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GENERAL NONLINEAR VARIATIONAL INCLUSIONS WITH
H-MONOTONE OPERATOR IN HILBERT SPACES

Zeqing Liu, Pingping Zheng, Tao Cai, and Shin Min Kang

Abstract. In this paper, a new class of general nonlinear variational
inclusions involving H-monotone is introduced and studied in Hilbert
spaces. By applying the resolvent operator associated with H-monotone,
we prove the existence and uniqueness theorems of solution for the gen-
eral nonlinear variational inclusion, construct an iterative algorithm for
computing approximation solution of the general nonlinear variational in-
clusion and discuss the convergence of the iterative sequence generated
by the algorithm. The results presented in this paper improve and extend
many known results in recent literatures.

1. Introduction

Variational inequalities have wide applications in many fields including me-
chanics, physics, optimization and control, nonlinear programming, economics
and transportation equilibrium and engineering sciences. For details, we refer
to [1-11] and the references therein. It is well known that one of the most
interesting and important problems in the variational inequality theory is the
development of H-monotonicity. In [3], Fang and Huang introduced the concept
of H-monotone operators and defined an associated resolvent operator. Nga
[9] introduced and studied set-valued nonlinear variational inequalities for H-
monotone mappings in nonreflexive Banach spaces, especially, Zeng, Guu, and
Yao [11] introduced an iterative method for generalized nonlinear set-valued
mixed quasi-variational inequalities with H-monotone mappings.

Inspired and motivated by the recent research works, in this paper, we intro-
duce and study a new class of general nonlinear variational inclusions, which
includes the variational inclusions in [1], [3] and [10] as special cases. By ap-
plying the resolvent operator technique and fixed point theorem, we suggest a
new iterative process with error for solving the general nonlinear variational
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inclusion. Several existence and uniqueness results of solutions for the general
nonlinear variational inclusion involving H-monotone are given. The results
presented in this paper extend, improve and unify a host of results in recent
literatures.

2. Preliminaries

Throughout this paper, we assume that X is a Hilbert space endowed with
a norm ‖ · ‖ and an inner product 〈·, ·〉, respectively, 2X stands for the family
of all the nonempty subsets of X.

We now recall and introduce the following definitions and results.

Definition 2.1. Let T, H : X → X be two mappings. T is called
(1) monotone if

〈Tx− Ty, x− y〉 ≥ 0, ∀x, y ∈ X;

(2) strictly monotone if T is monotone and

〈Tx− Ty, x− y〉 = 0

if and only if x = y;
(3) strongly monotone if there exists a constant r > 0 such that

〈Tx− Ty, x− y〉 ≥ r‖x− y‖2, ∀x, y ∈ X;

(4) Lipschitz continuous if there exists a constant s > 0 such that

‖Tx− Ty‖ ≤ s‖x− y‖, ∀x, y ∈ X;

(5) relaxed monotone with respect to H if there exists a constant α > 0 such
that

〈Tx− Ty, Hx−Hy〉 ≥ −α‖x− y‖2, ∀x, y ∈ X;
(6) anti-monotone if

〈Tx− Ty, x− y〉 ≤ 0, ∀x, y ∈ X.

Definition 2.2. Let T, g : X → X be two mappings. T is called g-k-strongly
monotone if there exists a constant k > 0 such that

〈Tx− Ty, gx− gy〉 ≥ k‖gx− gy‖2, ∀x, y ∈ X.

Definition 2.3. Let N : X × X → X be a mapping, H, A, B : X → X be
mappings. N is said to be

(1) strongly monotone in the first argument if there exists a constant ξ > 0
such that

〈N(x, u)−N(y, u), x− y〉 ≥ ξ‖x− y‖2, ∀x, y, u ∈ X;

(2) strongly monotone with respect to A in the first argument if there exists
a constant β > 0 such that

〈N(Ax, u)−N(Ay, u), x− y〉 ≥ β‖x− y‖2, ∀x, y, u ∈ X;
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(3) Lipschitz continuous with respect to the first argument if there exists a
constant δ > 0 such that

‖N(x, u)−N(y, u)‖ ≤ δ‖x− y‖, ∀x, y, u ∈ X.

Definition 2.4. Let N : X × X → X and A,B, g : X → X be mappings.
N(A,B) is said to be strongly monotone with respect to g if there exists a
constant ρ > 0 such that

〈N(Au,Bu)−N(Av, Bv), gu− gv〉 ≥ ρ‖u− v‖2, ∀u, v ∈ X,

where N(A,B)u = N(Au,Bu), ∀u ∈ X.

Definition 2.5. A multi-valued mapping M : X → 2X is called
(1) monotone if

〈x− y, u− v〉 ≥ 0, ∀u, v ∈ X, x ∈ Mu, y ∈ Mv;

(2) maximal monotone if W is monotone and (I + λW )(X) = X for any
λ > 0, where I denotes the identity mapping on X.

Definition 2.6 ([3]). Let H : X → X be a mapping and M : X → 2X be a
mapping. M is said to be H-monotone if M is monotone and (H +λM)X = X
for any λ > 0.

Let g, h,A, B : X → X and N : X ×X → X be mappings and W : X → 2X

be an H-monotone mapping. Given f ∈ X, we consider the following problem:
Find u ∈ X such that

(2.1) f ∈ N(Au,Bu)−M((g − h)u),

which is called a general nonlinear variational inclusion, where (g − h)x =
gx− hx for all x ∈ X.

Some special cases of the problem (2.1) are as follows:
(A) If f = 0 and N(Ax,Bx) = Ax − Bx for any x ∈ X, then the problem

(2.1) collapses to seeking u ∈ X such that

0 ∈ Au−Bu + M((g − h)u),

which is called the generalized equation by Uko [10].
(B) If f = 0, h=0 and N(Ax,Bx) = Ax − Bx for any x ∈ X, then the

problem (2.1) is equivalent to finding u ∈ X such that

0 ∈ Au−Bu + M(gu),

which was introduced and studied by Adly [1].
(C) If f = 0, g − h = I and N(x, y) = x for any x, y ∈ X, then the problem

(2.1) is equivalent to finding u ∈ X such that

0 ∈ Au + M(u),

which was introduced and studied by Fang and Huang [3].
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Definition 2.7 ([3]). Let H : X → X be a strictly monotone mapping and
M : X → 2X be an H-monotone mapping. For any given λ > 0, the resolvent
operator RH

M,λ : X → X is defined by

RH
M,λ(x) = (H + λM)−1(x), ∀x ∈ X.

Lemma 2.1 ([3]). Let H : X → X be a strongly monotone mapping with
constant r > 0 and M : X → 2X be an H-monotone mapping. Then the
resolvent operator RH

M,λ : X → X is Lipschitz continuous with constant r−1.

Lemma 2.2 ([6]). Let {an}n≥0, {bn}n≥0 and {cn}n≥0 be nonnegative sequences
satisfying

an+1 ≤ (1− tn)an + tnbn + cn, ∀n ≥ 0,

where {tn}n≥0 ⊂ [0, 1],
∑∞

n=0 tn = +∞, limn→∞ bn = 0 and
∑∞

n=0 cn < +∞.
Then limn→∞ an = 0.

3. Existence and uniqueness of solution for the general nonlinear
variational inclusion

Now we use the resolvent operator technique due to Fang and Huang [3] to
establish the equivalence between the general nonlinear variational inclusion
(2.1) and the fixed point problem.

Lemma 3.1. Let H : X → X be a strongly monotone mapping, M : X → 2X

be an H-monotone mapping, g, h, A, B : X → X be mappings and λ be a positive
constant. Then the following statements are equivalent:

(a) The general nonlinear variational inclusion (2.1) has a solution u ∈ X;
(b) There exists u ∈ X satisfying

(g − h)u = RH
M,λ[H(g − h)u− λN(Au,Bu) + λf ];

(c) The mapping F : X → X defined by

(3.1) Fx = x− (g − h)x + RH
M,λ[H(g − h)x− λN(Ax,Bx) + λf ], ∀x ∈ X

has a fixed point u ∈ X.

Proof. It is clear that u ∈ X is a solution of the general nonlinear variational
inclusion (2.1) if and only if

λf ∈ λN(Au,Bu)− λM((g − h)u)

⇔ H(g − h)u + λf − λN(Au,Bu) ∈ (H + λM)((g − h)u)

⇔ (g − h)u = RH
M,λ[H(g − h)u− λN(Au,Bu) + λf ]

⇔ u = u− (g − h)u + RH
M,λ[H(g − h)u− λN(Au,Bu) + λf ].

This completes the proof. ¤

Based on Lemma 3.1, we suggest the following iterative process with error
for the general nonlinear variational inclusion (2.1).
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Algorithm 3.1. Let A,B, g, h,H : X → X be mappings, M : X → 2X be
H-monotone and N : X × X → X be mappings. For given u0 ∈ X, compute
the iterative sequence {un}n≥0 by

un+1 = (1− an)un + an[un − (g − h)un

+ RH
M,λ(H(g − h)un − λN(Aun, Bun) + λf)] + wn, n ≥ 0,

where {an}n≥0 is a sequence in [0, 1] such that
∑∞

n=0 an = +∞, {wn}n≥0 ⊂ X,∑∞
n=0 ‖wn‖ < +∞ and λ > 0 is a constant.

Next we study those conditions under which the approximate solutions un

obtained from Algorithm 3.1 converge strongly to the unique solution u ∈ X
of the general nonlinear implicit variational inclusion (2.1).

Theorem 3.1. Let H, A,B, g, h : X → X be Lipschitz continuous with con-
stants l, t, s, α, β, respectively, g−h be strongly monotone with constant ρ and g
be relaxed monotone with respect to h with constant τ . Let N : X ×X → X be
Lipschitz continuous in the first and second arguments with constants a and b,
respectively, and N(A,B) be strongly monotone with respect to H(g − h) with
constant δ. Let M : X → 2X be an H-monotone mapping. Assume that K =
α2 +2τ +β2, D = (bs+at)2 and E = δ2−D[l2K−r2(1−√1− 2ρ + K)2] > 0.
If there exists a constant λ > 0 such that

(3.2)
∣∣∣∣λ−

δ

D

∣∣∣∣ <

√
E

D
,

then for any given f ∈ X, the general nonlinear variational inclusion (2.1) has
a unique solution u∗ ∈ X and the sequence {un}n≥0 defined by Algorithm 3.1
strongly converges to u∗.

Proof. It follows from Lemma 2.1 and (3.1) that for any u, v ∈ X,

(3.3)

‖Fu− Fv‖
= ‖u− (g − h)u + RH

M,λ[H(g − h)u− λN(Au,Bu) + λf ]

− [v − (g − h)v + RH
M,λ[H(g − h)v − λN(Av, Bv) + λf ]]‖

≤ ‖u− v − ((g − h)u− (g − h)v)‖
+ ‖RH

M,λ[H(g − h)u− λN(Au,Bu) + λf ]

−RH
M,λ[H(g − h)v − λN(Av, Bv) + λf ]‖

≤ ‖u− v − ((g − h)u− (g − h)v)‖

+
1
r
‖H(g − h)u−H(g − h)v − λ[N(Au,Bu)−N(Av, Bv)]‖.
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By the Lipschitz continuity of g, h, H, A, B, N and strong monotonicity of g−h,
and relaxed monotonicity of g, we obtain that

(3.4)

‖u− v − ((g − h)u− (g − h)v)‖2
= ‖u− v‖2 − 2〈u− v, (g − h)u− (g − h)v〉+ ‖gu− gv − (hu− hv)‖2
≤ ‖u− v‖2 − 2ρ‖u− v‖2 + ‖gu− gv‖2 − 2〈gu− gv, hu− hv〉

+ ‖hu− hv‖2
≤ (1− 2ρ + α2 + 2τ + β2)‖u− v‖2

and

(3.5)

‖H(g − h)u−H(g − h)v − λ[N(Au,Bu)−N(Av,Bv)]‖2
= ‖H(g − h)u−H(g − h)v‖2
− 2λ〈H(g − h)u−H(g − h)v, N(Au, Bu)−N(Av, Bv)〉
+ λ2‖N(Au, Bu)−N(Av, Bv)‖2

≤ l2‖(g − h)u− (g − h)v‖2 − 2λδ‖u− v‖2
+ λ2(‖N(Au,Bu)−N(Au,Bv)‖+ ‖N(Au,Bv)−N(Av, Bv)‖)2

≤ [l2(α2 + 2τ + β2)− 2λδ]‖u− v‖2
+ λ2(b‖Bu−Bv‖+ a‖Au−Av‖)2

≤ [l2(α2 + 2τ + β2)− 2λδ + λ2(bs + at)2]‖u− v‖2,
which yields that

(3.6) ‖Fu− Fv‖ ≤ θ‖u− v‖, ∀u, v ∈ H,

where

θ =
√

1− 2ρ + K +
1
r

√
l2K − 2λδ + λ2D ≥ 0.

By (3.2) we get that θ < 1. Hence the contraction mapping F has a unique fixed
point u∗ ∈ X. In light of Lemma 3.1, we obtain that u∗ is a unique solution of
the general nonlinear variational inclusion (2.1).

It follows from Algorithm 3.1 that

(3.7) un+1 = (1− an)un + anF (un) + wn, n ≥ 0

and

(3.8) u∗ = (1− an)u∗ + anF (u∗), n ≥ 0.

Using (3.6), (3.7) and (3.8), we have

(3.9)

‖un+1 − u∗‖
≤ ‖(1− an)un + anF (un) + wn − [(1− an)u∗ + anF (u∗)]‖+ ‖wn‖
≤ (1− an)‖un − u∗‖+ θan‖un − u∗‖+ ‖wn‖
= (1− (1− θ)αn)‖un − u∗‖+ ‖wn‖, ∀n ≥ 0.
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In terms of Lemma 2.2 and (3.9), we know that un → u∗ as n →∞. Therefore,
{un}n≥0 strongly converges to the unique solution u∗ of the general nonlinear
variational inclusion (2.1). This completes the proof. ¤

It follows from Theorem 3.1 that:

Theorem 3.2. Let H, A,B : X → X be Lipschitz continuous with constants
l, t, s, respectively. Let g, h : X → X satisfy that g − h is Lipschitz continuous
with constant τ , g is strongly monotone with constant α and h is anti-monotone.
Let N : X ×X → X be Lipschitz continuous in the first and second arguments
with constants a and b, respectively, N(A,B) be strongly monotone with respect
to H(g − h) with constant δ. Let M : X → 2X be an H-monotone mapping.
Assume that D = (bs+at)2 and E = δ2−D[l2τ2−r2(1−√1− 2α + τ2)2] > 0.
If there exists a constant λ > 0 satisfying (3.2), then for any given f ∈ X, the
general nonlinear variational inclusion (2.1) has a unique solution u∗ ∈ X and
the sequence {un}n≥0 defined by Algorithm 3.1 strongly converges to u∗.

Theorem 3.3. Let H, A,B, g, h : X → X be Lipschitz continuous with con-
stants l, t, s, α, β, respectively, H be strongly monotone with constant δ, g − h
be strongly monotone with constant ρ and g be relaxed monotone with re-
spect to h with constant τ . Let N : X × X → X be Lipschitz continuous
in the first and second arguments with constants a and b, respectively, and
N be also strongly monotone with respect to A in the first argument with
constant ξ. Let M : X → 2X be an H-monotone mapping. Assume that
T = r− [(1+ r)

√
1− 2ρ + α2 + 2τ + β2 +

√
(l2 − 2δ + 1)(α2 + 2τ + β2)], D =

a2t2 − b2s2, W = ξ − bsT and E = W 2 − D(1 − T 2) > 0. If there exists a
constant λ > 0 such that

(3.10) T > λbs,

and one of the following conditions:

at > bs,

∣∣∣∣λ−
W

D

∣∣∣∣ <

√
E

D
;(3.11)

at < bs,

∣∣∣∣λ−
W

D

∣∣∣∣ > −
√

E

D
,(3.12)

then for any given f ∈ X, the general nonlinear variational inclusion (2.1) has
a unique solution u∗ ∈ X and the sequence {un}n≥0 defined by Algorithm 3.1
strongly converges to u∗.

Proof. Let u, v ∈ X. It follows from Lemma 2.1 and (3.1) that

(3.13)

‖Fu− Fv‖
≤ ‖u− v − ((g − h)u− (g − h)v)‖

+
1
r
‖H(g − h)u−H(g − h)v − λ[N(Au,Bu)−N(Av,Bv)]‖
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≤
(
1 +

1
r

)
‖u− v − ((g − h)u− (g − h)v)‖

+
1
r
‖H(g − h)u−H(g − h)v − [(g − h)u− (g − h)v]‖

+
1
r
‖u− v − λ[N(Au,Bu)−N(Av,Bu)]‖

+
λ

r
‖N(Av,Bu)−N(Av, Bv)‖.

Note that

(3.14)

‖H(g − h)u−H(g − h)v − [(g − h)u− (g − h)v]‖2
≤ (l2 − 2δ + 1)‖(g − h)u− (g − h)v‖2
≤ (l2 − 2δ + 1)(α2 + 2τ + β2)‖u− v‖2,

(3.15) ‖u− v − λ[N(Au,Bu)−N(Av, Bu)]‖2 ≤ (1− 2λξ + λ2a2t2)‖u− v‖2

and

(3.16) ‖N(Av, Bu)−N(Av, Bv)‖ ≤ bs‖u− v‖.
It follows from (3.13)-(3.16) that (3.6) holds, where

θ =
(
1 +

1
r

)√
1− 2ρ + α2 + 2τ + β2 +

1
r

√
(l2 − 2δ + 1)(α2 + 2τ + β2)

+
1
r

√
1− 2λξ + λ2a2t2 +

λbs

r
.

In view of (3.10) and one of (3.11) and (3.12), we conclude that 0 < θ < 1.
That is, the contraction mapping F has a unique fixed point u∗ ∈ X. By
Lemma 3.1 and (3.6), we infer that u∗ is a unique solution of the general
nonlinear variational inclusion (2.1). The proof of convergence of {un}n≥0 is
similar to that of Theorem 3.1 and is omitted. This completes the proof. ¤

Theorem 3.4. Let H, A,B : X → X be Lipschitz continuous with constants
l, t, s, respectively. Let g, h : X → X satisfy that g − h is Lipschitz continuous
with constant α, g is strongly monotone with constant τ , h is anti-monotone
and H(g − h) is strongly monotone with constant δ. Let N : X ×X → X be
Lipschitz continuous in the first and second arguments with constants a and
b, respectively, and N be also strongly monotone with respect to A in the first
argument with constant ξ. Let M : X → 2X be an H-monotone mapping.
Assume that D = a2t2 − b2s2, T = r − r

√
1− 2τ + α2 −√l2α2 − 2δ + 1, W =

ξ − Tbs and E = W 2 − D(1 − T 2) > 0. If there exists a constant λ > 0
satisfying (3.10) and one of (3.11) and (3.12), then for any given f ∈ X, the
general nonlinear variational inclusion (2.1) has a unique solution u∗ ∈ X and
the sequence {un}n≥0 defined by Algorithm 3.1 strongly converges to u∗.
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Proof. Let u, v ∈ X. It follows from Lemma 2.1 and (3.1) that

(3.17)

‖Fu− Fv‖ ≤ ‖u− v − ((g − h)u− (g − h)v)‖

+
1
r
‖H(g − h)u−H(g − h)v − (u− v)‖

+
1
r
‖u− v − λ[N(Au,Bu)−N(Av, Bu)]‖

+
λ

r
‖N(Av, Bu)−N(Av,Bv)‖,

(3.18) ‖u− v − ((g − h)u− (g − h)v)‖2 ≤ (1− 2τ + α2)‖u− v‖2

and

(3.19) ‖H(g − h)u−H(g − h)v − (u− v)‖2 ≤ (l2α2 − 2δ + 1)‖u− v‖2.
It follows from (3.15), (3.16), (3.17)-(3.19) that (3.6) holds, where

θ =
√

1− 2τ + α2 +
1
r

√
l2α2 − 2δ + 1 +

1
r

√
1− 2λξ + λ2a2t2 +

λbs

r
≥ 0.

In light of (3.10) and one of (3.11) and (3.12), we derive that θ < 1. Con-
sequently, the contraction mapping F has a unique fixed point u∗ ∈ X. By
Lemma 3.1 and (3.6), we infer that u∗ is a unique solution of the general nonlin-
ear variational inclusion (2.1). The proof of convergence of {un}n≥0 is similar
to that of Theorem 3.1 and is omitted. This completes the proof. ¤

Theorem 3.5. Let H, A,B, g, h : X → X be Lipschitz continuous with con-
stants l, t, s, α, β, respectively, g be relaxed monotone with respect to h with con-
stant τ , g−h be strongly monotone with constant ρ and H(g−h) be A-δ-strongly
monotone. Let N : X×X → X be Lipschitz continuous in the first and second
arguments with constants a and b, respectively, and N be also strongly mono-
tone in the first argument with constant ξ. Let M : X → 2X be an H-monotone
mapping. Assume that D = a2t2 − b2s2, T = r − r

√
1− 2ρ + α2 + 2τ + β2 −√

l2(α2 + 2τ + β2)− 2δt2 + t2, W = t2ξ−Tbs and E = W 2−D(t2−T 2) > 0.
If there exists a constant λ > 0 satisfying (3.10) and one of (3.11) and (3.12),
then for any given f ∈ X, the general nonlinear variational inclusion (2.1) has
a unique solution u∗ ∈ X and the sequence {un}n≥0 defined by Algorithm 3.1
strongly converges to u∗.

Proof. Let u, v ∈ X. It follows from Lemma 2.1 and (3.1) that

(3.20)

‖Fu− Fv‖ ≤ ‖u− v − ((g − h)u− (g − h)v)‖

+
1
r
‖H(g − h)u−H(g − h)v − (Au−Av)‖

+
1
r
‖Au−Av − λ[N(Au,Bu)−N(Av, Bu)]‖

+
1
r
‖N(Av, Bu)−N(Av,Bv)‖.
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Note that

(3.21)

‖H(g − h)u−H(g − h)v − (Au−Av)‖2
= ‖H(g − h)u−H(g − h)v‖2 − 2〈H(g − h)u−H(g − h)v, Au−Av〉

+ ‖Au−Av‖2
≤ l2(α2 + 2τ + β2)‖u− v‖2 − 2δ‖Au−Av‖2 + ‖Au−Av‖2
= (l2(α2 + 2τ + β2)− 2δt2 + t2)‖u− v‖2

and

(3.22)

‖Au−Av − λ[N(Au,Bu)−N(Av, Bu)]‖2
= ‖Au−Av‖2 − 2〈Au−Av,N(Au,Bu)−N(Av, Bu)〉

+ λ2‖N(Au,Bu)−N(Av, Bu)‖2
≤ ‖Au−Av‖2 − 2λξ‖Au−Av‖2 + λ2a2‖Au−Av‖2
≤ (1− 2λξ + λ2a2)t2‖u− v‖2.

It follows from (3.4), (3.16), (3.20), (3.21) and (3.22) that (3.6) holds, where

θ =
√

1− 2ρ + α2 + 2τ + β2 +
1
r

√
l2(α2 + 2τ + β2)− 2δt2 + t2

+
1
r

√
(1− 2λξ + λ2a2)t2 +

λbs

r
.

The rest of the proof is similar to that of Theorem 3.1 and is omitted. This
completes the proof. ¤

Theorem 3.6. Let H, A,B, g, h : X → X be Lipschitz continuous with con-
stants l, t, s, α, β, respectively, H be strongly monotone with constant δ, g be
relaxed monotone with respect to h with constant τ , g − h be strongly mono-
tone with constant ρ. Let N : X × X → X be Lipschitz continuous in the
first and second arguments with constants a and b, respectively, and N(A,B)
be strongly monotone with respect to g − h with constant ξ. Let M : X → 2X

be an H-monotone mapping. Assume that K = α2 + 2τ + β2, D = (at + bs)2,
T = (r − r

√
1− 2ρ + K −

√
(l2 − 2δ + 1)K)2 and E = ξ2 −D(K − T ) > 0. If

there exists a constant λ > 0 such that

(3.23)
∣∣∣∣λ−

ξ

D

∣∣∣∣ <

√
E

D
,

then for any given f ∈ X, the general nonlinear variational inclusion (2.1) has
a unique solution u∗ ∈ X and the sequence {un}n≥0 defined by Algorithm 3.1
strongly converges to u∗.
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Proof. Let u, v ∈ X. It follows from Lemma 2.1 and (3.1) that

(3.24)

‖Fu− Fv‖
≤ ‖u− v − ((g − h)u− (g − h)v)‖

+
1
r
‖H(g − h)u−H(g − h)v − ((g − h)u− (g − h)v)‖

+
1
r
‖(g − h)u− (g − h)v − λ[N(Au,Bu)−N(Av, Bv)]‖,

and

(3.25)
‖(g − h)u− (g − h)v − λ[N(Au, Bu)−N(Av, Bv)]‖2

≤ [α2 + 2τ + β2 − 2λξ + λ2(at + bs)2]‖u− v‖2.

It follows from (3.4), (3.14), (3.24) and (3.25) that (3.6) holds, where

θ =
√

l − 2ρ + K +
1
r

√
(l2 − 2δ + 1)K +

1
r

√
K − 2λξ + λ2D.

The rest of the proof is similar to that of Theorem 3.1 and is omitted. This
completes the proof. ¤
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