η2 =

1

α2 − β2
.

Then SGCI (4.1) admits a unique solution.
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Proof. For any given λ, ρ > 0, define Tλ : X1 ×X2 → X1 and Sρ : X1 ×X2 →
X2 by

Tλ(a, b) = R
H1(·,·)
M,λ

[
H1

(
A1(a), B1(a)

)
− λ

(
F (a, b) + C

H1(·,·)
M,λ (a)

)]
(4.3)

and

Sρ(a, b) = R
H2(·,·)
N,ρ

[
H2

(
A2(b), B2(b)

)
− ρ

(
G(a, b) + C

H2(·,·)
N,ρ (b)

)]
. (4.4)

For the sake of brevity, let

J1(u, v) = H1

(
A1(u), B1(v)

)
and J2(u, v) = H2

(
A2(u), B2(v)

)
.

In view of (4.3) and Lemma 2.9, we have for any (a1, b1), (a2, b2) ∈ X1 ×X2

‖Tλ(a1, b1)− Tλ(a2, b2)‖

=
∥∥RH1(·,·)

M,λ

[
J1(a1, a1)− λ

(
F (a1, b1) + C

H1(·,·)
M,λ (a1)

)]
−RH1(·,·)

M,λ

[
J1(a2, a2)− λ

(
F (a2, b2) + C

H1(·,·)
M,λ (a2)

)]∥∥
≤ η1

{∥∥[J1(a1, a1)− λ(F (a1, b1) + C
H1(·,·)
M,λ (a1)

)]
−
[
J1(a2, a2)− λ

(
F (a2, b2) + C

H1(·,·)
M,λ (a2)

)]∥∥}
≤ η1

{∥∥J1(a1, a1)− J1(a2, a2)− (a1 − a2)
∥∥

+
∥∥(a1 − a2)− λ (F (a1, b1)− F (a2, b1))

∥∥
+ λ
∥∥F (a2, b1)− F (a2, b2)

∥∥
+ λ
∥∥CH1(·,·)

M,λ (a1)− CH1(·,·)
M,λ (a2)

∥∥}. (4.5)

By given assumptions and (1.2), we have∥∥J1(a1, a1)− J1(a2, a2)− (a1 − a2)
∥∥2

≤ ‖a1 − a2‖2 − 2
[
J1(a1, a1)− J1(a2, a2), (a1 − a2)

]
+ c
∥∥J1(a1, a1)− J1(a2, a1)∥∥2. (4.6)

According to hypothesis H1(A1, B1) is τ1-Lipschitz continuous with respect to
A1 and τ2-Lipschitz continuous with respect to B1, therefore we have∥∥J1(a1, a1)− J1(a2, a2)∥∥ ≤ ∥∥J1(a1, a1)− J1(a2, a1)∥∥

+
∥∥J1(a2, a1)− J1(a2, a2)∥∥

≤ τ1‖a1 − a2‖+ τ2‖a1 − a2‖
= (τ1 + τ2)‖a1 − a2‖. (4.7)
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In light of the fact that H1(A1, B1) is α1β1-symmetric monotone, we have[
J1(a1, a1)− J1(a2, a2), (a1 − a2)

]
=
[
J1(a1, a1)− J1(a2, a1), (a1 − a2)

]
+
[
J1(a2, a1)− J1(a2, a2), (a1 − a2)

]
≥ (α1 − β1)‖a1 − a2‖2. (4.8)

By (4.6)-(4.8), we obtain∥∥J1(a1, a1)− J1(a2, a2)− (a1 − a2)
∥∥2

≤
[
1 + c(τ1 + τ2)

2 − 2(α1 − β1)
]
‖a1 − a2‖2. (4.9)

From the Lipschitz continuity and the monotonicity of F , we have∥∥(a1 − a2)− λ (F (a1, b1)− F (a2, b1))
∥∥2

≤ ‖a1 − a2‖2 − 2λ
[
F (a1, b1)− F (a2, b1), a1 − a2

]
+ cλ2‖F (a1, b1)− F (a2, b1‖2

≤ (1 + cλ2k21 − 2λσ1)‖a1 − a2‖2 (4.10)

and ∥∥F (a2, b1)− F (a2, b2)
∥∥ ≤ k2‖b1 − b2‖. (4.11)

Also, ∥∥CH1(·,·)
M,λ (a1)− CH1(·,·)

M,λ (a2)
∥∥ ≤ θ1‖a1 − a2‖, (4.12)

where θ1 = 2+(α1−β1)
α1−β1 .

Using (4.9)-(4.12) in (4.5), we obtain

‖Tλ(a1, b1)− Tλ(a2, b2)‖ ≤ η1
{√

1 + c(τ1 + τ2)2 − 2(α1 − β1)

+
√

1 + cλ2k21 − 2λσ1 + λθ1
}
‖a1 − a2‖

+ η1λk2‖b1 − b2‖. (4.13)

As for Sρ(a, b), similar to the deduction of inequality (4.13), we can conclude
that

‖Sρ(a1, b1)− Sρ(a2, b2)‖ ≤ η2
{√

1 + c(γ1 + γ2)2 − 2(α2 − β2)

+
√

1 + cρ2ξ21 − 2ρσ2 + ρθ2
}
‖b1 − b2‖

+ η2ρξ2‖a1 − a2‖, (4.14)

where θ2 = 2+(α2−β2)
α2−β2 .

From (4.13) and (4.14), we have

‖Tλ(a1, b1)− Tλ(a2, b2)‖+ ‖Sρ(a1, b1)− Sρ(a2, b2)‖
≤ ϑ1‖a1 − a2‖+ ϑ2‖b1 − b2‖, (4.15)
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where

ϑ1 = η1
{√

1 + c(τ1 + τ2)2 − 2(α1 − β1) +
√

1 + cλ2k21 − 2λσ1 + λθ1
}

+ η2ρξ2,

ϑ2 = η2
{√

1 + c(γ1 + γ2)2 − 2(α2 − β2) +
√

1 + cρ2ξ21 − 2ρσ2 + ρθ2
}

+ η1λk2.

Setting

ϑλ,ρ = max {ϑ1, ϑ2} , (4.16)

then (4.15) becomes

‖Tλ(a1, b1)− Tλ(a2, b2)‖+‖Sρ(a1, b1)− Sρ(a2, b2)‖ ≤ ϑλ,ρ
(
‖a1−a2‖+‖b1−b2‖

)
.

(4.17)
Define ‖(·, ·)‖1 on X1 ×X2 by

‖(a, b)‖1 = ‖a‖+ ‖b‖, ∀(a, b) ∈ X1 ×X2.

Then clearly
(
X1 ×X2, ‖ · ‖1

)
is a Banach space.

For any given λ, ρ > 0, define Dλ,ρ : X1 ×X2 → X1 ×X2 by

Dλ,ρ(a, b) =
(
Tλ(a, b), Sρ(a, b)

)
, ∀(a, b) ∈ X1 ×X2. (4.18)

From (4.17) and (4.18), we have∥∥Dλ,ρ(a1, b1)−Dλ,ρ(a2, b2)
∥∥
1
≤ ϑλ,ρ‖(a1, b1)− (a2, b2)‖1. (4.19)

From (4.2) and (4.16), we know that 0 ≤ ϑλ,ρ < 1. Therefore, it follows from
(4.19) that Dλ,ρ is a contraction mapping. Hence, there exists a unique point
(x, y) ∈ X1 ×X2 such that

Dλ,ρ(x, y) = (x, y), (4.20)

which implies that

x = Tλ(x, y) = R
H1(·,·)
M,λ

[
H1

(
A1(x), B1(x)

)
− λ

(
F (x, y) + C

H1(·,·)
M,λ (x)

)]
and

y = Sρ(x, y) = R
H2(·,·)
N,ρ

[
H2

(
A2(y), B2(y)

)
− ρ
(
G(x, y) + C

H2(·,·)
N,ρ (y)

)]
.

Thus we conclude from Lemma 4.1 that (x, y) is the unique solution of SGCI
(4.1). This completes the proof. �

Based on Lemma 4.1, we suggest and analyze the following perturbed iter-
ative algorithm for finding an approximate solution for SGCI (4.1).

Algorithm 4.3.

(i) Let (x0, y0) ∈ X1 ×X2 be an initial point.
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(ii) Given (xn, yn) ∈ X1 × X2, compute (xn+1, yn+1) ∈ X1 × X2 by the
iterative schemes:

xn+1 = αnxn + (1− αn)R
H1(·,·)
Mn,λ

[
H1

(
A1(xn), B1(xn)

)
− λ
(
F (xn, yn) + C

H1(·,·)
Mn,λ

(xn)
)]
, (4.21)

and

yn+1 = αnyn + (1− αn)R
H2(·,·)
Nn,ρ

[
H2

(
A2(yn), B2(yn)

)
− ρ
(
G(xn, yn) + C

H2(·,·)
Nn,ρ

(yn)
)]
, (4.22)

for n = 0, 1, 2, ..., where 0 ≤ αn < 1 with lim
n→∞

supαn < 1,

R
H(·,·)
Mn,λ

(x) =
[
(H(A,B) + λMn

]−1
(x),

R
H(·,·)
Nn,ρ

(x) =
[
(H(A,B) + ρNn

]−1
(x),

C
H(·,·)
Mn,λ

(x) =
[
2R

H(·,·)
Mn,λ

− I
]
(x)

and

C
H(·,·)
Nn,ρ

(x) =
[
2R

H(·,·)
Nn,ρ

− I
]
(x).

Theorem 4.4. Let X1, X2, A1, B1, A2, B2, H1, H2,M,N, F,G be same as in
Theorem 4.2. Assume that the constants satisfy inequality (4.2). Furthermore,
let Mn : X1 → 2X1 be a sequence of H1(·, ·)-monotone set-valued mappings

such that Mn
G−→ M and Nn : X2 → 2X2 be a sequence of H2(·, ·)-monotone

set-valued mappings such that Nn
G−→ N . Then the sequences {xn}, {yn}

generated by the Algorithm 4.3 converges strongly to the unique solution x, y
of SGCI (4.1).

Proof. By Theorem 4.2, SGCI (4.1) admits a unique solution (x, y). It follows
from Lemma 4.1 that

x = αnx+(1−αn)R
H1(·,·)
M,λ

[
H1

(
A1(x), B1(x)

)
−λ
(
F (x, y)+C

H1(·,·)
M,λ (x)

)]
(4.23)

and

y = αny+(1−αn)R
H2(·,·)
N,ρ

[
H2

(
A2(y), B2(y)

)
−ρ
(
G(x, y)+C

H2(·,·)
N,ρ (y)

)]
. (4.24)

For the sake of brevity, denote

J1(u, v) = H1

(
A1(u), B1(v)

)
and J2(u, v) = H2

(
A2(u), B2(v)

)
.
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Then, by (4.21) and (4.23), we have

‖xn+1 − x‖

=
∥∥∥{αnxn + (1− αn)R

H1(·,·)
Mn,λ

[
J1(xn, xn)− λ

(
F (xn, yn) + C

H1(·,·)
Mn,λ

(xn)
)]}

−
{
αnx+ (1− αn)R

H1(·,·)
M,λ

[
J1(x, x)− λ

(
F (x, y) + C

H1(·,·)
M,λ (x)

)]}∥∥∥
≤ αn‖xn − x‖+ (1− αn)

∥∥∥RH1(·,·)
Mn,λ

[
J1(xn, xn)− λ

(
F (xn, yn) + C

H1(·,·)
Mn,λ

(xn)
)]

− R
H1(·,·)
M,λ

[
J1(x, x)− λ

(
F (x, y) + C

H1(·,·)
M,λ (x)

)]∥∥∥
≤ αn‖xn − x‖+ (1− αn)

{∥∥∥RH1(·,·)
Mn,λ

[
J1(xn, xn)− λ

(
F (xn, yn) + C

H1(·,·)
Mn,λ

(xn)
)]

−RH1(·,·)
Mn,λ

[
J1(x, x)− λ

(
F (x, y) + C

H1(·,·)
Mn,λ

(x)
)]∥∥∥

+
∥∥∥RH1(·,·)

Mn,λ

[
J1(x, x)− λ

(
F (x, y) + C

H1(·,·)
Mn,λ

(x)
)]

−RH1(·,·)
M,λ

[
J1(x, x)− λ

(
F (x, y) + C

H1(·,·)
M,λ (x)

)]∥∥∥}. (4.25)

Following very similar argument from (4.5) to (4.13), we have∥∥∥RH1(·,·)
Mn,λ

[
J1(xn, xn)− λ

(
F (xn, yn) + C

H1(·,·)
Mn,λ

(xn)
)]

−RH1(·,·)
Mn,λ

[
J1(x, x)− λ

(
F (x, y) + C

H1(·,·)
M,λ (x)

)]∥∥∥
≤ η1

{√
1 + c(τ1 + τ2)2 − 2(α1 − β1) +

√
1 + cλ2k21 − 2λσ1 + λθ1

}
‖xn − x‖

+ η1λk2‖yn − y‖. (4.26)

Therefore it follows that

‖xn+1 − x‖ ≤ αn‖xn − x‖+ (1− αn)m1‖xn − x‖
+ (1− αn)η1λk2‖yn − y‖+ (1− αn)pn, (4.27)

where

pn =
∥∥RH1(·,·)

Mn,λ

[
J1(x, x)− λ

(
F (x, y) + C

H1(·,·)
Mn,λ

(x)
)]

−RH1(·,·)
M,λ

[
J1(x, x)− λ

(
F (x, y) + C

H1(·,·)
M,λ (x)

)]∥∥.
Proceeding likewise, we can obtain

‖yn+1 − y‖ ≤ αn‖yn − y‖+ (1− αn)m2‖yn − y‖
+ (1− αn)η2ρξ2‖xn − x‖+ (1− αn)qn, (4.28)
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where

qn =
∥∥RH1(·,·)

Nn,ρ

[
J2(y, y)− ρ

(
G(x, y) + C

H1(·,·)
Nn,ρ

(y)
)]

−RH1(·,·)
N,ρ

[
J2(y, y)− ρ

(
G(x, y) + C

H1(·,·)
N,ρ (y)

)]∥∥.
It follows from (4.16), (4.27) and (4.28) that

‖xn+1 − x‖+ ‖yn+1 − y‖
≤ αn

(
‖xn − x‖+ ‖yn − y‖

)
+ (1− αn)ϑλ,ρ

(
‖xn − x‖+ ‖yn − y‖

)
+ (1− αn) (pn + qn)

=
[
αn + (1− αn)ϑλ,ρ

](
‖xn − x‖+ ‖yn − y‖

)
+ (1− αn)(pn + qn). (4.29)

Let

εn = αn + (1− αn)ϑλ,ρ.

Then by choosing αn and ϑλ,ρ < 1 in such a way that d = lim sup
n→∞

εn < 1.

Thus, (4.29) becomes

‖xn+1−x‖+‖yn+1−y‖ ≤ d
(
‖xn−x‖+‖yn−y‖

)
+ (1−αn)(pn+ qn). (4.30)

In view of Theorems 3.2 and 3.3, it follows that pn, qn → 0. Let cn = ‖xn −
x‖+ ‖yn − y‖ and tn = (1− αn)(pn + qn), then (4.30) can be written as

cn+1 ≤ dcn + tn.

Therefore by Lemma 2.11, cn → 0 as n → ∞. Thus xn → x and yn → y
as n → ∞. Hence the sequences {xn}, {yn} generated by the Algorithm 4.3
converges strongly to the unique solution x, y of SGCI (4.1). This completes
the proof. �

5. Conclusion

The introduction of graph convergence of operators was a great contribu-
tion by Attouch [5] to the classical resolvent methods and beyond because it
empowered us with more applicable algorithms involving a sequence of clas-
sical resolvents of a corresponding sequence of maximal monotone set-valued
mappings. In this paper, we established an equivalence between the graph con-
vergence of H(·, ·)-monotone operators and convergence of Cayley operators
which can be further exploited to solve a variety of variational inclusion prob-
lems. Using the concept of graph convergence, we developed a perturbed iter-
ative algorithm to approximate the solution of a system of Cayley inclusions.
Our results generalize most of the results on variational inclusion problems
involving classical resolvents to the case of generalized resolvents.
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