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A SYSTEM OF NONLINEAR VARIATIONAL INCLUSIONS

WITH GENERAL H-MONOTONE OPERATORS

IN BANACH SPACES

Jinsong Li, Wei Wang, Min-Hyung Cho and Shin Min Kang∗

Abstract. A system of nonlinear variational inclusions involving general

H-monotone operators in Banach spaces is introduced. Using the resol-
vent operator technique, we suggest an iterative algorithm for finding

approximate solutions to the system of nonlinear variational inclusions,

and establish the existence of solutions and convergence of the iterative
algorithm for the system of nonlinear variational inclusions.

1. Introduction

Variational inequality theory, which was introduced by Stampacchia [7] in
1964, has emerged as an useful and interesting branch of pure and applied
sciences with a wide range of applications in mathematical programming, opti-
mization theory, engineering, elasticity theory and transportation equilibrium
etc.

In recent years, variational inequalities have been extended and generalized
in different directions, and one of the most important generalizations is called
the variational inclusion. Fang and Huang [3] introduced and studied a system
of variational inclusions involving H-monotone operators. Moreover, Verma
[8] and Fang et al. [4] introduced a system of variational inclusions involving
A-monotone operators and (H, η)-monotone operators, respectively. Fang and
Huang [1] introduced a new class of generalized accretive operator named H-
accretive operators in Banach spaces. As a promotion of these results, Xia and
Huang [9] introduced a new system of variational inclusions involving general
H-monotone operators in Banach spaces.

Motivated and inspired by the research work in [1-4,6-10], we introduce
and study a new system of nonlinear variational inclusions with general H-
monotone operators in Banach spaces, which contains the variational inequal-
ities and variational inclusions in [4,6] as special cases. By using the resolvent
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operator technique for the general H-monotone operator, we construct an it-
erative algorithm of the system of nonlinear variational inclusions and prove
the existence of solutions and convergence of the iterative algorithm for the
system of nonlinear variational inclusions. The result in this paper extends
and improves Theorem 3.4 in [9].

2. Preliminaries

Assume that (B, ‖ · ‖) is a Banach space. Let CB(B) denote the families of
all nonempty closed bounded subsets of B and D∗(·, ·) denote the Hausdorff
metric on CB(B) defined by

D∗(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
, ∀A,B ∈ CB(B),

where d(a,B) = infb∈B ‖a− b‖ and d(A, b) = infa∈A ‖a− b‖.

Definition 2.1. ([9]) Let B be a Banach space with the dual space B∗ and
P : B → B∗ and g : B → B be two mappings.

(1) P is said to be monotone if

〈P (x)− P (y), x− y〉 ≥ 0, ∀x, y ∈ B;

(2) P is said to be strictly monotone if P is monotone and

〈P (x)− P (y), x− y〉 = 0 if and only if x = y;

(3) P is said to be α-strongly monotone if there exists α > 0 satisfying

〈P (x)− P (y), x− y〉 ≥ α‖x− y‖2, ∀x, y ∈ B;

(4) P is said to be β-Lipschitz continuous if there exists β > 0 satisfying

‖P (x)− P (y)‖ ≤ β‖x− y‖, ∀x, y ∈ B;

(5) g is said to be η-strongly accretive if there exists η > 0 satisfying

〈g(x)− g(y), j(x− y)〉 ≥ η‖x− y‖2, ∀x, y ∈ B,

where j(x− y) ∈ J(x− y) and J : B → 2B
∗

is the normalized duality mapping
defined by

J(x) = {f ∈ B∗ : 〈f, x〉 = ‖f‖ · ‖x‖, ‖f‖ = ‖x‖}, ∀x ∈ B.

Definition 2.2. ([6,9]) Let B be a Banach space with the dual space B∗ and
T : B → 2B

∗
and A : B → CB(B) be set-valued mappings.

(1) T is said to be µ-strongly monotone if there exists µ > 0 satisfying

〈u− v, x− y〉 ≥ µ‖x− y‖2, ∀x, y ∈ B, u ∈ Tx, v ∈ Ty;

(2) A is said to be D∗-Lipschitz if there exists a constant ξ > 0 such that

D∗(A(x), A(y)) ≤ ξ‖x− y‖, ∀x, y ∈ B.
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Definition 2.3. For i ∈ {1, 2}, let (Bi, ‖ · ‖i) be a Banach space with the dual
space B∗i . A mapping F : B1×B2×B1×B2 → B∗1 is said to be mixed-Lipschitz
continuous if there exist δ > 0, ε > 0, ε > 0 and ζ > 0 such that

‖F (x1, y1, u1, v1)− F (x2, y2, u2, v2)‖1
≤ δ‖x1 − x2‖1 + ε‖y1 − y2‖2 + ε‖u1 − u2‖1 + ζ‖v1 − v2‖2

for all x1, x2, u1, u2 ∈ B1 and y1, y2, v1, v2 ∈ B2.

Similarly we can define the mixed-Lipschitz continuity of a mapping G :
B1 ×B2 ×B1 ×B2 → B∗2 .

Definition 2.4. ([9]) Let B be a Banach space with the dual space B∗ and
H : B → B∗ be a mapping. A set-valued mapping M : B → 2B

∗
is said to be

general H-monotone if M is monotone and (H+λM)(B) = B∗ holds for every
λ > 0.

Definition 2.5. ([9]) Let B be a reflexive Banach space with the dual space
B∗, H : B → B∗ be a strictly monotone mapping and M : B → 2B

∗
be

a general H-monotone mapping. A resolvent operator (or proximal mapping)
RHM,λ is defined by

RHM,λ(x∗) = (H + λM)−1(x∗), ∀x∗ ∈ B∗,
where λ > 0 is a constant.

Lemma 2.1. ([13]) Assume that B is a reflexive Banach space with the dual
space B∗. Let H : B → B∗ be a mapping and M : B → 2B

∗
be a general

H-monotone mapping.
(a) If H : B → B∗ is a strongly monotone mapping with constant γ > 0, then

the resolvent operator RHM,λ : B∗ → B is Lipschitz continuous with constant 1
γ ;

(b) If H : B → B∗ is a strictly monotone mapping and M : B → 2B
∗

is a
strongly monotone mapping with constant β > 0, then the resolvent operator
RHM,λ : B∗ → B is Lipschitz continuous with constant 1

λβ .

Lemma 2.2. ([9]) Let B be a uniformly smooth Banach space and J be the
normalized duality mapping from B into B∗. Then

(a) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, J(x+ y)〉, ∀x, y ∈ B;

(b) 〈x−y, J(x)−J(y)〉 ≤ 2d2ρB
(
4
d‖x−y‖

)
, where d =

(
1
2 (‖x‖2 + ‖y‖2)

) 1
2 , ∀x,

y ∈ B.

3. A system of nonlinear variational inclusions
and an iterative algorithm

Let (B1, ‖·‖1) and (B2, ‖·‖2) be two Banach spaces with the topological dual
spaces B1

∗ and B2
∗, respectively, H1 : B1 → B∗1 , H2 : B2 → B∗2 , g1 : B1 → B1,

g2 : B2 → B2, F : B1 × B2 × B1 × B2 → B∗1 , G : B1 × B2 × B1 × B2 → B∗2
be six mappings and A,C : B1 → CB(B1), B,D : B2 → CB(B2) be four
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set-valued mappings, M : B1 → 2B1
∗

be a general H1-monotone mapping and
N : B2 → 2B2

∗
be a general H2-monotone mapping. We consider the following

problem of finding (x, y, u, v, w, z) such that (x, y) ∈ B1 × B2, u ∈ A(x), v ∈
B(y), w ∈ C(x), z ∈ D(y) satisfying{

0 ∈ F (x, y, u, v) +M(g1(x)),

0 ∈ G(x, y, w, z) +N(g2(y)).
(3.1)

The problem (3.1) is called a system of nonlinear variational inclusions.

Some special cases of the problem (3.1) are as follows:
(A) If B1 and B2 are two Hilbert spaces, F (x, y, u, v) = F1(x, y) + P (u, v),

G(x, y, u, v) = G1(x, y) + Q(u, v) for all x, u ∈ B1, y, v ∈ B2, where F1, P :
B1 × B2 → B1, G1, Q : B1 × B2 → B2 are mappings, then the problem (3.1)
reduces to the below system of variational inclusions with general H-monotone
operators [6], which is to find (x, y, u, v, w, z) with (x, y) ∈ B1 ×B2, u ∈ A(x),
v ∈ B(y), w ∈ C(x), z ∈ D(y) satisfying{

0 ∈ F1(x, y) + P (u, v) +M(g1(x)),

0 ∈ G1(x, y) +Q(w, z) +N(g2(y)).
(3.2)

(B) If B1 and B2 are two Hilbert spaces, g1 ≡ I1, g2 ≡ I2, F (x, y, u, v) =
F1(x, y), G(x, y, u, v) = G1(x, y) for all x, u ∈ B1, y, v ∈ B2, where F1 : B1 ×
B2 → B1, G1 : B1 × B2 → B2 are mappings, then the problem (3.1) reduces
to the system of variational inclusions [4], which is to find (x, y) ∈ B1 × B2

satisfying {
0 ∈ F1(x, y) +M(x),

0 ∈ G1(x, y) +N(y).
(3.3)

Lemma 3.1. Let (B1, ‖ · ‖1) and (B2, ‖ · ‖2) be two Banach spaces with the
topological dual spaces B1

∗ and B2
∗, respectively. Let H1 : B1 → B1

∗ be
a strongly monotone mapping and H2 : B2 → B2

∗ be a strictly monotone
mapping, g1 : B1 → B1, g2 : B2 → B2, F : B1 × B2 × B1 × B2 → B∗1 and
G : B1 × B2 × B1 × B2 → B∗2 be four mappings and A,C : B1 → CB(B1),
B,D : B2 → CB(B2) be four set-valued mappings, M : B1 → 2B1

∗
be a general

H1-monotone mapping and N : B2 → 2B2
∗

be a general H2-monotone mapping.
Then (x, y, u, v, w, z) with (x, y) ∈ B1 × B2, u ∈ A(x), v ∈ B(y), w ∈ C(x),
z ∈ D(y) is a solution of the problem (3.1) if and only if

g1(x) = RH1

M,λ

(
H1(g1(x))− λF (x, y, u, v)

)
,

g2(x) = RH2

N,ρ

(
H2(g2(y))− ρG(x, y, w, z)

)
,

where RH1

M,λ = (H1 + λM)−1, RH2

N,ρ = (H2 + ρN)−1, λ > 0 and ρ > 0 are
constants.

Based on Lemma 3.1 and Nadler’s result [5], we suggest the following
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Algorithm 3.1. For any given x0 ∈ B1, y0 ∈ B2, compute the iterative
sequences {xn}n≥0, {yn}n≥0, {un}n≥0, {vn}n≥0, {wn}n≥0 and {zn}n≥0 by,
∀n ≥ 0,

xn+1 = xn − g1(xn) +RH1

M,λ

(
H1(g1(xn))− λF (xn, yn, un, vn)

)
, (3.4)

yn+1 = yn − g2(yn) +RH2

N,ρ

(
H2(g2(yn))− ρG(xn, yn, wn, zn)

)
, (3.5)

∃un ∈ A(xn), ‖un+1 − un‖1 ≤
(

1 +
1

n+ 1

)
D∗1(A(xn+1), A(xn)),

∃ vn ∈ B(yn), ‖vn+1 − vn‖2 ≤
(

1 +
1

n+ 1

)
D∗2(B(yn+1), B(yn)),

∃wn ∈ C(xn), ‖wn+1 − wn‖1 ≤
(

1 +
1

n+ 1

)
D∗1(C(xn+1), C(xn)),

∃ zn ∈ D(yn), ‖zn+1 − zn‖2 ≤
(

1 +
1

n+ 1

)
D∗2(D(yn+1), D(yn)).

(3.6)

4. Existence of solutions for the problem (3.1)
and convergence of Algorithm 3.1

In this section, we prove the existence of solutions for the problem (3.1) and
convergence of the iterative sequences generated by Algorithm 3.1.

Theorem 4.1. For i ∈ {1, 2}, let (Bi, ‖ · ‖i) be a uniformly smooth Ba-
nach space with the dual space B∗i and ρBi

(t) ≤ Cit
2 for all t ≥ 0, where

Ci > 0 is a constant. Let H1 : B1 → B∗1 be γ-strongly monotone and s1-
Lipschitz continuous, H2 : B2 → B∗2 be strictly monotone and s2-Lipschitz
continuous, g1 : B1 → B1 be k1-strongly accretive and l1-Lipschitz continuous,
g2 : B2 → B2 be k2-strongly accretive and l2-Lipschitz continuous, respectively.
Let A,C : B1 → CB(B1) be D∗1-Lipschitz continuous with constants lA and
lC , respectively, and B,D : B2 → CB(B2) be D∗2-Lipschitz continuous with
constants lB and lD, respectively. Let F : B1 × B2 × B1 × B2 → B∗1 and
G : B1 × B2 × B1 × B2 → B∗2 be mixed-Lipschitz continuous with constants
a1, b1, c1, d1 and a2, b2, c2, d2, respectively. Assume that M : B1 → 2B

∗
1

is a general H1-monotone and N : B2 → 2B
∗
2 is a general H2-monotone and

β-strongly monotone. If there exist constants λ > 0 and ρ > 0 such that

max

{(
1− 2k1 + 64C1l1

2
) 1

2 +
s1l1 + λa1 + λc1lA

γ
+
a2 + c2lC

β
,

(
1− 2k2 + 64C2l2

2
) 1

2 +
s2l2 + ρb2 + ρd2lD

ρβ
+
λb1 + λd1lB

γ

}
< 1,

(4.1)

then the problem (3.1) has a solution (x, y, u, v, w, z) with (x, y) ∈ B1 × B2,
u ∈ A(x), v ∈ B(y), w ∈ C(x), z ∈ D(y) and the iterative sequences {xn}n≥0,
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{yn}n≥0, {un}n≥0, {vn}n≥0, {wn}n≥0 and {zn}n≥0 generated by Algorithm 3.1
converge to x, y, u, v, w, z, respectively.

Proof. By (3.4), Lemma 2.1 and the Lipschitz continuity of H1 and g1, we have

‖xn+1 − xn‖1
=
∥∥xn − g1(xn) +RH1

M,λ

(
H1(g1(xn))− λF (xn, yn, un, vn)

)
−
(
xn−1 − g1(xn−1) +RH1

M,λ

(
H1(g1(xn−1))

− λF (xn−1, yn−1, un−1, vn−1)
))∥∥

1

≤ ‖xn − xn−1 − (g1(xn)− g1(xn−1))‖1
+
∥∥RH1

M,λ

(
H1(g1(xn))− λF (xn, yn, un, vn)

)
−RH1

M,λ

(
H1(g1(xn−1))− λF (xn−1, yn−1, un−1, vn−1)

)∥∥
1

≤ ‖xn − xn−1 − (g1(xn)− g1(xn−1))‖1

+
1

γ

∥∥H1(g1(xn))−H1(g1(xn−1))

− λ
(
F (xn, yn, un, vn)− F (xn−1, yn−1, un−1, vn−1)

)∥∥
1

≤ ‖xn − xn−1 − (g1(xn)− g1(xn−1))‖1 +
s1l1
γ
‖xn − xn−1‖1

+
λ

γ
‖F (xn, yn, un, vn)− F (xn−1, yn−1, un−1, vn−1)‖1, ∀n ≥ 1.

(4.2)

Note that g1 is k1-strongly accretive and B1 is a uniformly smooth Banach
space. By Lemma 2.2, we get that

‖xn − xn−1 − g1(xn) + g1(xn−1)‖21
≤ ‖xn − xn−1‖12

− 2
〈
g1(xn)− g1(xn−1), J1(xn − xn−1 − (g1(xn)− g1(xn−1)))

〉
= ‖xn − xn−1‖12 − 2

〈
g1(xn)− g1(xn−1), J1(xn − xn−1)

〉
− 2
〈
g1(xn)− g1(xn−1), J1(xn − xn−1 − (g1(xn)− g1(xn−1)))

− J1(xn − xn−1)
〉

≤ ‖xn − xn−1‖12 − 2k1‖xn − xn−1‖12

+ 4d2ρB

(
4

d
‖g1(xn)− g1(xn−1)‖1

)
≤ (1− 2k1)‖xn − xn−1‖12 + 64C1‖g1(xn)− g1(xn−1)‖12

≤ (1− 2k1 + 64C1l1
2)‖xn − xn−1‖12, ∀n ≥ 1,

(4.3)
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where J1 : B1 → B1
∗ is the normalized duality mapping. By the mixed Lips-

chitz continuity of F , the D∗1-Lipschitz continuity of A, the D∗2-Lipschitz con-
tinuity of B, (3.6) and (4.2), we infer that

‖F (xn, yn, un, vn)− F (xn−1, yn−1, un−1, vn−1)‖1
≤ a1‖xn − xn−1‖1 + b1‖yn − yn−1‖2 + c1‖un − un−1‖1

+ d1‖vn − vn−1‖2
≤ a1‖xn − xn−1‖1 + b1‖yn − yn−1‖2

+ c1

(
1 +

1

n

)
D∗1(A(xn), A(xn−1))

+ d1

(
1 +

1

n

)
D∗2(B(yn), B(yn−1))

≤ a1‖xn − xn−1‖1 + b1‖yn − yn−1‖2 + c1

(
1 +

1

n

)
lA‖xn − xn−1‖1

+ d1

(
1 +

1

n

)
lB‖yn − yn−1‖2, ∀n ≥ 1.

(4.4)

It follows from (4.2)-(4.4) that

‖xn+1 − xn‖1

≤
((

1− 2k1 + 64C1l1
2
) 1

2 +
s1l1 + λa1 + λc1(1 + 1

n )lA

γ

)
‖xn − xn−1‖1

+
λb1 + λd1(1 + 1

n )lB

γ
‖yn − yn−1‖2, ∀n ≥ 1.

(4.5)

Similarly we conclude that

‖yn+1 − yn‖2
=
∥∥yn − g2(yn) +RH2

N,ρ

(
H2(g2(yn))− ρG(xn, yn, wn, zn)

)
−
(
yn−1 − g2(yn−1) +RH2

N,ρ

(
H2(g2(yn−1))

− ρG(xn−1, yn−1, wn−1, zn−1)
))∥∥

2

≤ ‖yn − yn−1 − (g2(yn)− g2(yn−1))‖2
+
∥∥RH2

N,ρ

(
H2(g2(yn))− ρG(xn, yn, wn, zn)

)
−RH2

N,ρ

(
H2(g2(yn−1))− ρG(xn−1, yn−1, wn−1, zn−1)

)∥∥
2

≤ ‖yn − yn−1 − (g2(yn)− g2(yn−1))‖2

+
1

ρβ

∥∥H2(g2(yn))−H2(g2(yn−1))

− ρ
(
G(xn, yn, wn, zn)−G(xn−1, yn−1, wn−1, zn−1)

)∥∥
2

(4.6)
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≤ ‖yn − yn−1 − (g2(yn)− g2(yn−1))‖2 +
s2l2
ρβ
‖yn − yn−1‖2

+
1

β
‖G(xn, yn, wn, zn)−G(xn−1, yn−1, wn−1, zn−1)‖2

≤
((

1− 2k2 + 64C2l2
2
) 1

2 +
s2l2 + ρb2 + ρd2(1 + 1

n )lD

ρβ

)
‖yn − yn−1‖2

+
a2 + c2(1 + 1

n )lC

β
‖xn − xn−1‖1, ∀n ≥ 1.

By (4.5) and (4.6), we have

‖xn+1 − xn‖1 + ‖yn+1 − yn‖2

≤
((

1− 2k1 + 64C1l1
2
) 1

2 +
s1l1 + λa1 + λc1(1 + 1

n )lA

γ

+
a2 + c2(1 + 1

n )lC

β

)
‖xn − xn−1‖1

+

((
1− 2k2 + 64C2l2

2
) 1

2 +
s2l2 + ρb2 + ρd2(1 + 1

n )lD

ρβ

+
λb1 + λd1(1 + 1

n )lB

γ

)
‖yn − yn−1‖2

≤ θn
(
‖xn − xn−1‖1 + ‖yn − yn−1‖2

)
, ∀n ≥ 1,

(4.7)

where

θn = max

{(
1− 2k1 + 64C1l1

2
) 1

2 +
s1l1 + λa1 + λc1(1 + 1

n )lA

γ

+
a2 + c2(1 + 1

n )lC

β
,
(
1− 2k2 + 64C2l2

2
) 1

2

+
s2l2 + ρb2 + ρd2(1 + 1

n )lD

ρβ
+
λb1 + λd1(1 + 1

n )lB

γ

}
, ∀n ≥ 1.

Let

θ = max

{(
1− 2k1 + 64C1l1

2
) 1

2 +
s1l1 + λa1 + λc1lA

γ
+
a2 + c2lC

β
,

(
1− 2k2 + 64C2l2

2
) 1

2 +
s2l2 + ρb2 + ρd2lD

ρβ
+
λb1 + λd1lB

γ

}
.

It is clear that θn → θ as n → ∞. By (4.1), we know that 0 < θ < 1.
It follows from (4.7) that {xn}n≥0 and {yn}n≥0 are both Cauchy sequences.
Consequently there exist x ∈ B1 and y ∈ B2 such that xn → x and yn → y as
n→∞, respectively.

Next we prove that un → u ∈ A(x), vn → v ∈ B(y), wn → w ∈ C(x) and
zn → z ∈ D(y) as n → ∞. In fact, it follows from the Lipschitz continuity of
A,B,C,D and (3.4)-(3.6) that {un}n≥0, {vn}n≥0, {wn}n≥0, {zn}n≥0 are also



A SYSTEM OF NONLINEAR VARIATIONAL INCLUSIONS 679

Cauchy sequences. Consequently, there exist u ∈ B1, v ∈ B2, w ∈ B1, z ∈ B2

such that un → u, vn → v, wn → w, zn → z as n→∞. Note that

d1(u,A(x)) ≤ ‖u− un+1‖1 + d1(un+1, A(x))

≤ ‖u− un+1‖1 +D∗1(A(xn+1), A(x))

≤ ‖u− un+1‖1 + lA‖xn − x‖1 → 0 as n→∞.

Since A(x) is closed, it follows that u ∈ A(x). Similarly, v ∈ B(y), w ∈ C(x),

z ∈ D(y). By the Lipschitz continuity of g1, g2, B1, B2, F,G, P,Q, R
H1

M,λ, R
H2

N,ρ

and Algorithm 3.1, we know that x, y, u, v, w, z satisfy the following relations:

g1(x) = RH1

M,λ

(
H1(g1(x))− λF (x, y, u, v)

)
,

g2(y) = RH2

N,ρ

(
H2(g2(y))− ρG(x, y, w, z)

)
.

Lemma 3.1 guarantees (x, y, u, v, w, z) is a solution of the problem (3.1). This
completes the proof. �

Remark 4.1. Theorem 4.1 extends and improves Theorem 3.4 in [9].
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