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Abstract. In this paper, we consider a system of nonlinear variational type inclusions

involving (H, η, ϕ)-monotone operators in real Banach spaces. Further, we define a prox-

imal operator associated with an (H, η, ϕ)-monotone operator and show that it is single

valued and Lipschitz continuous. Using proximal point operator techniques, we prove the

existence and uniqueness of a solution and suggest an iterative algorithm for the system

of nonlinear variational type inclusions. Furthermore, we discuss the convergence of the

iterative sequences generated by the algorithms.

1. Introduction

Variational inequalities, variational inclusions, complementarity problems and
equilibrium problems are among the most interesting, novel, innovative and impor-
tant mathematical problems. They have been widely studied by many authors in
the recent years due to their wide applications in mechanics, physics, optimizations
and controls, nonlinear programming, economics and transportation, equilibriums
and engineering sciences, see, [6, 10, 13, 22, 32, 33, 34].

Very recently, Luo and Huang [28] and Kim et al. [25] introduced and studied
a new class of (H, η, ϕ)-monotone operators, respectively (H,φ, ψ)-η-monotone op-
erators in Banach spaces. This provides a unified framework for a class of maximal
monotone operators, maximal η-monotone operators, H-monotone operators and
(H, η)-monotone operators. Using proximal point operator techniques, they studied
the convergence analysis of the iterative algorithms for some classes of variational
inclusions, see, [11, 12, 14, 15, 16, 23, 26, 36].

Motivated and inspired by such works as [2, 8, 9, 18, 19, 21, 24, 27, 30, 31, 35],
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in this paper we further generalize these proximal point operator techniques and
define a new iterative algorithm for solving a system of nonlinear variational type
inclusions. Moreover, we discuss the convergence for the approximate solutions of
a system of nonlinear variational type inclusions in real Banach spaces.

2. Preliminaries

Let X be a real Banach space endowed with the topological dual space X∗, the
norm ‖·‖ and the dual pairing 〈·, ·〉 between X and X∗, 2X denotes the family of all
nonempty subsets of X. The normalized duality mapping J : X → 2X

∗
is defined

by

J(x) = {f ∈ X∗ : 〈f, x〉 = ‖f‖‖x‖, ‖f‖ = ‖x‖},∀x ∈ X.

Let U = {x ∈ X : ‖x‖ = 1}. A Banach space X is said to be uniformly convex if for
each ε ∈ (0, 2], there exists δ > 0 such that for any x, y ∈ U,

‖x− y‖ ≥ ε implies ‖x+ y

2
‖ ≤ 1− δ.

We note that, the Lp, `p and Sobolev spaces W p
m (1 < p < ∞) are uniformly

convex.
It is known that a uniformly convex Banach space is reflexive and strictly convex.

A Banach space X is said to be smooth if the limit,

(∗) lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for all x, y ∈ U. It is also said to be uniformly smooth if the limit (∗) is
attained uniformly for x, y ∈ U. Again, we note that if X is uniformly convex and
uniformly smooth, then J is invertible and J−1 = J∗ (the duality mapping from
X∗ to X∗∗), hence J is a single valued and if X = H (a Hilbert space) then J is an
identity mapping.

We define a function ρX : [0,+∞)→ [0,+∞) called the modulus of smoothness
of X as follows:

ρX(t) = sup

{
‖x+ y‖+ ‖x− y‖

2
− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t

}
.

It is known that a Banach space X is uniformly smooth if and only if

lim
t→∞

ρX(t)

t
= 0.

Let q be a fixed real number with 1 < q ≤ 2. Then a Banach space X is said to be
q-uniformly smooth if there exists a constant c such that

ρX(t) ≤ ctq, ∀t > 0.
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Let CB(X) be a family of all nonempty closed and bounded subsets of X; H(·, ·)
be a Hausdorff metric on CB(X) defined by

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(A, y)},

where A,B ∈ CB(X), d(x,B) = infy∈B d(x, y) and d(A, y) = infx∈A d(x, y).
The following concepts and results are needed in the sequel.

Definition 2.1. Let T : X → X∗ and g : X → X be two single valued mappings.
Then

(i) T is monotone, if

〈T (x)− T (y), x− y〉 ≥ 0,∀x, y ∈ X;

(ii) T is strictly monotone, if

〈T (x)− T (y), x− y〉 > 0,∀x, y ∈ X,

and equality holds if and only if x = y;

(iii) T is α-strongly monotone if there exists a constant α > 0 such that

〈T (x)− T (y), x− y〉 ≥ α‖x− y‖2,∀x, y ∈ X;

(iv) T is β-Lipschitz continuous if there exists a constant β > 0 such that

‖T (x)− T (y)‖ ≤ β‖x− y‖,∀x, y ∈ X;

(v) g is κ-strongly accretive if there exists j(x − y) ∈ J(x − y) and a constant
κ > 0 such that

〈g(x)− g(y), j(x− y)〉 ≥ κ‖x− y‖2,∀x, y ∈ X.

Definition 2.2. Let M : X → 2X
∗

be a multivalued mapping, H : X → X∗ and
η : X ×X → X be the single valued mappings. Then

(i) M is monotone, if

〈u− v, x− y〉 ≥ 0,∀x, y ∈ X,u ∈M(x), v ∈M(y);

(ii) M is η-monotone, if

〈u− v, η(x, y)〉 ≥ 0,∀x, y ∈ X,u ∈M(x), v ∈M(y);

(iii) M is strictly η-monotone, if

〈u− v, η(x, y)〉 > 0,∀x, y ∈ X,u ∈M(x), v ∈M(y)

and equality holds if and only if x = y;
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(iv) M is λ-strongly η-monotone if there exists a constant λ > 0 such that

〈u− v, η(x, y)〉 ≥ λ‖x− y‖2,∀x, y ∈ X,u ∈M(x), v ∈M(y);

(v) M is maximal monotone, if M is monotone and

(J + λM)(X) = X∗,∀λ > 0,

where J is a normalized duality mapping;

(vi) M is maximal η-monotone, if M is monotone and

(J + λM)(X) = X∗,∀λ > 0;

(vii) M is H-monotone, if M is monotone and

(H + λM)(X) = X∗,∀λ > 0;

(viii) M is (H, η)-monotone, if M is η-monotone and

(H + λM)(X) = X∗,∀λ > 0;

(ix) η is τ -Lipschitz continuous if there exists a constant τ > 0 such that

‖η(x, y)‖ ≤ τ‖x− y‖,∀x, y ∈ X.

Definition 2.3. For all x, y ∈ X, a mapping N : X ×X → X∗ is said to be

(i) β1-Lipschitz continuous with respect to first argument if there exists a con-
stant β1 > 0 such that

‖N(u, ·)−N(v, ·)‖ ≤ β1‖u− v‖;

(ii) β2-Lipschitz continuous with respect to second argument if there exists a con-
stant β2 > 0 such that

‖N(·, u)−N(·, v)‖ ≤ β2‖u− v‖.

Definition 2.4.([29]) Let X be a complete metric space, T : X → CB(X) be a set
valued mapping. Then for any ε > 0 and for any x, y ∈ X,u ∈ T (x) there exists
v ∈ T (y) such that

d(u, v) ≤ (1 + ε)H(T (x), T (y)).

Lemma 2.5. Let X be a uniformly smooth Banach space and J : X → 2X
∗

be a
normalized duality mapping. Then for all x, y ∈ X,
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(i) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉;

(ii)

〈x− y, j(x)− j(y)〉 ≤ 2d2ρX

[
4‖x− y‖

d

]
where

d =

√
‖x‖2 + ‖y‖2

2
.

Definition 2.6. Let X be a Banach space with the dual space X∗. Let H : X →
X∗, ϕ : X∗ → X∗, η : X ×X → X be single valued mappings and M : X → 2X

∗
be

a multivalued mapping. The mapping M is said to be (H, η, ϕ)-monotone if ϕ ◦M
is η-monotone and

(H + ϕ ◦M)(X) = X∗.

Definition 2.7. Let X be a Banach space with the dual space X∗. Let H : X →
X∗, ϕ : X∗ → X∗, η : X ×X → X be single valued mappings and M : X → 2X

∗
be

a multivalued mapping. The mapping M is said to be

(i) (H,ϕ)-monotone, if (ϕ ◦M) is monotone and

(H + ϕ ◦M)(X) = X∗;

(ii) maximal (ϕ, η)-monotone, if (ϕ ◦M) is η-monotone and

(H + ϕ ◦M)(X) = X∗;

(iii) maximal ϕ-monotone, if (ϕ ◦M) is monotone and

(H + ϕ ◦M)(X) = X∗.

Examples 2.8. Let X = R = (−∞,+∞),M(x) = x2, H(x) = ex,∀x ∈ R and
ϕ(x) =

√
x, ∀x ≥ 0. Let η(x, y) = x4 − y4,∀x, y ∈ R. Then

〈M(x)−M(y), η(x, y)〉 = 〈x2 − y2, x4 − y4〉 = (x2 + y2)(x2 − y2)2 ≥ 0

and

(I +M)(x) = x+ x2 =

(
x+

1

2

)2

− 1

4
≥ −1

4
.

This shows that (I +M) is not surjective. Since

(H +M)(x) = ex + x2 > 0.
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We know that (H +M) is not surjective. Thus, M is neither maximal η-monotone
nor (H, η)-monotone.
Moreover, we have

〈ϕ ◦M(x)− ϕ ◦M(y), x− y〉 = 〈x− y, x− y〉 = (x− y)2 ≥ 0

and
(I + ϕ ◦M)(x) = x+ x− 2x.

It follows that (I + ϕ ◦M) is surjective. It is easy to see that

(H + ϕ ◦M)(x) = ex + x

and so (H + ϕ ◦M) is surjective. Therefore, M is both maximal ϕ-monotone and
(H,ϕ)-monotone.

Theorem 2.9. Let X be a Banach space with the dual space X∗. Let ϕ : X∗ →
X∗, η : X×X → X be single valued mappings, H : X → X∗ be a strictly η-monotone
mapping and M : X → 2X

∗
be a (H, η, ϕ)-monotone mapping if 〈u − v, η(x, y)〉 ≥

0,∀(y, v) ∈ Graph(ϕ ◦M). Then u ∈ ϕ ◦M(x), where Graph(ϕ ◦M) = {(x, x∗) ∈
X ×X∗ : x∗ ∈ (ϕ ◦M)(x)}.
Proof. Suppose that there exists (x0, u0) such that

〈u0 − v, η(x0, y)〉 ≥ 0,∀(y, v) ∈ Graph(ϕ ◦M).

Since M is (H, η, ϕ)-monotone, we know that (H + ϕ ◦M)(X) = X∗ and so there
exists (x1, u1) ∈ Graph(ϕ ◦M) such that

H(x1) + u1 = H(x0) + u0.

Thus, we have

〈u0 − u1, η(x0, x1)〉 = −〈H(x0)−H(x1), η(x0, x1)〉 ≥ 0.

The strict η-monotonicity of H implies that x1 = x0. Thus from above, we have
u1 = u0. Hence (x0, u0) ∈ Graph(ϕ ◦M), i.e., u0 ∈ (ϕ ◦M)(x0). 2

Theorem 2.10. Let X be a Banach space with the dual space X∗. Let ϕ : X∗ →
X∗, η : X × X → X be single valued mappings, H : X → X∗ be a strictly η-
monotone mapping and M : X → 2X

∗
be a (H, η, ϕ)-monotone mapping. Then

(H + ρϕ ◦M)−1 is a single valued mapping.

Proof. For any given x∗ ∈ X∗, let x, y ∈ (H + ρϕ ◦M)−1(x∗). It follows that

1

ρ
{x∗ −H(x)} ∈ (ϕ ◦M)(x),

1

ρ
{x∗ −H(y)} ∈ (ϕ ◦M)(y).
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From the η-monotonicity of (ϕ ◦M) implies that

1

ρ
〈x∗ −H(x)− (x∗ −H(y)), η(x, y)〉 =

1

ρ
〈−H(x) +H(y), η(x, y)〉 ≥ 0.

This implies that x = y and (H + ρϕ ◦M)−1 is a single valued mapping. 2

Definition 2.11. Let X be a reflexive Banach space with dual space X∗. Let
ϕ : X∗ → X∗, η : X × X → X be single valued mappings, H : X → X∗ be a
strictly η-monotone mapping and M : X → 2X

∗
be a (H, η, ϕ)-monotone mapping.

A proximal mapping RH,η,ϕM : X∗ → X is defined by

RH,η,ϕM (x∗) = (H + ρϕ ◦M)−1(x∗), ∀x∗ ∈ X∗.

Theorem 2.12. Let X be a reflexive Banach space with dual space X∗. Let ϕ :
X∗ → X∗ be a single valued mapping, η : X ×X → X be a τ -Lipschitz continuous
mapping, H : X → X∗ be a γ-strongly η-monotone mapping and M : X → 2X

∗
be

a (H, η, ϕ)-monotone mapping. Then the proximal mapping RH,η,ϕM : X∗ → X is
τ
γ -Lipschitz continuous, i.e.,

‖RH,η,ϕM (x∗)−RH,η,ϕM (y∗)‖ ≤ τ

γ
‖x∗ − y∗‖, ∀x∗, y∗ ∈ X∗.

Proof. Let x∗, y∗ ∈ X∗. It follows that

RH,η,ϕM (x∗) = (H + ρϕ ◦M)−1(x∗);

RH,η,ϕM (y∗) = (H + ρϕ ◦M)−1(y∗)

then

1

ρ
{x∗ −H(RH,η,ϕM (x∗))} ∈ (ϕ ◦M)(RH,η,ϕM (x∗))

1

ρ
{y∗ −H(RH,η,ϕM (y∗))} ∈ (ϕ ◦M)(RH,η,ϕM (y∗)).

Since (ϕ ◦M) is η-monotone, we have

1

ρ
〈x∗ −H(RH,η,ϕM (x∗))− (y∗ −H(RH,η,ϕM (y∗))), η(RH,η,ϕM (x∗), RH,η,ϕM (y∗))〉 ≥ 0.

It follows that

τ‖x∗ − y∗‖‖RH,η,ϕM (x∗)−RH,η,ϕM (y∗)‖ ≥ ‖x∗ − y∗‖‖η(RH,η,ϕM (x∗), RH,η,ϕM (y∗))‖

≥ 〈x∗ − y∗, η(RH,η,ϕM (x∗), RH,η,ϕM (y∗))〉

≥ 〈H(RH,η,ϕM (x∗))−H(RH,η,ϕM (y∗)), η(RH,η,ϕM (x∗), RH,η,ϕM (y∗))〉

≥ γ‖RH,η,ϕM (x∗)−RH,η,ϕM (y∗)‖2.
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Thus

‖RH,η,ϕM (x∗)−RH,η,ϕM (y∗)‖ ≤ τ

γ
‖x∗− y∗‖, ∀x∗, y∗ ∈ X∗. 2

Now, we formulate our main problems.
Let Ni : X × X → X∗, ϕ : X∗ → X∗, η : X × X → X, g : X → X be

single valued mappings, and Pi, Gi, Ti : X → CB(X)(i = 1, · · · , `) be set valued
mappings. Let H : X → X∗ be a strictly η-monotone mapping and M : X → 2X

∗

be a (H, η, ϕ)-monotone mapping. Then the system of nonlinear variational type
inclusions is to find xi ∈ X,ui ∈ Ti(x1), vi ∈ Gi(x1), wi ∈ Pi(x1) such that

0 ∈ H(g(x1))−H(g(x2)) + ρ1[N1(u1, v1) +M(g(x1), w1)],

0 ∈ H(g(x2))−H(g(x3)) + ρ2[N2(u2, v2) +M(g(x2), w2)],

...

0 ∈ H(g(x`−1))−H(g(x`)) + ρ`−1[N`−1(u`−1, v`−1) +M(g(x`−1), w`−1)],

0 ∈ H(g(x`))−H(g(x1)) + ρ`[N`(u`, v`) +M(g(x`), w`)],(2.1)

where ρi (i = 1, 2, · · · , `) is a positive constant.

Remarks 2.13.

(i) We note that if i = 1, 2, 3, then (2.1) reduces to finding xi ∈ X,ui ∈
Ti(x1), vi ∈ Gi(x1), wi ∈ Pi(x1) such that

0 ∈ H(g(x1))−H(g(x2)) + ρ1[N1(u1, v1) +M(g(x1), w1)],

0 ∈ H(g(x2))−H(g(x3)) + ρ2[N2(u2, v2) +M(g(x2), w2)],

0 ∈ H(g(x3))−H(g(x1)) + ρ3[N3(u3, v3) +M(g(x3), w3)],(2.2)

where ρi (i = 1, 2, 3) is a positive constant.

(ii) We note that if i = 1, 2, then (2.2) reduces to finding xi ∈ X,ui ∈ Ti(x1), vi ∈
Gi(x1), wi ∈ Pi(x1) such that

0 ∈ H(g(x1))−H(g(x2)) + ρ1[N1(u1, v1) +M(g(x1), w1)],

0 ∈ H(g(x2))−H(g(x1)) + ρ2[N2(u2, v2) +M(g(x2), w2)],(2.3)

where ρi (i = 1, 2) is a positive constant.

(iii) We note that if i = 1, then x1 = x, u1 = u, v1 = v, w1 = w and (2.3) reduces
to finding x ∈ X,u ∈ T (x), v ∈ G(x), w ∈ P (x) such that

(2.4) 0 ∈ H(g(x))−H(g(x∗)) + ρ[N(u, v) +M(g(x), w)], ∀x∗ ∈ X,

where ρ is a positive constant.
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3. Main Results

Theorem 3.1. Let Ni : X × X → X∗, g : X → X, η : X × X → X be single
valued mappings. Let a single valued mapping ϕi : X∗ → X∗ satisfying ϕi(u +
v) = ϕi(u) + ϕi(v) and Ker(ϕi) = {0} (i.e., Ker(ϕi) = {x ∈ X∗ : ϕi(x) = 0}),
(i = 1, · · · , `). Let M : X × X → 2X

∗
be a (H, η, ϕi)-monotone mapping. Then

(xi, ui, vi, wi) where xi ∈ X,ui ∈ Ti(x1), vi ∈ Gi(x1), wi ∈ Pi(x1)(i = 1, · · · , `) is a
solution of (2.1) if and only if

g(x1) = RH,η,ϕ1

M(·,w1)
[Hg(x2)− ρ1ϕ1 ◦N1(u1, v1)],

g(x2) = RH,η,ϕ2

M(·,w2)
[Hg(x3)− ρ2ϕ2 ◦N2(u2, v2)],

...

g(x`−1) = R
H,η,ϕ`−1

M(·,w`−1)
[Hg(x`)− ρ`−1ϕ`−1 ◦N`−1(u`−1, v`−1)],

g(x`) = RH,η,ϕ`

M(·,w`)
[Hg(x1)− ρ`ϕ` ◦N`(u`, v`)],(3.1)

where ρi > 0(i = 1, · · · , `) is a constant and

RH,η,ϕi

M(·,wi)
= [H + ρiϕi ◦M(·, wi)]−1, (i = 1, · · · , `)

is a resolvent operator.

Proof. From the definition of RH,η,ϕ1

M(·,w1)
, we have

Hg(x2)− ρ1ϕ1 ◦N1(u1, v1) ∈ [H + ρ1ϕ1 ◦M(·, w1)]g(x1)

⇔Hg(x2)− ρ1ϕ1 ◦N1(u1, v1) ∈ Hg(x1) + ρ1(ϕ1 ◦M(g(x1), w1))

⇔0 ∈ Hg(x1)−Hg(x2) + ρ1ϕ1[N1(u1, v1) +M(g(x1), w1)].

Since ϕ1(u1 + u2) = ϕ1(u1) + ϕ2(u2) and Ker(ϕ1) = {0}. Thus

0 ∈ Hg(x1)−Hg(x2) + ρ1[N1(u1, v1) +M(g(x1), w1)], ρ1 > 0.

Similarly, for all xi ∈ X,ui ∈ Ti(x1), vi ∈ Gi(x1), wi ∈ Pi(x1),

0 ∈ Hg(x2)−Hg(x3) + ρ2[N2(u2, v2) +M(g(x2), w2)], ρ2 > 0,

...

0 ∈ Hg(x`)−Hg(x1) + ρ`[N`(u`, v`) +M(g(x`), w`)], ρ` > 0.

Thus (xi, ui, vi, wi) ∈ X is a solution of (2.1). 2

On the basis of Theorem 3.1., we define the following algorithm:

Algorithm 3.2. Let Ti, Gi, Pi : X → CB(X), Ni : X×X → X∗, ϕi : X∗ → X∗, η :
X×X → X, g : X → X(i = 1, · · · , `) be mappings. Let H : X → X∗ be a strictly η-
monotone mapping and M : X → 2X

∗
be a (H, η, ϕi)-monotone mapping. Then for
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any arbitrary chosen x0i ∈ X,u0i ∈ Ti(x01), v0i ∈ Gi(x01), w0
i ∈ Pi(x01) (i = 1, · · · , `),

there exists a point x11 ∈ X such that

x11 = x01 − g(x01) +RH,η,ϕ1

M(·,w0
1)

[Hg(x02)− ρ1ϕ1 ◦N1(u01, v
0
1)], ρ1 > 0,

where

g(x02) = RH,η,ϕ2

M(·,w0
2)

[Hg(x03)− ρ2ϕ2 ◦N2(u02, v
0
2)], ρ2 > 0,

...

g(x0`) = RH,η,ϕ`

M(·,w0
` )

[Hg(x01)− ρ`ϕ` ◦N`(u0` , v0` )], ρ` > 0.

By Nadler’s Theorem [29], there exist u11 ∈ T1(x11), v11 ∈ G1(x11), w1
1 ∈ P1(x11) such

that

‖u11 − u01‖ ≤ (1 + (1 + 0)−1)H(T1(x11), T1(x01)),

‖v11 − v01‖ ≤ (1 + (1 + 0)−1)H(G1(x11), G1(x01)),

‖w1
1 − w0

1‖ ≤ (1 + (1 + 0)−1)H(P1(x11), P1(x01)),

...

‖u1` − u0`‖ ≤ (1 + (1 + 0)−1)H(T`(x
1
1), T`(x

0
1)),

‖v1` − v0`‖ ≤ (1 + (1 + 0)−1)H(G`(x
1
1), G`(x

0
1)),

‖w1
` − w0

`‖ ≤ (1 + (1 + 0)−1)H(P`(x
1
1), P`(x

0
1)).

Similarly, for given x11 ∈ X,u1i ∈ Ti(x
1
1), v1i ∈ Gi(x

1
1), w1

i ∈ Pi(x
1
1)(i = 1, · · · , `),

there exists a point x21 ∈ X such that

x21 = x11 − g(x11) +RH,η,ϕ1

M(·,w1
1)

[Hg(x12)− ρ1ϕ1 ◦N1(u11, v
1
1)], ρ1 > 0,

where

g(x12) = RH,η,ϕ2

M(·,w1
2)

[Hg(x13)− ρ2ϕ2 ◦N2(u12, v
1
2)], ρ2 > 0,

...

g(x1`) = RH,η,ϕ`

M(·,w1
` )

[Hg(x11)− ρ`ϕ` ◦N`(u1` , v1` )], ρ` > 0.

Again, from the Nadler’s Theorem [29], there exist u21 ∈ T1(x21), v21 ∈ G1(x21), w2
1 ∈

P1(x21) such that

‖u2i − u1i ‖ ≤ (1 + (1 + 1)−1)H(Ti(x
2
1), Ti(x

1
1)),

‖v2i − v1i ‖ ≤ (1 + (1 + 1)−1)H(Gi(x
2
1), Gi(x

1
1)),

‖w2
i − w1

i ‖ ≤ (1 + (1 + 1)−1)H(Pi(x
2
1), Pi(x

1
1)) (i = 1, · · · , `).
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We can compute {xni }, {uni }, {vni }, {wni }, by induction schemes:

(3.2) xn+1
1 = xn1 − g(xn1 ) +RH,η,ϕ1

M(·,wn
1 )[Hg(xn2 )− ρ1ϕ1 ◦N1(un1 , v

n
1 )], ρ1 > 0,

where

g(xn2 ) = RH,η,ϕ2

M(·,wn
2 )[Hg(xn3 )− ρ2ϕ2 ◦N2(un2 , v

n
2 )], ρ2 > 0,

...

g(xn` ) = RH,η,ϕ`

M(·,wn
` )[Hg(xn1 )− ρ`ϕ` ◦N`(un` , vn` )], ρ` > 0,

and

uni ∈ Ti(xn1 ) : ‖un+1
i − uni ‖ ≤ (1 + (1 + n)−1)H(Ti(x

n+1
1 ), Ti(x

n
1 )),

vni ∈ Gi(xn1 ) : ‖vn+1
i − vni ‖ ≤ (1 + (1 + n)−1)H(Gi(x

n+1
1 ), Gi(x

n
1 )),

wni ∈ Pi(xn1 ) : ‖wn+1
i − wni ‖ ≤ (1 + (1 + n)−1)H(Pi(x

n+1
1 ), Pi(x

n
1 )) (i = 1, · · · , `).

If i = 1, 2, 3, then Algorithm 3.2 reduces to three step iterative algorithm, see
[3, 4, 5], which are as following:

Algorithm 3.3. For any arbitrary chosen x01 ∈ X,u01 ∈ T1(x01), v01 ∈ G1(x01), w0
1 ∈

P1(x01), compute {xn1} by iterative schemes:

(3.3) xn+1
1 = xn1 − g(xn1 ) +RH,η,ϕ1

M(·,wn
1 )[Hg(xn2 )− ρ1ϕ1 ◦N1(un1 , v

n
1 )], ρ1 > 0,

where

g(xn2 ) = RH,η,ϕ2

M(·,wn
2 )[Hg(xn3 )− ρ2ϕ2 ◦N2(un2 , v

n
2 )], ρ2 > 0,

g(xn3 ) = RH,η,ϕ3

M(·,wn
3 )[Hg(xn1 )− ρ3ϕ3 ◦N3(un3 , v

n
3 )], ρ3 > 0

and

uni ∈ Ti(xn1 ) : ‖un+1
i − uni ‖ ≤ (1 + (1 + n)−1)H(Ti(x

n+1
1 ), Ti(x

n
1 )),

vni ∈ Gi(xn1 ) : ‖vn+1
i − vni ‖ ≤ (1 + (1 + n)−1)H(Gi(x

n+1
1 ), Gi(x

n
1 )),

wni ∈ Pi(xn1 ) : ‖wn+1
i − wni ‖ ≤ (1 + (1 + n)−1)H(Pi(x

n+1
1 ), Pi(x

n
1 )) (i = 1, 2, 3).

We note that the Algorithm 3.3 gives the approximate solution to the variational
inclusions (2.2).

If i = 1, 2, then Algorithm 3.2, reduces to the Ishikawa type iterative algorithm,
see [1, 7, 17, 20], which are as following:

Algorithm 3.4. For any arbitrary chosen x01 ∈ X,u01 ∈ T1(x01), v01 ∈ G1(x01), w0
1 ∈

P1(x01), compute {xn1} by iterative schemes

(3.4) xn+1
1 = xn1 − g(xn1 ) +RH,η,ϕ1

M(·,wn
1 )[Hg(xn2 )− ρ1ϕ1 ◦N1(un1 , v

n
1 )], ρ1 > 0
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where
g(xn2 ) = RH,η,ϕ2

M(·,wn
2 )[Hg(xn1 )− ρ2ϕ2 ◦N2(un2 , v

n
2 )], ρ2 > 0

and

uni ∈ Ti(xn1 ) : ‖un+1
i − uni ‖ ≤ (1 + (1 + n)−1)H(Ti(x

n+1
1 ), Ti(x

n
1 )),

vni ∈ Gi(xn1 ) : ‖vn+1
i − vni ‖ ≤ (1 + (1 + n)−1)H(Gi(x

n+1
1 ), Gi(x

n
1 )),

wni ∈ Pi(xn1 ) : ‖wn+1
i − wni ‖ ≤ (1 + (1 + n)−1)H(Pi(x

n+1
1 ), Pi(x

n
1 )) (i = 1, 2).

We note that the Algorithm 3.4 gives the approximate solution to the variational
inclusions (2.3).

If i = 1, then x1 = x and we have the following Mann type iterative schemes:

Algorithm 3.5. For any arbitrary chosen x0 ∈ X,u0 ∈ T (x0), v0 ∈ G(x0), w0 ∈
P (x0), compute {xn} by iterative schemes

(3.5) xn+1 = xn − g(xn) +RH,η,ϕM(·,wn)[Hg(xn)− ρϕ ◦N(un, vn)], ρ > 0

and

un ∈ T (xn) : ‖un+1 − un‖ ≤ (1 + (1 + n)−1)H(T (xn+1), T (xn)),

vn ∈ G(xn) : ‖vn+1 − vn‖ ≤ (1 + (1 + n)−1)H(G(xn+1), G(xn)),

wn ∈ P (xn) : ‖wn+1 − wn‖ ≤ (1 + (1 + n)−1)H(P (xn+1), P (xn)).

We note that the Algorithm 3.5 gives the approximate solution to the variational
inclusions (2.4).

Now, we prove that following theorem which ensures the convergence of the
iterative sequences generated by Algorithm 3.2.

Theorem 3.6. Let X be a uniformly smooth Banach space with modulus of smooth-
ness ρX(t) ≤ ct2 for some c > 0 and X∗ its dual space. Let g : X → X be a
κ-strongly accretive and δ-Lipschitz continuous, H : X → X∗ be a γ-strongly η-
monotone and s-Lipschitz continuous with respect to g and Ni : X × X → X∗

be (ri, pi)-Lipschitz continuous with respect to first and second argument, respec-
tively. Let Ti, Gi, Pi : X → CB(X∗) be a (ζTi

, ζGi
, ζPi

)-Lipschitz continuous for
(i = 1, · · · , `) respectively. Let ϕi : X∗ → X∗ be a single valued mapping satisfying
ϕi(u+ v) = ϕi(u) + ϕi(v) and Ker(ϕi) = {0} and ϕi : X∗ → X∗ be a θi-Lipschitz
continuous with respect to Ni, (i = 1, · · · , `), respectively. Let η : X ×X → X be a
τ -Lipschitz continuous mapping and M : X × X → 2X

∗
be a (H, η, ϕi)-monotone

mapping where (i = 1, · · · , `). Assume that

(3.6) ‖RH,η,ϕi

M(·,wn
i )(x)−RH,η,ϕi

M(·,wn−1
i )

(x)‖ ≤ ξi‖wni − wn−1i ‖

where ξi is a positive constant for (i = 1, · · · , `) and

0 < Ω +
τ

γ

{
τ `−1s`−1δ`−1ρ`θ`(r`ζT`

+ p`ζG`
)

γ`−1κ`−1
+
τ `−2s`−1δ`−1ξ`ζP`

κ`−1γ`−2
+ · · ·
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+ρ1θ1(r1ζT1
+ p1ζG1

)

}
< 1,

τ `−1s`−1δ`−1ρ`θ`(r`ζT`
+ p`ζG`

)

γ`−1κ`−1
+
τ `−2s`−1δ`−1ξ`ζP`

κ`−1γ`−2
+· · ·+ρ1θ1(r1ζT1+p1ζG1) > 0,

(3.7) Ω =
√

1− 2κ+ 64cδ2 + ξ1ζP1 +
τ `s`δ`

γ`κ`−1
> 0.

Then the sequences {xni }, {uni }, {vni }, {wni }(i = 1, · · · , `) generated by Algorithm
3.2 converge strongly to the unique solutions (xi, ui, vi, wi) respectively, where xi ∈
X,ui ∈ Ti(x1), vi ∈ Gi(x1), wi ∈ Pi(x1) is a solution of (2.1).

Proof. From Algorithm 3.2 and Theorem 2.12, we have

‖xn+1
1 − xn1‖ = ‖xn1 − g(xn1 ) +RH,η,ϕ1

M(·,wn
1 )[Hg(xn2 )− ρ1ϕ1 ◦N1(un1 , v

n
1 )]

−xn−11 + g(xn−11 )−RH,η,ϕ1

M(·,wn−1
1 )

[Hg(xn−12 )− ρ1ϕ1 ◦N1(un−11 , vn−11 )]‖

≤ ‖xn1 − xn−11 − (g(xn1 )− g(xn−11 ))‖+ ‖RH,η,ϕ1

M(·,wn
1 )[Hg(xn2 )− ρ1ϕ1 ◦N1(un1 , v

n
1 )]

−RH,η,ϕ1

M(·,wn
1 )[Hg(xn−12 )− ρ1ϕ1 ◦N1(un−11 , vn−11 )]‖+ ‖RH,η,ϕ1

M(·,wn
1 )[Hg(xn−12 )

−ρ1ϕ1 ◦N1(un−11 , vn−11 )]−RH,η,ϕ1

M(·,wn−1
1 )

[Hg(xn−12 )− ρ1ϕ1 ◦N1(un−11 , vn−11 )]‖

≤ ‖xn1 − xn−11 − (g(xn1 )− g(xn−11 ))‖+ τ
γ ‖Hg(xn2 )− ρ1ϕ1 ◦N1(un1 , v

n
1 )−Hg(xn−12 )

+ρ1ϕ1 ◦N1(un−11 , vn−11 )‖+ ξ1‖wn1 − wn−11 ‖

≤ ‖xn1 − xn−11 − (g(xn1 )− g(xn−11 ))‖+
τ

γ
‖Hg(xn2 )−Hg(xn−12 )‖

(3.8) +
τρ1
γ
‖ϕ1 ◦N1(un1 , v

n
1 )− ϕ1 ◦N1(un−11 , vn−11 )‖+ ξ1‖wn1 − wn−11 ‖.

Since g is a κ-strongly accretive and δ-Lipschitz continuous and from Lemma 2.5,
we have

‖xn1 − xn−11 − (g(xn1 )− g(xn−11 ))‖2 = ‖xn1 − xn−11 ‖2

+2〈j(xn1 − xn−11 − g(xn1 ) + g(xn−11 )),−(g(xn1 )− g(xn−11 ))〉

≤ ‖xn1 − xn−11 ‖2 − 2〈j(xn1 − xn−11 ), g(xn1 )− g(xn−11 )〉

+2〈j(xn1 − xn−11 − g(xn1 ) + g(xn−11 ))− j(xn1 − xn−11 ),−(g(xn1 )− g(xn−11 ))〉
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≤ ‖xn1 − xn−11 ‖2 − 2κ‖xn1 − xn−11 ‖2 + 4d2ρX

(
4‖g(xn

1 )−g(x
n−1
1 )‖

d

)
≤ (1− 2κ)‖xn1 − xn−11 ‖2 + 64c‖g(xn1 )− g(xn−11 )‖2

(3.9) ≤ (1− 2κ+ 64cδ2)‖xn1 − xn−11 ‖2.

Since H and g are Lipschitz continuous, we have

‖Hg(xn1 )−Hg(xn−11 )‖ ≤ sδ‖xn1 − xn−11 ‖,
‖Hg(xn2 )−Hg(xn−12 )‖ ≤ sδ‖xn2 − xn−12 ‖,

...

‖Hg(xn` )−Hg(xn−1` )‖ ≤ sδ‖xn` − xn−1` ‖.(3.10)

Since ϕ1 is a θ1-Lipschitz continuous with respect to N1(·, ·) and N1(·, ·) is a (r1, p1)-
Lipschitz continuous with respect to first and second argument, respectively. T1 and
G1 are ζT1

-H-Lipschitz continuous and ζG1
-H-Lipschitz continuous respectively, we

have

‖ϕ1 ◦N1(un1 , v
n
1 )− ϕ1 ◦N1(un−11 , vn−11 )‖ ≤ θ1‖N1(un1 , v

n
1 )−N1(un−11 , vn−11 )‖

≤ θ1‖N1(un1 , v
n
1 )−N1(un−11 , vn1 ) +N1(un−11 , vn1 )−N1(un−11 , vn−11 )‖

≤ θ1‖N1(un1 , v
n
1 )−N1(un−11 , vn1 )‖+ θ1‖N1(un−11 , vn1 )−N1(un−11 , vn−11 )‖

≤ θ1r1‖un1 − un−11 ‖+ θ1p1‖vn1 − vn−11 ‖
≤ θ1r1(1 + (1 + n)−1)H(T1(xn1 ), T1(xn−11 ))

+ θ1p1(1 + (1 + n)−1)H(G1(xn1 ), G1(xn−11 ))

(3.11) ≤ (1 + (1 + n)−1)θ1(r1ζT1
+ p1ζG1

)‖xn1 − xn−11 ‖.

Again, P1 is a ζP1
-H-Lipschitz continuous, we have

‖wn1 − wn−11 ‖ ≤ (1 + (1 + n)−1)H(P1(xn1 ), P1(xn−11 ))

≤ (1 + (1 + n)−1)ζP1
‖xn1 − xn−11 ‖.(3.12)

From (3.8)–(3.12), we have

‖xn+1
1 − xn1 ‖ ≤ {

√
1− 2κ+ 64cδ2 + (1 + (1 + n)−1)

(τρ1θ1(r1ζT1 + p1ζG1)

γ
+ ξ1ζP1

)
}×

‖xn1 − xn−1
1 ‖+

τsδ

γ
‖xn2 − xn−1

2 ‖.(3.13)

Again, since g : X → X is a κ-strongly accretive and δ-Lipschitz continuous, we
have

‖g(xn2 )− g(xn−12 )‖‖xn2 − xn−12 ‖ ≥ 〈g(xn2 )− g(xn−12 ), j(xn2 − xn−12 )〉
≥ κ‖xn2 − xn−12 ‖2.(3.14)
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Therefore

‖xn2 − xn−12 ‖ ≤ 1

κ
‖g(xn2 )− g(xn−12 )‖

≤ 1

κ
‖RH,η,ϕ2

M(·,wn
2 )[Hg(xn3 )− ρ2ϕ2 ◦N2(un2 , v

n
2 )]−RH,η,ϕ2

M(·,wn−1
2 )

[t]‖

≤ 1

κ
{‖RH,η,ϕ2

M(·,wn
2 )[Hg(xn3 )− ρ2ϕ2 ◦N2(un2 , v

n
2 )]−RH,η,ϕ2

M(·,wn
2 )[t]‖

+ ‖RH,η,ϕ2

M(·,wn
2 )[t]−R

H,η,ϕ2

M(·,wn−1
2 )

[t]‖}

≤ τ

κγ
{‖Hg(xn3 )−Hg(xn−13 )‖+ ρ2‖ϕ2 ◦N2(un2 , v

n
2 )− ϕ2 ◦N2(un−12 , vn−12 )‖}

+
ξ2
κ
‖wn2 − wn−12 ‖

≤ τ

κγ
‖Hg(xn3 )−Hg(xn−13 )‖+

τρ2
κγ
‖ϕ2 ◦N2(un2 , v

n
2 )− ϕ2 ◦N2(un−12 , vn−12 )‖

(3.15) +
ξ2
κ
‖wn2 − wn−12 ‖,

where t = Hg(xn−13 )− ρ2ϕ2 ◦N2(un−12 , vn−12 ).
Since ϕ2 is a θ2-Lipschitz continuous with respect to N2(·, ·) and N2(·, ·) is a (r2, p2)-
Lipschitz continuous with respect to first and second argument, respectively, and
T2, G2 are ζT2

-H-Lipschitz continuous and ζG2
-H-Lipschitz continuous, we have

‖ϕ2 ◦N2(un2 , v
n
2 )− ϕ2 ◦N2(un−12 , vn−12 )‖ ≤ θ2‖N2(un2 , v

n
2 )−N2(un−12 , vn−12 )‖

(3.16) ≤ (1 + (1 + n)−1)θ2(r2ζT2 + p2ζG2)‖xn1 − xn−11 ‖.

Again, P2 is a ζP2
-H-Lipschitz continuous, we have

‖wn2 − wn−12 ‖ ≤ (1 + (1 + n)−1)H(P2(xn1 ), P2(xn−11 ))

≤ (1 + (1 + n)−1)ζP2
‖xn1 − xn−11 ‖.(3.17)

Again, from (3.10),(3.15)–(3.17), we have

‖xn2 − xn−12 ‖ ≤ τsδ
κγ ‖x

n
3 − xn−13 ‖

(3.18) +(1 + (1 + n)−1)
{τρ2θ2(r2ζT2

+ p2ζG2
)

κγ
+
ξ2ζP2

κ

}
‖xn1 − xn−11 ‖.

Similarly, we have

‖xn3 − xn−13 ‖ ≤ 1
κ‖g(xn3 )− g(xn−13 )‖ ≤ τ

κγ ‖Hg(xn4 )−Hg(xn−14 )‖

(3.19) +
τρ3
κγ
‖ϕ3 ◦N3(un3 , v

n
3 )− ϕ3 ◦N3(un−13 , vn−13 )‖+

ξ3
κ
‖wn3 − wn−13 ‖.
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Since ϕ3 is a θ3-Lipschitz continuous with respect to N3(·, ·) and N3(·, ·) is a (r3, p3)-
Lipschitz continuous with respect to first and second argument, respectively, and
T3, G3 are ζT3

-H-Lipschitz continuous and ζG3
-H-Lipschitz continuous, we have

‖ϕ3 ◦N3(un3 , v
n
3 )− ϕ3 ◦N3(un−13 , vn−13 )‖

(3.20) ≤ (1 + (1 + n)−1)θ3(r3ζT3
+ p3ζG3

)‖xn1 − xn−11 ‖.

Again, P3 is a ζP3-H-Lipschitz continuous, we have

‖wn3 − wn−13 ‖ ≤ (1 + (1 + n)−1)H(P3(xn1 ), P3(xn−11 ))

≤ (1 + (1 + n)−1)ζP3
‖xn1 − xn−11 ‖.(3.21)

Again from (3.10),(3.18)–(3.21), we have

‖xn3 − xn−13 ‖ ≤ τsδ

κγ
‖xn4 − xn−14 ‖

+ (1 + (1 + n)−1)
{τρ3θ3(r3ζT3

+ p3ζG3
)

κγ
+
ξ3ζP3

κ

}
‖xn1 − xn−11 ‖.(3.22)

Continuing this process, we have

‖xn`−1 − xn−1`−1 ‖ ≤
τsδ

κγ
‖xn` − xn−1` ‖

+ (1 + (1 + n)−1)
{τρ`−1θ`−1(r`−1ζT`−1

+ p`−1ζG`−1
)

κγ
(3.23)

+
ξ`−1ζP`−1

κ

}
‖xn1 − xn−11 ‖.

Again,

‖xn` − xn−1` ‖ ≤ 1

κ
‖g(xn` )− g(xn−1` )‖ ≤ 1

κ
‖RH,η,ϕ`

M(·,wn
` )[Hg(xn1 )− ρ`ϕ` ◦N`(un` , vn` )]

−RH,η,ϕ`

M(·,wn−1
` )

[Hg(xn−11 )− ρ`ϕ` ◦N`(un−1` , vn−1` )]‖

≤ τ

κγ
‖Hg(xn1 )−Hg(xn−11 )‖+

τρ`
κγ
‖ϕ` ◦N`(un` , vn` )− ϕ` ◦N`(un−1` , vn−1` )‖

(3.24) +
ξ`
κ
‖wn` − wn−1` ‖.

Since ϕ` is a θ`-Lipschitz continuous with respect to N`(·, ·) and N`(·, ·) is a (r`, p`)-
Lipschitz continuous with respect to first and second argument, respectively, and
T`, G` are ζT`

-H-Lipschitz continuous and ζG`
-H-Lipschitz continuous, we have

‖ϕ` ◦N`(un` , vn` )− ϕ` ◦N`(un−1` , vn−1` )‖ ≤ θ`‖N`(un` , vn` )−N`(un−1` , vn−1` )‖
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≤ (1 + (1 + n)−1)θ`(r`ζT`
+ p`ζG`

)‖xn1 − xn−11 ‖.(3.25)

Again, P` is a ζP`
-H-Lipschitz continuous, we have

‖wn` − wn−1` ‖ ≤ (1 + (1 + n)−1)H(P`(x
n
1 ), P`(x

n−1
1 ))

≤ (1 + (1 + n)−1)ζP`
‖xn1 − xn−11 ‖.(3.26)

Again from (3.10),(3.23)-(3.26), we have

‖xn` − xn−1` ‖ ≤ τsδ

κγ
‖xn1 − xn−11 ‖+

τρ`
κγ

(1 + (1 + n)−1)θ`(r`ζT`
+ p`ζG`

)‖xn1 − xn−11 ‖

+
ξ`ζP`

κ
(1 + (1 + n)−1)‖xn1 − xn−11 ‖

(3.27) ≤
{
τsδ

κγ
+
(τρ`θ`(r`ζT`

+ p`ζG`
)

κγ
+
ξ`ζP`

κ

)
(1 + (1 + n)−1)

}
‖xn1 − xn−11 ‖.

Now,

‖xn`−1 − xn−1`−1 ‖ ≤
[
τ2s2δ2

γ2κ2
+ (1 + (1 + n)−1)

(τ2sδρ`θ`(r`ζT`
+ p`ζG`

)

κ2γ2
+
τsδξ`ζP`

κ2γ

)

(3.28) +(1+(1+n)−1)
(τρ`−1(r`−1ζT`−1

+ p`−1ζG`−1
)

κγ
+
ξ`−1ζP`−1

κ

)]
‖xn1 −xn−11 ‖,

...

‖xn2−xn−12 ‖ ≤

[
τ `−1s`−1δ`−1

γ`−1κ`−1
+(1+(1+n)−1)

{(τ `−1s`−2δ`−2ρ`θ`(r`ζT`
+ p`ζG`

)

κ`−1γ`−1
+

(3.29)
τ `−2s`−2δ`−2ξ`ζP`

κ`−1γ`−2

)
+· · ·+

(τρ2θ2(r2ζT2
+ p2ζG2

)

κγ
+
ξ2ζP2

κ

)}]
‖xn1−xn−11 ‖.

Again,

(3.30) ‖xn+1
1 − xn1‖ ≤ µn‖xn1 − xn−11 ‖,

where

µn = Ωn + (1 + (1 + n)−1)

{
τρ1θ1(r1ζT1

+ p1ζG1
)

γ
+
(τ `s`−1δ`−1ρ`θ`(r`ζT`

+ p`ζG`
)

γ`κ`−1

+
τ `−1s`−1δ`−1ξ`ζP`

κ`−1γ`−1

)
+ · · ·+

(τ2sδθ2ρ2(r2ζT2
+ p2ζG2

)

κγ2
+
ξ2ζP2

τsδ

κγ

)}
,

Ωn =
√

1− 2κ+ 64cδ2 +
τ `s`δ`

γ`κ`−1
+ (1 + (1 + n)−1)ξ1ζP1

,



118 Salahuddin

as n→∞, we see that µn → µ, where

µ = Ω +

{(τ `s`−1δ`−1ρ`θ`(r`ζT`
+ p`ζG`

)

γ`κ`−1
+
τ `−1s`−1δ`−1ξ`ζP`

κ`−1γ`−1

)
+ · · ·

+
(τ2sδθ2ρ2(r2ζT2

+ p2ζG2
)

κγ2
+
ξ2ζP2

τsδ

κγ

)
+
τρ1θ1(r1ζT1

+ p1ζG1
)

γ

}
,

Ω =
√

1− 2κ+ 64cδ2 + ξ1ζP1
+
τ `s`δ`

γ`κ`−1
.

Since 0 < µ < 1, by condition (3.7) and so 0 < µn < 1 where n is sufficiently large.
It follows from (3.30) that {xn} is a Cauchy sequence in X. Similarly, it follows from
(3.18) and (3.30) that {xni }(i = 1, · · · , `) is Cauchy sequence in X. Hence there
exists xi ∈ X,ui ∈ Ti(x1), vi ∈ Gi(x1), wi ∈ Pi(x1) such that uni → ui, v

n
i → vi and

wni → wi(i = 1, · · · , `) as n→∞. Next, we show that ui ∈ Ti(x1), vi ∈ Gi(x1) and
wi ∈ Pi(x1), respectively. Since uni ∈ Ti(x1), we have

d(u1, T1(x1)) ≤ ‖u1 − un1‖+ d(un1 , T1(x1))

≤ ‖u1 − un1‖+ H(T1(xn1 ), T1(x1))

≤ ‖u1 − un1‖+ ζT1
‖xn1 − x1‖ → 0, as n→∞.(3.31)

Hence u1 ∈ T1(x1), since T1(x1) ∈ CB(X). Similarly, we can show that v1 ∈ G1(x1),
w1 ∈ P1(x1). Thus, it follows from Algorithm 3.2 that xi ∈ X, ui ∈ Ti(x1),
vi ∈ Gi(x1), wi ∈ Pi(x1) satisfy (3.1) and hence from Theorem 3.1, it follows that
(xi, ui, vi, wi)(i = 1, · · · , `), where xi ∈ X, ui ∈ Ti(x1), vi ∈ Gi(x1), wi ∈ Pi(x1) is
a solution of (2.1). Now we show that (xi, ui, vi, wi) is unique, let (x∗i , u

∗
i , v
∗
i , w

∗
i )

where x∗i ∈ X, u∗i ∈ Ti(x∗1), v∗i ∈ Gi(x∗1), wi ∈ Pi(x∗1) be another solution of (2.1),
then from Theorem 3.1 implies that

g(x∗1) = RH,η,ϕ1

M(·,w∗
1 )

[Hg(x∗2)− ρ1ϕ1 ◦N1(u∗1, v
∗
1)], ρ1 > 0,

where

g(x∗2) = RH,η,ϕ2

M(·,w∗
2 )

[Hg(x∗3)− ρ2ϕ2 ◦N2(u∗2, v
∗
2)], ρ2 > 0,

...

g(x∗` ) = RH,η,ϕ`

M(·,w∗
` )

[Hg(x∗1)− ρ`ϕ` ◦N`(u∗` , v∗` )], ρ` > 0.(3.32)

From (3.32) and similar argument given as above, we have

‖x1 − x∗1‖ = ‖x1 − g(x1) +RH,η,ϕ1

M(·,w1)
[Hg(x2)− ρ1ϕ1 ◦N1(u1, v1)]

− x∗1 + g(x∗1)−RH,η,ϕ1

M(·,w∗
1 )

[Hg(x∗2)− ρ1ϕ1 ◦N1(u∗1, v
∗
1)]‖

≤ ‖x1 − x∗1‖.
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Since 0 < µ < 1, thus x1 = x∗1. Similarly x2 = x∗2, · · · , x` = x∗` . Therefore
(x∗i , u

∗
i , v
∗
i , w

∗
i ), where xi ∈ X, ui ∈ Ti(x1), vi ∈ Gi(x1), wi ∈ Pi(x1) is an unique

solution of (2.1). 2

Corollary 3.7. Let X be a uniformly smooth Banach space with modulus of smooth-
ness ρX(t) ≤ ct2 for some c > 0, and X∗ be the dual space of X. Let g : X → X
be a κ-strongly accretive and δ-Lipschitz continuous, H : X → X∗ be a γ-strongly
η-monotone and s-Lipschitz continuous with respect to g, and Ni : X × X → X∗

be a (ri, pi)-Lipschitz continuous with respect to first and second argument, respec-
tively. Let Ti, Gi, Pi : X → CB(X∗) be ζTi

-H-Lipschitz continuous, ζGi
-H-Lipschitz

continuous, ζPi
-H-Lipschitz continuous (i = 1, 2, 3), respectively. Let ϕi : X∗ → X∗

be a single valued mapping satisfying ϕi(u+ v) = ϕi(u) +ϕi(v) and Ker(ϕi) = {0}
and ϕi : X∗ → X∗ be a θi-Lipschitz continuous with respect to Ni(i = 1, 2, 3)
respectively. Let η : X × X → X be a τ -Lipschitz continuous mapping and
M : X × X → 2X

∗
be a (H, η, ϕi)-monotone mapping. Assume that (3.6) holds

for (i = 1, 2, 3) and

0 < Ω +
τ

γ

{
τ2s2δ2ρ3θ3(r3ζT3 + p3ζG3)

κ2γ2
+
τsδρ2θ2(r2ζT2

+ p2ζG2
)

κγ
+
τs2δ2ξ3ζP3

κ2γ

+
sδξ2ζP2

κ
+ ρ1θ1(r1ζT1

+ p1ζG1
)

}
< 1,

τ2s2δ2ρ3θ3(r3ζT3 + p3ζG3)

κ2γ2
+
τsδρ2θ2(r2ζT2 + p2ζG2)

κγ
+
τs2δ2ξ3ζP3

κ2γ
+
sδξ2ζP2

κ

+ρ1θ1(r1ζT1 + p1ζG1) > 0,

(3.33) Ω =
√

1− 2κ+ 64cδ2 +
τ3s3δ3

κ2γ3
+ ξ1ζP1 > 0.

Then the sequences {xni }, {uni }, {vni }, {wni }(i = 1, 2, 3) generated by Algorithm 3.3
converge strongly to the unique solutions (xi, ui, vi, wi) respectively, where xi ∈
X,ui ∈ Ti(x1), vi ∈ Gi(x1), wi ∈ Pi(x1) is a solution of (2.2).

Corollary 3.8. Let X be a uniformly smooth Banach space with modulus of smooth-
ness ρX(t) ≤ ct2 for some c > 0, and X∗ be the dual space of X. Let g : X → X
be a κ-strongly accretive and δ-Lipschitz continuous, H : X → X∗ be a γ-strongly
η-monotone and s-Lipschitz continuous with respect to g, and Ni : X ×X → X∗ be
a (ri, pi)-Lipschitz continuous with respect to first and second argument respectively.
Let Ti, Gi, Pi : X → CB(X∗) be a ζTi-H-Lipschitz continuous, ζGi-H-Lipschitz con-
tinuous, ζPi

-H-Lipschitz continuous (i = 1, 2), respectively. Let ϕi : X∗ → X∗ be a
single valued mapping satisfying ϕi(u+ v) = ϕi(u) + ϕi(v) and Ker(ϕi) = {0} and
ϕi : X∗ → X∗ be a θi-Lipschitz continuous with respect to Ni (i = 1, 2) respectively.
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Let η : X ×X → X be a τ -Lipschitz continuous mapping and M : X ×X → 2X
∗

be a (H, η, ϕi)-monotone mapping. Assume that (3.6) holds for (i = 1, 2) and

0 < Ω +
τ

γ

{
ρ1θ1(r1ζT1

+ p1ζG1
) +

τsδρ2θ2(r2ζT2
+ p2ζG2

)

κγ
+
ξ2sδζP2

κ

}
< 1,

ρ1θ1(r1ζT1 + p1ζG1) +
τsδρ2θ2(r2ζT2 + p2ζG2)

κγ
+
ξ2sδζP2

κ
> 0

(3.34) Ω =
√

1− 2κ+ 64cδ2 + ξ1ζP1
+
τ2s2δ2

κγ2
> 0.

Then the sequences {xni }, {uni }, {vni }, {wni } generated by Algorithm 3.4 converge
strongly to the unique solutions (xi, ui, vi, wi)(i = 1, 2) respectively, where xi ∈
X,ui ∈ Ti(x1), vi ∈ Gi(x1), wi ∈ Pi(x1) is a solution of (2.3).

Corollary 3.9. Let X be a uniformly smooth Banach space with modulus of smooth-
ness ρX(t) ≤ ct2 for some c > 0, and X∗ be the dual space of X. Let g : X → X
be a κ-strongly accretive and δ-Lipschitz continuous, H : X → X∗ be a γ-strongly
η-monotone and s-Lipschitz continuous with respect to g, and N : X ×X → X∗ be
a (r, p)-Lipschitz continuous with respect to first and second argument, respectively.
Let T,G, P : X → CB(X∗) be ζT -H-Lipschitz continuous, ζG-H-Lipschitz continu-
ous, ζP -H-Lipschitz continuous, respectively. Let ϕ : X∗ → X∗ be a single valued
mapping satisfying ϕ(u+ v) = ϕ(u) + ϕ(v) and Ker(ϕ) = {0} where ϕ : X∗ → X∗

be a θ-Lipschitz continuous with respect to N respectively. Let η : X ×X → X be
a τ -Lipschitz continuous mapping and M : X ×X → 2X

∗
be a (H, η, ϕ)-monotone

mapping. Assume that

(3.35) ‖RH,η,ϕM(·,wn)(x)−RH,η,ϕM(·,wn−1)(x)‖ ≤ ξ‖wn − wn−1‖

and

0 < Ω +
τ

γ
{sδ + ρθ(rζT + pζG)} < 1,

sδ + ρθ(rζT + pζG) > 0, Ω =
√

1− 2κ+ 64cδ2 + ξζP > 0.(3.36)

Then the sequences {xn}, {un}, {vn}, {wn} generated by Algorithm 3.5 converge
strongly to the unique solutions (x, u, v, w) respectively where x ∈ X,u ∈ T (x), v ∈
G(x), w ∈ P (x) is a solution of (2.4).
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