A SYSTEM OF NONLINEAR VARIATIONAL INCLUSIONS WITH GENERAL H-MONOTONE OPERATORS IN BANACH SPACES

Jinsong Li, Wei Wang, Min-Hyung Cho and Shin Min Kang*

Abstract. A system of nonlinear variational inclusions involving general H-monotone operators in Banach spaces is introduced. Using the resolvent operator technique, we suggest an iterative algorithm for finding approximate solutions to the system of nonlinear variational inclusions, and establish the existence of solutions and convergence of the iterative algorithm for the system of nonlinear variational inclusions.

1. Introduction

Variational inequality theory, which was introduced by Stampacchia [7] in 1964, has emerged as an useful and interesting branch of pure and applied sciences with a wide range of applications in mathematical programming, optimization theory, engineering, elasticity theory and transportation equilibrium etc.

In recent years, variational inequalities have been extended and generalized in different directions, and one of the most important generalizations is called the variational inclusion. Fang and Huang [3] introduced and studied a system of variational inclusions involving H-monotone operators. Moreover, Verma [8] and Fang et al. [4] introduced a system of variational inclusions involving A-monotone operators and (H, η)-monotone operators, respectively. Fang and Huang [1] introduced a new class of generalized accretive operator named H accretive operators in Banach spaces. As a promotion of these results, Xia and Huang [9] introduced a new system of variational inclusions involving general H-monotone operators in Banach spaces.

Motivated and inspired by the research work in [1-4,6-10], we introduce and study a new system of nonlinear variational inclusions with general H monotone operators in Banach spaces, which contains the variational inequalities and variational inclusions in $[4,6]$ as special cases. By using the resolvent

[^0]operator technique for the general H-monotone operator, we construct an iterative algorithm of the system of nonlinear variational inclusions and prove the existence of solutions and convergence of the iterative algorithm for the system of nonlinear variational inclusions. The result in this paper extends and improves Theorem 3.4 in [9].

2. Preliminaries

Assume that $(B,\|\cdot\|)$ is a Banach space. Let $C B(B)$ denote the families of all nonempty closed bounded subsets of B and $D^{*}(\cdot, \cdot)$ denote the Hausdorff metric on $C B(B)$ defined by

$$
D^{*}(A, B)=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(A, b)\right\}, \quad \forall A, B \in C B(B),
$$

where $d(a, B)=\inf _{b \in B}\|a-b\|$ and $d(A, b)=\inf _{a \in A}\|a-b\|$.
Definition 2.1. ([9]) Let B be a Banach space with the dual space B^{*} and $P: B \rightarrow B^{*}$ and $g: B \rightarrow B$ be two mappings.
(1) P is said to be monotone if

$$
\langle P(x)-P(y), x-y\rangle \geq 0, \quad \forall x, y \in B ;
$$

(2) P is said to be strictly monotone if P is monotone and

$$
\langle P(x)-P(y), x-y\rangle=0 \quad \text { if and only if } \quad x=y ;
$$

(3) P is said to be α-strongly monotone if there exists $\alpha>0$ satisfying

$$
\langle P(x)-P(y), x-y\rangle \geq \alpha\|x-y\|^{2}, \quad \forall x, y \in B ;
$$

(4) P is said to be β-Lipschitz continuous if there exists $\beta>0$ satisfying

$$
\|P(x)-P(y)\| \leq \beta\|x-y\|, \quad \forall x, y \in B
$$

(5) g is said to be η-strongly accretive if there exists $\eta>0$ satisfying

$$
\langle g(x)-g(y), j(x-y)\rangle \geq \eta\|x-y\|^{2}, \quad \forall x, y \in B
$$

where $j(x-y) \in J(x-y)$ and $J: B \rightarrow 2^{B^{*}}$ is the normalized duality mapping defined by

$$
J(x)=\left\{f \in B^{*}:\langle f, x\rangle=\|f\| \cdot\|x\|,\|f\|=\|x\|\right\}, \quad \forall x \in B
$$

Definition 2.2. ([6,9]) Let B be a Banach space with the dual space B^{*} and $T: B \rightarrow 2^{B^{*}}$ and $A: B \rightarrow C B(B)$ be set-valued mappings.
(1) T is said to be μ-strongly monotone if there exists $\mu>0$ satisfying

$$
\langle u-v, x-y\rangle \geq \mu\|x-y\|^{2}, \quad \forall x, y \in B, u \in T x, v \in T y
$$

(2) A is said to be D^{*}-Lipschitz if there exists a constant $\xi>0$ such that

$$
D^{*}(A(x), A(y)) \leq \xi\|x-y\|, \quad \forall x, y \in B
$$

Definition 2.3. For $i \in\{1,2\}$, let $\left(B_{i},\|\cdot\|_{i}\right)$ be a Banach space with the dual space B_{i}^{*}. A mapping $F: B_{1} \times B_{2} \times B_{1} \times B_{2} \rightarrow B_{1}^{*}$ is said to be mixed-Lipschitz continuous if there exist $\delta>0, \epsilon>0, \varepsilon>0$ and $\zeta>0$ such that

$$
\begin{aligned}
& \left\|F\left(x_{1}, y_{1}, u_{1}, v_{1}\right)-F\left(x_{2}, y_{2}, u_{2}, v_{2}\right)\right\|_{1} \\
& \leq \delta\left\|x_{1}-x_{2}\right\|_{1}+\epsilon\left\|y_{1}-y_{2}\right\|_{2}+\varepsilon\left\|u_{1}-u_{2}\right\|_{1}+\zeta\left\|v_{1}-v_{2}\right\|_{2}
\end{aligned}
$$

for all $x_{1}, x_{2}, u_{1}, u_{2} \in B_{1}$ and $y_{1}, y_{2}, v_{1}, v_{2} \in B_{2}$.
Similarly we can define the mixed-Lipschitz continuity of a mapping G : $B_{1} \times B_{2} \times B_{1} \times B_{2} \rightarrow B_{2}^{*}$.
Definition 2.4. ([9]) Let B be a Banach space with the dual space B^{*} and $H: B \rightarrow B^{*}$ be a mapping. A set-valued mapping $M: B \rightarrow 2^{B^{*}}$ is said to be general H-monotone if M is monotone and $(H+\lambda M)(B)=B^{*}$ holds for every $\lambda>0$.

Definition 2.5. ([9]) Let B be a reflexive Banach space with the dual space $B^{*}, H: B \rightarrow B^{*}$ be a strictly monotone mapping and $M: B \rightarrow 2^{B^{*}}$ be a general H-monotone mapping. A resolvent operator (or proximal mapping) $R_{M, \lambda}^{H}$ is defined by

$$
R_{M, \lambda}^{H}\left(x^{*}\right)=(H+\lambda M)^{-1}\left(x^{*}\right), \quad \forall x^{*} \in B^{*}
$$

where $\lambda>0$ is a constant.
Lemma 2.1. ([13]) Assume that B is a reflexive Banach space with the dual space B^{*}. Let $H: B \rightarrow B^{*}$ be a mapping and $M: B \rightarrow 2^{B^{*}}$ be a general H-monotone mapping.
(a) If $H: B \rightarrow B^{*}$ is a strongly monotone mapping with constant $\gamma>0$, then the resolvent operator $R_{M, \lambda}^{H}: B^{*} \rightarrow B$ is Lipschitz continuous with constant $\frac{1}{\gamma}$;
(b) If $H: B \rightarrow B^{*}$ is a strictly monotone mapping and $M: B \rightarrow 2^{B^{*}}$ is a strongly monotone mapping with constant $\beta>0$, then the resolvent operator $R_{M, \lambda}^{H}: B^{*} \rightarrow B$ is Lipschitz continuous with constant $\frac{1}{\lambda \beta}$.
Lemma 2.2. ([9]) Let B be a uniformly smooth Banach space and J be the normalized duality mapping from B into B^{*}. Then
(a) $\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, J(x+y)\rangle, \forall x, y \in B$;
(b) $\langle x-y, J(x)-J(y)\rangle \leq 2 d^{2} \rho_{B}\left(\frac{4}{d}\|x-y\|\right)$, where $d=\left(\frac{1}{2}\left(\|x\|^{2}+\|y\|^{2}\right)\right)^{\frac{1}{2}}, \forall x$, $y \in B$.

3. A system of nonlinear variational inclusions and an iterative algorithm

Let $\left(B_{1},\|\cdot\|_{1}\right)$ and $\left(B_{2},\|\cdot\|_{2}\right)$ be two Banach spaces with the topological dual spaces $B_{1}{ }^{*}$ and $B_{2}{ }^{*}$, respectively, $H_{1}: B_{1} \rightarrow B_{1}^{*}, H_{2}: B_{2} \rightarrow B_{2}^{*}, g_{1}: B_{1} \rightarrow B_{1}$, $g_{2}: B_{2} \rightarrow B_{2}, F: B_{1} \times B_{2} \times B_{1} \times B_{2} \rightarrow B_{1}^{*}, G: B_{1} \times B_{2} \times B_{1} \times B_{2} \rightarrow B_{2}^{*}$ be six mappings and $A, C: B_{1} \rightarrow C B\left(B_{1}\right), B, D: B_{2} \rightarrow C B\left(B_{2}\right)$ be four
set-valued mappings, $M: B_{1} \rightarrow 2^{B_{1}{ }^{*}}$ be a general H_{1}-monotone mapping and $N: B_{2} \rightarrow 2^{B_{2}{ }^{*}}$ be a general H_{2}-monotone mapping. We consider the following problem of finding (x, y, u, v, w, z) such that $(x, y) \in B_{1} \times B_{2}, u \in A(x), v \in$ $B(y), w \in C(x), z \in D(y)$ satisfying

$$
\left\{\begin{array}{l}
0 \in F(x, y, u, v)+M\left(g_{1}(x)\right) \tag{3.1}\\
0 \in G(x, y, w, z)+N\left(g_{2}(y)\right)
\end{array}\right.
$$

The problem (3.1) is called a system of nonlinear variational inclusions.
Some special cases of the problem (3.1) are as follows:
(A) If B_{1} and B_{2} are two Hilbert spaces, $F(x, y, u, v)=F_{1}(x, y)+P(u, v)$, $G(x, y, u, v)=G_{1}(x, y)+Q(u, v)$ for all $x, u \in B_{1}, y, v \in B_{2}$, where $F_{1}, P:$ $B_{1} \times B_{2} \rightarrow B_{1}, G_{1}, Q: B_{1} \times B_{2} \rightarrow B_{2}$ are mappings, then the problem (3.1) reduces to the below system of variational inclusions with general H-monotone operators [6], which is to find (x, y, u, v, w, z) with $(x, y) \in B_{1} \times B_{2}, u \in A(x)$, $v \in B(y), w \in C(x), z \in D(y)$ satisfying

$$
\left\{\begin{array}{l}
0 \in F_{1}(x, y)+P(u, v)+M\left(g_{1}(x)\right) \tag{3.2}\\
0 \in G_{1}(x, y)+Q(w, z)+N\left(g_{2}(y)\right)
\end{array}\right.
$$

(B) If B_{1} and B_{2} are two Hilbert spaces, $g_{1} \equiv I_{1}, g_{2} \equiv I_{2}, F(x, y, u, v)=$ $F_{1}(x, y), G(x, y, u, v)=G_{1}(x, y)$ for all $x, u \in B_{1}, y, v \in B_{2}$, where $F_{1}: B_{1} \times$ $B_{2} \rightarrow B_{1}, G_{1}: B_{1} \times B_{2} \rightarrow B_{2}$ are mappings, then the problem (3.1) reduces to the system of variational inclusions [4], which is to find $(x, y) \in B_{1} \times B_{2}$ satisfying

$$
\left\{\begin{array}{l}
0 \in F_{1}(x, y)+M(x), \tag{3.3}\\
0 \in G_{1}(x, y)+N(y) .
\end{array}\right.
$$

Lemma 3.1. Let $\left(B_{1},\|\cdot\|_{1}\right)$ and $\left(B_{2},\|\cdot\|_{2}\right)$ be two Banach spaces with the topological dual spaces $B_{1}{ }^{*}$ and $B_{2}{ }^{*}$, respectively. Let $H_{1}: B_{1} \rightarrow B_{1}{ }^{*}$ be a strongly monotone mapping and $H_{2}: B_{2} \rightarrow B_{2}{ }^{*}$ be a strictly monotone mapping, $g_{1}: B_{1} \rightarrow B_{1}, g_{2}: B_{2} \rightarrow B_{2}, F: B_{1} \times B_{2} \times B_{1} \times B_{2} \rightarrow B_{1}^{*}$ and $G: B_{1} \times B_{2} \times B_{1} \times B_{2} \rightarrow B_{2}^{*}$ be four mappings and $A, C: B_{1} \rightarrow C B\left(B_{1}\right)$, $B, D: B_{2} \rightarrow C B\left(B_{2}\right)$ be four set-valued mappings, $M: B_{1} \rightarrow 2^{B_{1}{ }^{*}}$ be a general H_{1}-monotone mapping and $N: B_{2} \rightarrow 2^{B_{2}{ }^{*}}$ be a general H_{2}-monotone mapping. Then (x, y, u, v, w, z) with $(x, y) \in B_{1} \times B_{2}, u \in A(x), v \in B(y), w \in C(x)$, $z \in D(y)$ is a solution of the problem (3.1) if and only if

$$
\begin{aligned}
& g_{1}(x)=R_{M, \lambda}^{H_{1}}\left(H_{1}\left(g_{1}(x)\right)-\lambda F(x, y, u, v)\right), \\
& g_{2}(x)=R_{N, \rho}^{H_{2}}\left(H_{2}\left(g_{2}(y)\right)-\rho G(x, y, w, z)\right),
\end{aligned}
$$

where $R_{M, \lambda}^{H_{1}}=\left(H_{1}+\lambda M\right)^{-1}, R_{N, \rho}^{H_{2}}=\left(H_{2}+\rho N\right)^{-1}, \lambda>0$ and $\rho>0$ are constants.

Based on Lemma 3.1 and Nadler's result [5], we suggest the following

Algorithm 3.1. For any given $x_{0} \in B_{1}, y_{0} \in B_{2}$, compute the iterative sequences $\left\{x_{n}\right\}_{n \geq 0},\left\{y_{n}\right\}_{n \geq 0},\left\{u_{n}\right\}_{n \geq 0},\left\{v_{n}\right\}_{n \geq 0},\left\{w_{n}\right\}_{n \geq 0}$ and $\left\{z_{n}\right\}_{n \geq 0}$ by, $\forall n \geq 0$,

$$
\begin{gather*}
x_{n+1}=x_{n}-g_{1}\left(x_{n}\right)+R_{M, \lambda}^{H_{1}}\left(H_{1}\left(g_{1}\left(x_{n}\right)\right)-\lambda F\left(x_{n}, y_{n}, u_{n}, v_{n}\right)\right), \tag{3.4}\\
y_{n+1}=y_{n}-g_{2}\left(y_{n}\right)+R_{N, \rho}^{H_{2}}\left(H_{2}\left(g_{2}\left(y_{n}\right)\right)-\rho G\left(x_{n}, y_{n}, w_{n}, z_{n}\right)\right), \tag{3.5}\\
\exists u_{n} \in A\left(x_{n}\right),\left\|u_{n+1}-u_{n}\right\|_{1} \leq\left(1+\frac{1}{n+1}\right) D_{1}^{*}\left(A\left(x_{n+1}\right), A\left(x_{n}\right)\right), \\
\exists v_{n} \in B\left(y_{n}\right),\left\|v_{n+1}-v_{n}\right\|_{2} \leq\left(1+\frac{1}{n+1}\right) D_{2}^{*}\left(B\left(y_{n+1}\right), B\left(y_{n}\right)\right), \tag{3.6}\\
\exists w_{n} \in C\left(x_{n}\right),\left\|w_{n+1}-w_{n}\right\|_{1} \leq\left(1+\frac{1}{n+1}\right) D_{1}^{*}\left(C\left(x_{n+1}\right), C\left(x_{n}\right)\right), \\
\exists z_{n} \in D\left(y_{n}\right),\left\|z_{n+1}-z_{n}\right\|_{2} \leq\left(1+\frac{1}{n+1}\right) D_{2}^{*}\left(D\left(y_{n+1}\right), D\left(y_{n}\right)\right) .
\end{gather*}
$$

4. Existence of solutions for the problem (3.1) and convergence of Algorithm 3.1

In this section, we prove the existence of solutions for the problem (3.1) and convergence of the iterative sequences generated by Algorithm 3.1.

Theorem 4.1. For $i \in\{1,2\}$, let $\left(B_{i},\|\cdot\|_{i}\right)$ be a uniformly smooth Banach space with the dual space B_{i}^{*} and $\rho_{B_{i}}(t) \leq C_{i} t^{2}$ for all $t \geq 0$, where $C_{i}>0$ is a constant. Let $H_{1}: B_{1} \rightarrow B_{1}^{*}$ be γ-strongly monotone and s_{1} Lipschitz continuous, $H_{2}: B_{2} \rightarrow B_{2}^{*}$ be strictly monotone and s_{2}-Lipschitz continuous, $g_{1}: B_{1} \rightarrow B_{1}$ be k_{1}-strongly accretive and l_{1}-Lipschitz continuous, $g_{2}: B_{2} \rightarrow B_{2}$ be k_{2}-strongly accretive and l_{2}-Lipschitz continuous, respectively. Let $A, C: B_{1} \rightarrow C B\left(B_{1}\right)$ be D_{1}^{*}-Lipschitz continuous with constants l_{A} and l_{C}, respectively, and $B, D: B_{2} \rightarrow C B\left(B_{2}\right)$ be D_{2}^{*}-Lipschitz continuous with constants l_{B} and l_{D}, respectively. Let $F: B_{1} \times B_{2} \times B_{1} \times B_{2} \rightarrow B_{1}^{*}$ and $G: B_{1} \times B_{2} \times B_{1} \times B_{2} \rightarrow B_{2}^{*}$ be mixed-Lipschitz continuous with constants $a_{1}, b_{1}, c_{1}, d_{1}$ and $a_{2}, b_{2}, c_{2}, d_{2}$, respectively. Assume that $M: B_{1} \rightarrow 2^{B_{1}^{*}}$ is a general H_{1}-monotone and $N: B_{2} \rightarrow 2^{B_{2}^{*}}$ is a general H_{2}-monotone and β-strongly monotone. If there exist constants $\lambda>0$ and $\rho>0$ such that

$$
\begin{align*}
\max \{ & \left(1-2 k_{1}+64 C_{1} l_{1}^{2}\right)^{\frac{1}{2}}+\frac{s_{1} l_{1}+\lambda a_{1}+\lambda c_{1} l_{A}}{\gamma}+\frac{a_{2}+c_{2} l_{C}}{\beta} \\
& \left.\left(1-2 k_{2}+64 C_{2} l_{2}^{2}\right)^{\frac{1}{2}}+\frac{s_{2} l_{2}+\rho b_{2}+\rho d_{2} l_{D}}{\rho \beta}+\frac{\lambda b_{1}+\lambda d_{1} l_{B}}{\gamma}\right\} \tag{4.1}
\end{align*}
$$

<1,
then the problem (3.1) has a solution (x, y, u, v, w, z) with $(x, y) \in B_{1} \times B_{2}$, $u \in A(x), v \in B(y), w \in C(x), z \in D(y)$ and the iterative sequences $\left\{x_{n}\right\}_{n \geq 0}$,
$\left\{y_{n}\right\}_{n \geq 0},\left\{u_{n}\right\}_{n \geq 0},\left\{v_{n}\right\}_{n \geq 0},\left\{w_{n}\right\}_{n \geq 0}$ and $\left\{z_{n}\right\}_{n \geq 0}$ generated by Algorithm 3.1 converge to x, y, u, v, w, z, respectively.

Proof. By (3.4), Lemma 2.1 and the Lipschitz continuity of H_{1} and g_{1}, we have

$$
\begin{align*}
& \left\|x_{n+1}-x_{n}\right\|_{1} \\
& =\| x_{n}-g_{1}\left(x_{n}\right)+R_{M, \lambda}^{H_{1}}\left(H_{1}\left(g_{1}\left(x_{n}\right)\right)-\lambda F\left(x_{n}, y_{n}, u_{n}, v_{n}\right)\right) \\
& \quad-\left(x_{n-1}-g_{1}\left(x_{n-1}\right)+R_{M, \lambda}^{H_{1}}\left(H_{1}\left(g_{1}\left(x_{n-1}\right)\right)\right.\right. \\
& \left.\left.\quad \quad-\lambda F\left(x_{n-1}, y_{n-1}, u_{n-1}, v_{n-1}\right)\right)\right) \|_{1} \\
& \leq\left\|x_{n}-x_{n-1}-\left(g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right)\right\|_{1} \\
& \quad+\| R_{M, \lambda}^{H_{1}}\left(H_{1}\left(g_{1}\left(x_{n}\right)\right)-\lambda F\left(x_{n}, y_{n}, u_{n}, v_{n}\right)\right) \\
& \quad \quad-R_{M, \lambda}^{H_{1}}\left(H_{1}\left(g_{1}\left(x_{n-1}\right)\right)-\lambda F\left(x_{n-1}, y_{n-1}, u_{n-1}, v_{n-1}\right)\right) \|_{1} \tag{4.2}\\
& \leq\left\|x_{n}-x_{n-1}-\left(g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right)\right\|_{1} \\
& \quad+\frac{1}{\gamma} \| H_{1}\left(g_{1}\left(x_{n}\right)\right)-H_{1}\left(g_{1}\left(x_{n-1}\right)\right) \\
& \quad \quad-\lambda\left(F\left(x_{n}, y_{n}, u_{n}, v_{n}\right)-F\left(x_{n-1}, y_{n-1}, u_{n-1}, v_{n-1}\right)\right) \|_{1} \\
& \leq\left\|x_{n}-x_{n-1}-\left(g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right)\right\|_{1}+\frac{s_{1} l_{1}}{\gamma}\left\|x_{n}-x_{n-1}\right\|_{1} \\
& \quad+\frac{\lambda}{\gamma}\left\|F\left(x_{n}, y_{n}, u_{n}, v_{n}\right)-F\left(x_{n-1}, y_{n-1}, u_{n-1}, v_{n-1}\right)\right\|_{1}, \quad \forall n \geq 1 .
\end{align*}
$$

Note that g_{1} is k_{1}-strongly accretive and B_{1} is a uniformly smooth Banach space. By Lemma 2.2, we get that

$$
\begin{align*}
\| & x_{n}-x_{n-1}-g_{1}\left(x_{n}\right)+g_{1}\left(x_{n-1}\right) \|_{1}^{2} \\
\leq & \left\|x_{n}-x_{n-1}\right\|_{1}^{2} \\
& -2\left\langle g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right), J_{1}\left(x_{n}-x_{n-1}-\left(g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right)\right)\right\rangle \\
= & \left\|x_{n}-x_{n-1}\right\|_{1}^{2}-2\left\langle g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right), J_{1}\left(x_{n}-x_{n-1}\right)\right\rangle \\
& -2\left\langle g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right), J_{1}\left(x_{n}-x_{n-1}-\left(g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right)\right)\right. \\
& \left.\quad-J_{1}\left(x_{n}-x_{n-1}\right)\right\rangle \tag{4.3}\\
\leq & \left\|x_{n}-x_{n-1}\right\|_{1}^{2}-2 k_{1}\left\|x_{n}-x_{n-1}\right\|_{1}^{2} \\
& +4 d^{2} \rho_{B}\left(\frac{4}{d}\left\|g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right\|_{1}\right) \\
\leq & \left(1-2 k_{1}\right)\left\|x_{n}-x_{n-1}\right\|_{1}^{2}+64 C_{1}\left\|g_{1}\left(x_{n}\right)-g_{1}\left(x_{n-1}\right)\right\|_{1}^{2} \\
\leq & \left(1-2 k_{1}+64 C_{1} l_{1}^{2}\right)\left\|x_{n}-x_{n-1}\right\|_{1}^{2}, \quad \forall n \geq 1,
\end{align*}
$$

where $J_{1}: B_{1} \rightarrow B_{1}{ }^{*}$ is the normalized duality mapping. By the mixed Lipschitz continuity of F, the D_{1}^{*}-Lipschitz continuity of A, the D_{2}^{*}-Lipschitz continuity of B, (3.6) and (4.2), we infer that

$$
\begin{align*}
\| & F\left(x_{n}, y_{n}, u_{n}, v_{n}\right)-F\left(x_{n-1}, y_{n-1}, u_{n-1}, v_{n-1}\right) \|_{1} \\
\leq & a_{1}\left\|x_{n}-x_{n-1}\right\|_{1}+b_{1}\left\|y_{n}-y_{n-1}\right\|_{2}+c_{1}\left\|u_{n}-u_{n-1}\right\|_{1} \\
& +d_{1}\left\|v_{n}-v_{n-1}\right\|_{2} \\
\leq & a_{1}\left\|x_{n}-x_{n-1}\right\|_{1}+b_{1}\left\|y_{n}-y_{n-1}\right\|_{2} \\
& +c_{1}\left(1+\frac{1}{n}\right) D_{1}^{*}\left(A\left(x_{n}\right), A\left(x_{n-1}\right)\right) \tag{4.4}\\
& +d_{1}\left(1+\frac{1}{n}\right) D_{2}^{*}\left(B\left(y_{n}\right), B\left(y_{n-1}\right)\right) \\
\leq & a_{1}\left\|x_{n}-x_{n-1}\right\|_{1}+b_{1}\left\|y_{n}-y_{n-1}\right\|_{2}+c_{1}\left(1+\frac{1}{n}\right) l_{A}\left\|x_{n}-x_{n-1}\right\|_{1} \\
& +d_{1}\left(1+\frac{1}{n}\right) l_{B}\left\|y_{n}-y_{n-1}\right\|_{2}, \quad \forall n \geq 1
\end{align*}
$$

It follows from (4.2)-(4.4) that

$$
\begin{align*}
& \left\|x_{n+1}-x_{n}\right\|_{1} \\
& \leq\left(\left(1-2 k_{1}+64 C_{1} l_{1}^{2}\right)^{\frac{1}{2}}+\frac{s_{1} l_{1}+\lambda a_{1}+\lambda c_{1}\left(1+\frac{1}{n}\right) l_{A}}{\gamma}\right)\left\|x_{n}-x_{n-1}\right\|_{1} \tag{4.5}\\
& \quad+\frac{\lambda b_{1}+\lambda d_{1}\left(1+\frac{1}{n}\right) l_{B}}{\gamma}\left\|y_{n}-y_{n-1}\right\|_{2}, \quad \forall n \geq 1
\end{align*}
$$

Similarly we conclude that

$$
\begin{align*}
& \left\|y_{n+1}-y_{n}\right\|_{2} \\
& =\| y_{n}-g_{2}\left(y_{n}\right)+R_{N, \rho}^{H_{2}}\left(H_{2}\left(g_{2}\left(y_{n}\right)\right)-\rho G\left(x_{n}, y_{n}, w_{n}, z_{n}\right)\right) \\
& \quad-\left(y_{n-1}-g_{2}\left(y_{n-1}\right)+R_{N, \rho}^{H_{2}}\left(H_{2}\left(g_{2}\left(y_{n-1}\right)\right)\right.\right. \\
& \left.\left.\quad-\rho G\left(x_{n-1}, y_{n-1}, w_{n-1}, z_{n-1}\right)\right)\right) \|_{2} \\
& \leq\left\|y_{n}-y_{n-1}-\left(g_{2}\left(y_{n}\right)-g_{2}\left(y_{n-1}\right)\right)\right\|_{2} \\
& \quad+\| R_{N, \rho}^{H_{2}}\left(H_{2}\left(g_{2}\left(y_{n}\right)\right)-\rho G\left(x_{n}, y_{n}, w_{n}, z_{n}\right)\right) \tag{4.6}\\
& \quad-R_{N, \rho}^{H_{2}}\left(H_{2}\left(g_{2}\left(y_{n-1}\right)\right)-\rho G\left(x_{n-1}, y_{n-1}, w_{n-1}, z_{n-1}\right)\right) \|_{2} \\
& \leq\left\|y_{n}-y_{n-1}-\left(g_{2}\left(y_{n}\right)-g_{2}\left(y_{n-1}\right)\right)\right\|_{2} \\
& \quad+\frac{1}{\rho \beta} \| H_{2}\left(g_{2}\left(y_{n}\right)\right)-H_{2}\left(g_{2}\left(y_{n-1}\right)\right) \\
& \quad \quad-\rho\left(G\left(x_{n}, y_{n}, w_{n}, z_{n}\right)-G\left(x_{n-1}, y_{n-1}, w_{n-1}, z_{n-1}\right)\right) \|_{2}
\end{align*}
$$

$$
\begin{aligned}
\leq & \left\|y_{n}-y_{n-1}-\left(g_{2}\left(y_{n}\right)-g_{2}\left(y_{n-1}\right)\right)\right\|_{2}+\frac{s_{2} l_{2}}{\rho \beta}\left\|y_{n}-y_{n-1}\right\|_{2} \\
& +\frac{1}{\beta}\left\|G\left(x_{n}, y_{n}, w_{n}, z_{n}\right)-G\left(x_{n-1}, y_{n-1}, w_{n-1}, z_{n-1}\right)\right\|_{2} \\
\leq & \left(\left(1-2 k_{2}+64 C_{2} l_{2}^{2}\right)^{\frac{1}{2}}+\frac{s_{2} l_{2}+\rho b_{2}+\rho d_{2}\left(1+\frac{1}{n}\right) l_{D}}{\rho \beta}\right)\left\|y_{n}-y_{n-1}\right\|_{2} \\
& +\frac{a_{2}+c_{2}\left(1+\frac{1}{n}\right) l_{C}}{\beta}\left\|x_{n}-x_{n-1}\right\|_{1}, \quad \forall n \geq 1
\end{aligned}
$$

By (4.5) and (4.6), we have

$$
\begin{align*}
& \left\|x_{n+1}-x_{n}\right\|_{1}+\left\|y_{n+1}-y_{n}\right\|_{2} \\
& \leq\left(\left(1-2 k_{1}+64 C_{1} l_{1}^{2}\right)^{\frac{1}{2}}+\frac{s_{1} l_{1}+\lambda a_{1}+\lambda c_{1}\left(1+\frac{1}{n}\right) l_{A}}{\gamma}\right. \\
& \left.\quad+\frac{a_{2}+c_{2}\left(1+\frac{1}{n}\right) l_{C}}{\beta}\right)\left\|x_{n}-x_{n-1}\right\|_{1} \\
& \quad+\left(\left(1-2 k_{2}+64 C_{2} l_{2}^{2}\right)^{\frac{1}{2}}+\frac{s_{2} l_{2}+\rho b_{2}+\rho d_{2}\left(1+\frac{1}{n}\right) l_{D}}{\rho \beta}\right. \tag{4.7}\\
& \left.\quad+\frac{\lambda b_{1}+\lambda d_{1}\left(1+\frac{1}{n}\right) l_{B}}{\gamma}\right)\left\|y_{n}-y_{n-1}\right\|_{2} \\
& \leq \theta_{n}\left(\left\|x_{n}-x_{n-1}\right\|_{1}+\left\|y_{n}-y_{n-1}\right\|_{2}\right), \quad \forall n \geq 1,
\end{align*}
$$

where

$$
\begin{aligned}
\theta_{n}=\max \{ & \left(1-2 k_{1}+64 C_{1} l_{1}^{2}\right)^{\frac{1}{2}}+\frac{s_{1} l_{1}+\lambda a_{1}+\lambda c_{1}\left(1+\frac{1}{n}\right) l_{A}}{\gamma} \\
& +\frac{a_{2}+c_{2}\left(1+\frac{1}{n}\right) l_{C}}{\beta},\left(1-2 k_{2}+64 C_{2} l_{2}^{2}\right)^{\frac{1}{2}} \\
& \left.+\frac{s_{2} l_{2}+\rho b_{2}+\rho d_{2}\left(1+\frac{1}{n}\right) l_{D}}{\rho \beta}+\frac{\lambda b_{1}+\lambda d_{1}\left(1+\frac{1}{n}\right) l_{B}}{\gamma}\right\}, \quad \forall n \geq 1 .
\end{aligned}
$$

Let

$$
\begin{aligned}
\theta=\max \{ & \left(1-2 k_{1}+64 C_{1} l_{1}^{2}\right)^{\frac{1}{2}}+\frac{s_{1} l_{1}+\lambda a_{1}+\lambda c_{1} l_{A}}{\gamma}+\frac{a_{2}+c_{2} l_{C}}{\beta}, \\
& \left.\left(1-2 k_{2}+64 C_{2} l_{2}^{2}\right)^{\frac{1}{2}}+\frac{s_{2} l_{2}+\rho b_{2}+\rho d_{2} l_{D}}{\rho \beta}+\frac{\lambda b_{1}+\lambda d_{1} l_{B}}{\gamma}\right\} .
\end{aligned}
$$

It is clear that $\theta_{n} \rightarrow \theta$ as $n \rightarrow \infty$. By (4.1), we know that $0<\theta<1$. It follows from (4.7) that $\left\{x_{n}\right\}_{n \geq 0}$ and $\left\{y_{n}\right\}_{n \geq 0}$ are both Cauchy sequences. Consequently there exist $x \in B_{1}$ and $y \in B_{2}$ such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$, respectively.

Next we prove that $u_{n} \rightarrow u \in A(x), v_{n} \rightarrow v \in B(y), w_{n} \rightarrow w \in C(x)$ and $z_{n} \rightarrow z \in D(y)$ as $n \rightarrow \infty$. In fact, it follows from the Lipschitz continuity of A, B, C, D and (3.4)-(3.6) that $\left\{u_{n}\right\}_{n \geq 0},\left\{v_{n}\right\}_{n \geq 0},\left\{w_{n}\right\}_{n \geq 0},\left\{z_{n}\right\}_{n \geq 0}$ are also

Cauchy sequences. Consequently, there exist $u \in B_{1}, v \in B_{2}, w \in B_{1}, z \in B_{2}$ such that $u_{n} \rightarrow u, v_{n} \rightarrow v, w_{n} \rightarrow w, z_{n} \rightarrow z$ as $n \rightarrow \infty$. Note that

$$
\begin{aligned}
d_{1}(u, A(x)) & \leq\left\|u-u_{n+1}\right\|_{1}+d_{1}\left(u_{n+1}, A(x)\right) \\
& \leq\left\|u-u_{n+1}\right\|_{1}+D_{1}^{*}\left(A\left(x_{n+1}\right), A(x)\right) \\
& \leq\left\|u-u_{n+1}\right\|_{1}+l_{A}\left\|x_{n}-x\right\|_{1} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Since $A(x)$ is closed, it follows that $u \in A(x)$. Similarly, $v \in B(y), w \in C(x)$, $z \in D(y)$. By the Lipschitz continuity of $g_{1}, g_{2}, B_{1}, B_{2}, F, G, P, Q, R_{M, \lambda}^{H_{1}}, R_{N, \rho}^{H_{2}}$ and Algorithm 3.1, we know that x, y, u, v, w, z satisfy the following relations:

$$
\begin{aligned}
g_{1}(x) & =R_{M, \lambda}^{H_{1}}\left(H_{1}\left(g_{1}(x)\right)-\lambda F(x, y, u, v)\right), \\
g_{2}(y) & =R_{N, \rho}^{H_{2}}\left(H_{2}\left(g_{2}(y)\right)-\rho G(x, y, w, z)\right) .
\end{aligned}
$$

Lemma 3.1 guarantees (x, y, u, v, w, z) is a solution of the problem (3.1). This completes the proof.

Remark 4.1. Theorem 4.1 extends and improves Theorem 3.4 in [9].

References

[1] Y. P. Fang and N. J. Huang, H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. Math. Lett. 17 (2004), no.6, 647-653.
[2] Y. P. Fang and N. J. Huang, H-monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput. 145 (2003), no.2-3, 795-803.
[3] Y. P. Fang and N. J. Huang, H-monotone operators and system of variational inclusions, Commun. Appl. Nonlinear Anal. 11 (2004), no.1, 93-101.
[4] Y. P. Fang, N. J. Huang and H. B. Thompson, A new system of variational inclusions with (H, η)-monotone operators in Hilbert spaces, Comput. Math. Appl. 49 (2005), no. 2-3, 365-374.
[5] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), no.2, 475488.
[6] J. W. Peng and D. L. Zhu, A new system of generalized mixed quasi-variational inclusions with (H, η)-monotone operators, J. Math. Anal. Appl. 327 (2007), no.1, 175-187.
[7] G. Stampacchia, Formes bilinearies coercivities sur les ensembles convexes, C. R. Acad. Sci. Paris 258 (1964), 4413-4416.
[8] R. U. Verma, A-monotononicity and applications to nonlinear variational inclusion problems, J. Appl. Math. Stoch. Anal. 17 (2004), no.2, 193-195.
[9] F. Q. Xia and N. J. Huang, Variational inclusions with a general H-monotone operator in Banach spaces, Comput. Math. Appl. 54 (2007), no.1, 24-30.
[10] W. Y. Yan, Y. P. Fang and N. J. Huang, A new system of set-valued variational inclusions with H-monotone operators, Math. Inequal. Appl. 8 (2005), no.3, 537-546.

Jinsong Li
Department of Technology
Tieling Normal College
Tieling, Liaoning 112001, People's Republic of China
E-mail address: jinsong1972@sohu.com

Wei Wang
Department of Mathematics
Liaoning Normal University
Dalian, Liaoning 116029, People's Republic of China
E-mail address: weiwang830329@163.com
Min-Hyung Cho
Department of Applied Mathematics
Kumoh National Institute of Technology
Gumi 730-701, Korea
E-mail address: mignon@kumoh.ac.kr
Shin Min Kang
Department of Mathematics and RINS
Gyeongsang National University
Jinju 660-701, Korea
E-mail address: smkang@gnu.ac.kr

[^0]: Received July 28, 2010; Accepted August 5, 2010.
 2000 Mathematics Subject Classification. 47J20, 47J22, 49J40.
 Key words and phrases. General H-monotone operator, reflexive Banach space, resolvent operator, system of nonlinear variational inclusions, contraction mapping.

 * Corresponding author.

