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ON NONLINEAR VARIATIONAL INCLUSIONS WITH
(A, η)-MONOTONE MAPPINGS

Yan Hao

Abstract. In this paper, we introduce a generalized system of nonlinear

relaxed co-coercive variational inclusions involving (A, η)-monotone map-

pings in the framework of Hilbert spaces. Based on the generalized resol-
vent operator technique associated with (A, η)-monotonicity, we consider

the approximation solvability of solutions to the generalized system. Since
(A, η)-monotonicity generalizes A-monotonicity andH-monotonicity, The

results presented this paper improve and extend the corresponding results

announced by many others.

1. Introduction

Variational inclusions problems are among the most interesting and inten-
sively studied classes of mathematical problems and have wide applications
in the fields of optimization and control, economics and transportation equi-
librium and engineering sciences. Variational inclusions problems have been
generalized and extended in different directions using the novel and innova-
tive techniques. Various kinds of iterative algorithms to solve the variational
inequalities and variational inclusions have been developed by many authors.
There exists a vast literature [1-26] on the approximation solvability of non-
linear variational inequalities as well as nonlinear variational inclusions using
projection type methods, resolvent operator type methods or averaging tech-
niques. In most of the resolvent operator methods, the maximal monotonicity
has played a key role, but more recently introduced notions of A-monotonicity
[22] and H-monotonicity [6,7] have not only generalized the maximal mono-
tonicity, but gave a new edge to resolvent operator methods. Recently, Verma
[20] generalized the recently introduced and studied notion of A-monotonicity
to the case of (A, η)-monotonicity, while examining the sensitivity analysis
for a class of nonlinear variational inclusion problems based on the general-
ized resolvent operator technique. Resolvent operator techniques have been in
use for a while in literature, especially with the general framework involving
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set-valued maximal monotone mappings, but it got a new empowerment by
the recent developments of A-monotonicity and H-monotonicity. Furthermore,
these developments added a new dimension to the existing notion of the max-
imal monotonicity and its applications to several other fields such as convex
programming and variational inclusions. In this paper, inspired and motivated
by the recent research going on in this area, we explore the approximation
solvability of a generalized system of nonlinear variational inclusion problems
in the framework Hilbert spaces.

2. Preliminaries

In this section, we explore some basic properties derived from the notion of
(A, η)-monotonicity. Let X be a real Hilbert space with the norm ‖·‖ and inner
product 〈·, ·〉, respectively. Let η : X × X → X be a single-valued mapping.
The mapping η is said to be τ -Lipschitz continuous if there is a constant τ > 0
such that

‖η(u, v)‖ ≤ τ‖y − v‖, ∀u, v ∈ X.
Let M be a multi-valued mapping from a Hilbert space X to 2X , the power

set of X. We recall following:
(i) The set D(M) defined by

D(M) = {u ∈ X : M(u) 6= ∅},

is called the effective domain of M.
(ii) The set R(M) defined by

R(M) =
⋃
u∈X

M(u),

is called the range of M .
(iii) The set G(M) defined by

G(M) = {(u, v) ∈ X ×X : u ∈ D(M), v ∈M(u)},

is the graph of M .

Definition 1. Let η : X × X → X be a single-valued mapping and let M :
X → 2X be a multi-valued mapping on X.

(i) The mapping M is said to be (r, η)-strongly monotone if

〈u∗ − v∗, η(u, v)〉 ≥ r‖u− v‖, ∀(u, u∗), (v, v∗) ∈ G(M).

(ii) The mapping M is said to be η-pseudo-monotone if 〈v∗, η(u, v)〉 ≥ 0
implies

〈u∗, η(u, v)〉 ≥ 0, ∀(u, u∗), (v, v∗) ∈ G(M).

(iii) The mapping M is said to be (m, η)-relaxed monotone if there exists a
positive constant m such that

〈u∗ − v∗, η(u, v)〉 ≥ −m‖u− v‖2, ∀(u, u∗), (v, v∗) ∈ G(M).
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Definition 2. (see [6,7]). Let H : X → X be a nonlinear mapping on a Hilbert
space X and let M : X → 2X be a multi-valued mapping on X. The mapping
M is said to be H-monotone if (H + ρM)X = X for all ρ > 0.

Definition 3. (see [22]). Let A : X → X be a nonlinear mapping on a Hilbert
space X and let M : X → 2X be a multi-valued mapping on X. The mapping
M is said to be A-monotone if

(i) M is m-relaxed monotone;
(ii) A+ ρM is maximal monotone for all ρ > 0.

Remark 1. A-monotonicity which was introduce by Verma [22] generalizes the
notion of H-monotonicity introduced by Fang and Huang [6,7].

Definition 4. (see [20]). A mapping M : X → 2X is said to be maximal
(m, η)-relaxed monotone if

(i) M is (m, η)-relaxed monotone;
(ii) for (u, u∗) ∈ X ×X and

〈u∗ − v∗, η(u, v)〉 ≥ −m‖u− v‖2, (v, v∗) ∈ G(M),

we have u∗ ∈M(u).

Definition 5. (see [20]). Let A : X → X and η : X ×X → X be two single-
valued mappings. The mapping M : X → 2X is said to be (A, η)-monotone
if

(i) M is (m, η)-relaxed monotone;
(ii) R(A+ ρM) = X for all ρ > 0.

Note that alternatively, the map M : X → 2X is said to be (A, η)-monotone if
(i) M is (m, η)-relaxed monotone;
(ii) A+ ρM is η-pseudo-monotone for ρ > 0.

Remark 2. (A, η)-monotonicity which was introduced by Verma [20] generalizes
the notion of A-monotonicity.

Definition 6. (see [20]). Let A : X → X be an (r, η)-strong monotone map-
ping and letM : X → X be an (A, η)-monotone mapping. Then the generalized
resolvent operator JA,ηM,ρ : X → X is defined by

JA,ηM,ρ(u) = (A+ ρM)−1(u), ∀u ∈ X,

where ρ > 0 is a constant.

Definition 7. (see [18]). The mapping T : X ×X → X is said to be relaxed
(β, γ)-co-coercive with respect to A in the first argument if there exists two
positive constants α, β such that

〈T (x, u)− T (y, u), Ax−Ay〉 ≥ (−β)‖T (x, u)− T (y, u)‖2 + γ‖x− y‖2,

for all (x, y, u) ∈ X ×X ×X.
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Proposition 2.1. (see [20]). Let A : X → X be an r-strongly monotone
mapping and let M : X → 2X be an A-monotone mapping. Then the operator
(A+ ρM)−1 is single-valued.

Proposition 2.2. (see [20]). Let η : X× → X be a single-valued mapping,
A : X → X be (r, η)-strongly monotone mapping and M : X → 2X be an
(A, η)-monotone mapping. Then the mapping (A+ ρM)−1 is single-valued.

3. Results on algorithmic convergence analysis

Let N1, N2 : X × X → X, η1, η2 : X × X → X g1, g2 : X → X be
nonlinear mappings. Let M1 : X → 2X be an (A1, η1)-monotone mapping and
M2 : X → 2X an (A2, η2)-monotone mapping, respectively. Consider the the
following nonlinear system of variational inclusions (NSVI) problem: determine
elements (u, v) ∈ X ×X such that

0 ∈ A1g1(u)−A1g1(v) + ρ1[N1(v, u) +M1g1(u)], (3.1)

0 ∈ A2g2(v)−A2g2(u) + ρ2[N2(u, v) +M2g2(v)]. (3.2)

Next, we consider some special cases of NSVI problem (3.1)-(3.2).
(I) If A1 = A2 = A, M1 = M2 = M , g1 = g2 = g and N1 = N2 = N ,

then NSVI problem (3.1)-(3.2) reduces to the following NSVI problem: find
(u, v) ∈ X ×X such that

0 ∈ Ag(u)−Ag(v) + ρ1[N(v, u) +Mg(u)], (3.3)

0 ∈ Ag(v)−Ag(u) + ρ2[N(u, v) +Mg(v)]. (3.4)

(II) If A1 = A2 = A, M1 = M2 = M , g1 = g2 = I and N1 = N2 = N ,
then NSVI problem (3.1)-(3.2) reduces to the following NSVI problem: find
(u, v) ∈ X ×X such that

0 ∈ Au−Av + ρ1[N(v, u) +Mu], (3.5)

0 ∈ Av −Au+ ρ2[N(u, v) +Mv]. (3.6)

(III) If M1 = M2 = M , N1 = N2 = N , u = v, g1 = g2 = I and ρ1 = ρ2 = ρ
in NSVI (3.1)-(3.2), we have the following NVI problem: find an element u ∈ X
such that

0 ∈ N(u, u) +Mu, (3.7)

In order to prove our main results, we need the following lemmas.

Lemma 3.1. Let X be a real Hilbert space and η : X ×X → X a τ -Lipschitz
continuous mapping. Let A : X → X be a (r, η)-strongly monotone mapping
and M : X → 2X a (A, η)-monotone mapping. Then the generalized resolvent
operator JA,ηM,ρ : H → H is τ/(r − ρm), that is,

‖JA,ηM,ρ(x)− JA,ηM,ρ(y)‖ ≤ τ

r − ρm
‖x− y‖, ∀x, y ∈ X.



VARIATIONAL INCLUSIONS 163

Lemma 3.2. Let X be a real Hilbert space, Ai : H → H a (ri, ηi)-strongly
monotone mapping and Mi : H → 2H a (Ai, ηi)-monotone mapping. Let ηi :
H × H → H be a τi-Lipschitz continuous mapping for each i = 1, 2. Then
(u, v) is the solution of NSVI (3.1)-(3.2) if and only if it satisfies

g1(u) = JA1,η1
M1,ρ1

[A1g1(v)− ρ1N1(v, u)], (3.9)

g2(v) = JA2,η2
M2,ρ2

[A2g2(u)− ρ2N2(u, v)]. (3.10)

Next, we give the iterative algorithms in this work.

Algorithm 3.1. For any (u0, v0) ∈ X ×X, compute the sequences {un} and
{vn} by the iterative process:{

un+1 = un − g1(un) + JA1,η1
M1,ρ1

[A1g1(vn)− ρ1N1(vn, un)],
g2(vn) = JA2,η2

M2,ρ2
[A2g2(un)− ρ2N2(un, vn)], n ≥ 0.

(I) If A1 = A2 = A, M1 = M2 = M , η1 = η2, g1 = g2 = g and N1 = N2 = N
in Algorithm 3.1, then we have the following algorithm:
Algorithm 3.2. For any (u0, v0) ∈ X ×X, compute the sequences {un} and
{vn} by the iterative process:{

un+1 = un − g(un) + JA,ηM,ρ1
[Ag(vn)− ρ1N(vn, un)],

g(vn) = JA,ηM,ρ2
[Ag(un)− ρ2N(un, vn)], n ≥ 0.

(II) If A1 = A2 = A, M1 = M2 = M , η1 = η2, g1 = g2 = I and N1 = N2 =
N in Algorithm 3.1, then we have the following algorithm:
Algorithm 3.3. For any (u0, v0) ∈ X ×X, compute the sequences {un} and
{vn} by the iterative processes:{

un+1 = JA,ηM,ρ1
[Avn − ρ1N(vn, un)],

vn = JA,ηM,ρ2
[Aun − ρ2N(un, vn)], n ≥ 0.

(III) If M1 = M2 = M , N1 = N2 = N , η1 = η2, u = v and ρ1 = ρ2 = ρ in
Algorithm 3.1, then we have the following algorithm:

Algorithm 3.4. For any u0 ∈ X, compute the sequence {un} by the iterative
processes:

un+1 = JA,ηM,ρ[Aun − ρN(un, un)], n ≥ 0.
Now, we are in a position to prove our main results.

Theorem 3.3. Let X be a real Hilbert space, Ai : X × X a (ri, ηi)-strongly
monotone and si-Lipschitz continuous mapping and Mi : X → 2X a (Ai, ηi)-
monotone mapping for each i = 1, 2, respectively. Let ηi : X × X → X be a
τi-Lipschitz continuous mapping. Let Ni : X ×X → X be relaxed (αi, βi)-co-
coercive (with respect to Aigi) and µi-Lipschitz continuous in the first variable.
Let Ni be a νi-Lipschitz continuous mapping in the second variable and gi :
X → X a relaxed (γi, δi)-co-coercive and σi-Lipschitz mapping for each i =
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1, 2. Assume that Ω1 6= ∅, where Ω1 denotes the set of solutions to the NSVI
problem (3.1)-(3.2). Let (u∗, v∗) ∈ Ω1, {un} and {vn} be sequences generated
by Algorithm 3.1. Suppose that the following conditions are satisfied:

τ1τ2θ1θ2
(r1 − ρ1m1)[(1− θ3)(r2 − ρ2m2)− τ2ρ2ν2]

+
τ1ρ1ν1

r1 − ρ1m1
< 1− θ4,

where

θ1 =
√
σ2

1s
2
1 − 2ρ1β1 + 2ρ1α1µ2

1 + ρ2
1µ

2
1,

θ2 =
√
σ2

2s
2
2 − 2ρ2β2 + 2ρ2α2µ2

2 + ρ2
2µ

2
2,

θ3 =
√

1 + 2σ2
2γ2 − 2δ2 + σ2

2

and

θ4 =
√

1 + 2σ2
1γ1 − 2δ1 + σ2

1 .

Then the sequences {un} and {vn} converge strongly to u∗, v∗, respectively.

Proof. By the assumption, we have{
u∗ = u∗ − g1(u∗) + JA1,η1

M1,ρ1
[A1g1(v∗)− ρ1N1(v∗, u∗)],

g2(v∗) = JA2,η2
M2,ρ2

[A2g2(u∗)− ρ2N2(u∗, v∗)].

It follows that

‖un+1 − u∗‖

= ‖un − g1(un) + JA1,η1
M1,ρ1

[A1g1(vn)− ρ1N1(vn, un)]− u∗‖

= ‖un − g1(un) + JA1,η1
M1,ρ1

[A1g1(vn)− ρ1N1(vn, un)]− u∗ + g1(u∗)

− JA1,η1
M1,ρ1

[A1g1(v∗)− ρ1N1(v∗, u∗)]‖
≤ ‖un − u∗ − [g1(un)− g1(u∗)]‖

+ ‖JA1,η1
M1,ρ1

[A1g1(vn)− ρ1N1(vn, un)]− JA1,η1
M1,ρ1

[A1g1(v∗)− ρ1N1(v∗, u∗)]‖
≤ ‖un − u∗ − [g1(un)− g1(u∗)]‖

+
τ1

r1 − ρ1m1
‖A1g1(vn)−A1g1(v∗)− ρ1[N1(vn, un)−N1(v∗, un)]

− ρ1[N1(v∗, un)−N1(v∗, u∗)]‖.
(3.11)
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It follows from relaxed (α1, β1)-cocoercive monotonicity and µ1-Lipschitz con-
tinuity of N1 in the first variable, A1 is s1-Lipschitz continuous and g1 is σ1-
Lipschitz continuous that

‖A1g1(vn)−A1g1(v∗)− ρ1(N1(vn, un)−N1(v∗, un))‖2

= ‖A1g1(vn)−A1g1(v∗)‖2

− 2ρ1〈N1(vn, un)−N1(v∗, un), A1g1(vn)−A1g1(v∗)〉
+ ρ2

1‖N1(vn, un)−N1(v∗, un)‖2

≤ θ21‖vn − v∗‖2,

(3.12)

where θ1 =
√
σ2

1s
2
1 − 2ρ1β1 + 2ρ1α1µ2

1 + ρ2
1µ

2
1. Observe that the ν1-Lipschitz

continuity of N1 in the second argument yields that

‖N1(v∗, un)−N1(v∗, u∗)‖ ≤ ν1‖un − u∗‖. (3.13)

On the other hand, we have

‖g2(vn)− g2(v∗)‖

= ‖JA2,η2
M2,ρ2

[A2g(un)− ρ2N2(un, vn)]− JA2,η2
M2,ρ2

[A2g2(u∗)− ρ2N2(u∗, v∗)]‖

≤ τ2
r2 − ρ2m2

‖A2g(un)−A2g2(u∗)− ρ2[N2(un, vn)−N2(u∗, v∗)]‖

≤ τ2
r2 − ρ2m2

‖A2g(un)−A2g2(u∗)− ρ2[N2(un, vn)−N2(u∗, vn)]

− ρ2[N2(u∗, vn)−N2(u∗, v∗)]‖.
(3.14)

It follows from relaxed (α2, β2)-cocoercive monotonicity and µ2-Lipschitz con-
tinuity of N2 in the first variable, A2 is s2-Lipschitz continuous and g2 is σ2-
Lipschitz continuous that

‖A2g2(un)−A2g2(u∗)− ρ(N2(un, vn)−N2(u∗, vn))‖2

= ‖A2g2(un)−A2g2(u∗)‖2

− 2ρ2〈N2(un, vn)−N2(u∗, vn), A2g2(un)−A2g2(u∗)〉
+ ρ2

2‖N2(un, vn)−N2(u∗, vn)‖2

≤ θ22‖un − u∗‖2,

(3.15)

where θ2 =
√
σ2

2s
2
2 − 2ρ2β2 + 2ρ2α2µ2

2 + ρ2
2µ

2
2. Observe that the ν2-Lipschitz

continuity of N2 in the second argument yields that

‖N2(u∗, vn)−N2(u∗, v∗)‖ ≤ ν2‖vn − v∗‖. (3.16)

Substituting (3.15) and (3.16) into (3.14), we have

‖g2(vn)− g2(v∗)‖ ≤ τ2θ2
r2 − ρ2m2

‖un − u∗‖+
τ2ρ2ν2

r2 − ρ2m2
‖vn − v∗‖. (3.17)
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Observe that

‖vn − v∗‖ ≤ ‖vn − v∗ − [g2(vn)− g2(v∗)]‖+ ‖g2(vn)− g2(v∗)‖. (3.18)

Since the relaxed (γ2, δ2)-cocoercive monotonicity and σ2-Lipschitz continuity
of g2 that

‖vn − v∗ − g2(vn)− g2(v∗)‖2

= ‖vn − v∗‖2 − 2〈g2(vn)− g2(v∗), vn − v∗〉+ ‖g2(vn)− g2(v∗)‖2

≤ ‖vn − v∗‖2 − 2[−γ2‖g2(vn)− g2(v∗)‖2 + δ2‖vn − v∗‖2]

+ ‖g2(vn)− g2(v∗)‖2

≤ ‖vn − v∗‖2 + 2σ2
2γ2‖vn − v∗‖2 − 2δ2‖vn − v∗‖2 + σ2

2‖vn − v∗‖2

= θ23‖vn − v∗‖2,

(3.19)

where θ3 =
√

1 + 2σ2
2γ2 − 2δ2 + σ2

2 . Substitute (3.17) and (3.19) into (3.18)
yields that

‖vn − v∗‖ ≤ θ3|vn − v∗‖+
τ2θ2

r2 − ρ2m2
‖un − u∗‖+

τ2ρ2ν2
r2 − ρ2m2

‖vn − v∗‖,

which implies that

‖vn − v∗‖ ≤
τ2θ2

(1− θ3)(r2 − ρ2m2)− τ2ρ2ν2
‖un − u∗‖. (3.20)

Substitute (3.20) into (3.12) yields that

‖A1g1(vn)−A1g1(v∗)− ρ(N1(vn, un)−N1(v∗, un))‖

≤ τ2θ1θ2
(1− θ3)(r2 − ρ2m2)− τ2ρ2ν2

‖un − u∗‖,
(3.21)

On the other hand, it follows from relaxed (γ1, δ1)-cocoercive monotonicity
and σ1-Lipschitz continuity of g1 that

‖un − u∗ − g1(un)− g1(u∗)‖2

= ‖un − u∗‖2 − 2〈g1(un)− g1(u∗), un − u∗〉+ ‖g1(un)− g1(u∗)‖2

≤ ‖un − u∗‖2 − 2[−γ1‖g1(un)− g1(u∗)‖2 + δ1‖un − u∗‖2]

+ ‖g1(un)− g1(u∗)‖2

≤ ‖un − u∗‖2 + 2σ2
1γ1‖un − u∗‖2 − 2δ1‖un − u∗‖2 + σ2

1‖un − u∗‖2

= θ24‖un − u∗‖2,

(3.22)
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where θ4 =
√

1 + 2σ2
1γ1 − 2δ1 + σ2

1 . Substituting (3.13), (3.21) and (3.22) into
(3.11), we arrive at

‖un+1 − u∗‖

≤ θ4‖un − u∗‖+
τ1τ2θ1θ2

(r1 − ρ1m1)[(1− θ3)(r2 − ρ2m2)− τ2ρ2ν2]
‖un − u∗‖

+
τ1ρ1ν1

r1 − ρ1m1
‖un − u∗‖

= (θ4 +
τ1τ2θ1θ2

(r1 − ρ1m1)[(1− θ3)(r2 − ρ2m2)− τ2ρ2ν2]
+

τ1ρ1ν1
r1 − ρ1m1

)‖un − u∗‖.

(3.23)
From the assumption, we see

θ4 +
τ1τ2θ1θ2

(r1 − ρ1m1)[(1− θ3)(r2 − ρ2m2)− τ2ρ2ν2]
+

τ1ρ1ν1
r1 − ρ1m1

< 1.

It follows that the conclusion holds. This completes the proof. �

As some applications of Theorem 3.3, we have the following results immedi-
ately.

Corollary 3.4. Let X be a real Hilbert space, A : H×H a (r, η)-strongly mono-
tone and s-Lipschitz continuous mapping and Mi : X → 2X a (A, η)-monotone
mapping, respectively. Let η : X × X → X be a τ -Lipschitz continuous map-
ping. Let N : X×X → X be relaxed (α, β)-co-coercive (with respect to Ag) and
µ-Lipschitz continuous in the first variable. Let N be a ν-Lipschitz continuous
mapping in the second variable and g : X → X a relaxed (γ, δ)-co-coercive
and σi-Lipschitz mapping. Assume that Ω2 6= ∅, where Ω2 denotes the set of
solutions to the NSVI problem (3.3)-(3.3). Let (u∗, v∗) ∈ Ω2, {un} and {vn}
be sequences generated by Algorithm 3.2. Suppose that the following conditions
are satisfied:

τ2θ1θ2
(r − ρ1m)[(1− θ3)(r − ρ2m)− τρ2ν]

+
τρ1ν

r − ρ1m
< 1− θ3,

where
θ1 =

√
σ2s2 − 2ρ1β + 2ρ1αµ2 + ρ2

1µ
2,

θ2 =
√
σ2s2 − 2ρ2β + 2ρ2αµ2 + ρ2µ2

and
θ3 =

√
1 + 2σ2γ − 2δ + σ2.

Then the sequences {un} and {vn} converge strongly to u∗, v∗, respectively.

Corollary 3.5. Let X be a real Hilbert space, A : H×H a (r, η)-strongly mono-
tone and s-Lipschitz continuous mapping and Mi : X → 2X a (A, η)-monotone
mapping, respectively. Let η : X × X → X be a τ -Lipschitz continuous map-
ping. Let N : X ×X → X be relaxed (α, β)-co-coercive (with respect to A) and
µ-Lipschitz continuous in the first variable. Let N be a ν-Lipschitz continuous
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mapping in the second variable. Assume that Ω3 6= ∅, where Ω3 denotes the set
of solutions to the NSVI problem (3.5)-(3.6). Let (u∗, v∗) ∈ Ω3, {un} and {vn}
be sequences generated by Algorithm 3.3. Suppose that the following conditions
are satisfied:

τ2θ1θ2
(r − ρ1m)[(r − ρ2m)− τρ2ν]

+
τρ1ν

r − ρ1m
< 1,

where
θ1 =

√
σ2s2 − 2ρ1β + 2ρ1αµ2 + ρ2

1µ
2,

and
θ2 =

√
σ2s2 − 2ρ2β + 2ρ2αµ2 + ρ2µ2.

Then the sequences {un} and {vn} converge strongly to u∗, v∗, respectively.

Corollary 3.6. Let X be a real Hilbert space, A : H×H a (r, η)-strongly mono-
tone and s-Lipschitz continuous mapping and Mi : X → 2X a (A, η)-monotone
mapping, respectively. Let η : X × X → X be a τ -Lipschitz continuous map-
ping. Let N : X ×X → X be relaxed (α, β)-co-coercive (with respect to A) and
µ-Lipschitz continuous in the first variable. Let N be a ν-Lipschitz continuous
mapping in the second variable. Assume that Ω4 6= ∅, where Ω4 denotes the
set of solutions to the NSVI problem (3.7). Let u∗ ∈ Ω4, {un} be a sequence
generated by Algorithm 3.4. Suppose that the following conditions are satisfied:

τ
√
s2 − 2ρβ + 2ραµ2 + ρ2µ2 + τρν < r − ρm.

Then the sequences {un} converges strongly to u∗.
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