• 제목/요약/키워드: Grassmann

검색결과 17건 처리시간 0.025초

Comprehensive studies of Grassmann manifold optimization and sequential candidate set algorithm in a principal fitted component model

  • Chaeyoung, Lee;Jae Keun, Yoo
    • Communications for Statistical Applications and Methods
    • /
    • 제29권6호
    • /
    • pp.721-733
    • /
    • 2022
  • In this paper we compare parameter estimation by Grassmann manifold optimization and sequential candidate set algorithm in a structured principal fitted component (PFC) model. The structured PFC model extends the form of the covariance matrix of a random error to relieve the limits that occur due to too simple form of the matrix. However, unlike other PFC models, structured PFC model does not have a closed form for parameter estimation in dimension reduction which signals the need of numerical computation. The numerical computation can be done through Grassmann manifold optimization and sequential candidate set algorithm. We conducted numerical studies to compare the two methods by computing the results of sequential dimension testing and trace correlation values where we can compare the performance in determining dimension and estimating the basis. We could conclude that Grassmann manifold optimization outperforms sequential candidate set algorithm in dimension determination, while sequential candidate set algorithm is better in basis estimation when conducting dimension reduction. We also applied the methods in real data which derived the same result.

그라스만의 수학 인식과 벡터공간의 일반화 (Grassmann's Mathematical Epistemology and Generalization of Vector Spaces)

  • 이희정;신경희
    • 한국수학사학회지
    • /
    • 제26권4호
    • /
    • pp.245-257
    • /
    • 2013
  • Hermann Grassmann classified mathematics and extended the dimension of vector spaces by using dialectics of contrasts. In this paper, we investigate his mathematical idea and its background, and the process of the classification of mathematics. He made a synthetic concept of mathematics based on his idea of 'equal' and 'inequal', 'discrete' and 'indiscrete' mathematics. Also, he showed a creation of new mathematics and a process of generalization using a dialectic of contrast of 'special' and 'general', 'real' and 'formal'. In addition, we examine his unique development in using 'real' and 'formal' in a process of generalization of basis and dimension of a vector space. This research on Grassmann will give meaningful suggestion to an effective teaching and learning of linear algebra.

Static output feedback pole assignment of 2-input, 2-output, 4th order systems in Grassmann space

  • Kim, Su-Woon;Song, Seong-Ho;Kang, Min-Jae;Kim, Ho-Chan
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1353-1359
    • /
    • 2019
  • It is presented in this paper that the static output feedback (SOF) pole-assignment problem of some linear time-invariant systems can be completely resolved by parametrization in real Grassmann space. For the real Grassmannian parametrization, the so-called Plucker matrix is utilized as a linear matrix formula formulated from the SOF variable's coefficients of a characteristic polynomial constrained in Grassmann space. It is found that the exact SOF pole assignability is determined by the linear independency of columns of Plucker sub-matrix and by full-rank of that sub-matrix. It is also presented that previous diverse pole-assignment methods and various computation algorithms of the real SOF gains for 2-input, 2-output, 4th order systems are unified in a deterministic way within this real Grassmannian parametrization method.

Some Properties of Complex Grassmann Manifolds

  • Kim, In-Su
    • 호남수학학술지
    • /
    • 제5권1호
    • /
    • pp.45-69
    • /
    • 1983
  • The hermitian structures on complex manifolds have been studied by several mathematicians ([1], [2], and [3]), and the Kähler structure on hermitian manifolds have been so much too ([6], [12], and [15]). There has been some gradual progress in studying the invariant forms on Grassmann manifolds ([17]). The purpose of this dissertation is to prove the Theorem 3.4 and the Theorem 4.7, with relation to the nature of complex Grassmann manifolds. In $\S$ 2. in order to prove the Theorem 4.7, which will be explicated further in $\S$ 4, the concepts of the hermitian structure, connection and curvature have been defined. and the characteristic nature about these were proved. (Proposition 2.3, 2.4, 2.9, 2.11, and 2.12) Two characteristics were proved in $\S$ 3. They are almost not proved before: particularly. we proved the Theorem 3.3 : $G_{k}(C^{n+k})=\frac{GL(n+k,C)}{GL(k,n,C)}=\frac{U(n+k)}{U(k){\times}U(n)}$ In $\S$ 4. we explained and proved the Theorem 4. 7 : i) Complex Grassmann manifolds are Kahlerian. ii) This Kähler form is $\pi$-fold of curvature form in hyperplane section bundle. Prior to this proof. some propositions and lemmas were proved at the same time. (Proposition 4.2, Lemma 4.3, Corollary 4.4 and Lemma 4.5).

  • PDF

A NOTE ON DERIVATIONS OF A SULLIVAN MODEL

  • Kwashira, Rugare
    • 대한수학회논문집
    • /
    • 제34권1호
    • /
    • pp.279-286
    • /
    • 2019
  • Complex Grassmann manifolds $G_{n,k}$ are a generalization of complex projective spaces and have many important features some of which are captured by the $Pl{\ddot{u}}cker$ embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$ where $N=\(^n_k\)$. The problem of existence of cross sections of fibrations can be studied using the Gottlieb group. In a more generalized context one can use the relative evaluation subgroup of a map to describe the cohomology of smooth fiber bundles with fiber the (complex) Grassmann manifold $G_{n,k}$. Our interest lies in making use of techniques of rational homotopy theory to address problems and questions involving applications of Gottlieb groups in general. In this paper, we construct the Sullivan minimal model of the (complex) Grassmann manifold $G_{n,k}$ for $2{\leq}k<n$, and we compute the rational evaluation subgroup of the embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$. We show that, for the Sullivan model ${\phi}:A{\rightarrow}B$, where A and B are the Sullivan minimal models of ${\mathbb{C}}P^{N-1}$ and $G_{n,k}$ respectively, the evaluation subgroup $G_n(A,B;{\phi})$ of ${\phi}$ is generated by a single element and the relative evaluation subgroup $G^{rel}_n(A,B;{\phi})$ is zero. The triviality of the relative evaluation subgroup has its application in studying fibrations with fibre the (complex) Grassmann manifold.

ON (m, n)-IDEALS OF AN ORDERED ABEL-GRASSMANN GROUPOID

  • YOUSAFZAI, FAISAL;KHAN, ASAD;IAMPAN, AIYARED
    • Korean Journal of Mathematics
    • /
    • 제23권3호
    • /
    • pp.357-370
    • /
    • 2015
  • In this paper, we introduce the concept of (m, n)-ideals in a non-associative ordered structure, which is called an ordered Abel-Grassmann's groupoid, by generalizing the concept of (m, n)-ideals in an ordered semigroup [14]. We also study the (m, n)-regular class of an ordered AG-groupoid in terms of (m, n)-ideals.

Construction Algorithm of Grassmann Space Parameters in Linear Output Feedback Systems

  • Kim Su-Woon
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.430-443
    • /
    • 2005
  • A general construction algorithm of the Grassmann space parameters in linear systems - so-called, the Plucker matrix, 'L' in m-input, p-output, n-th order static output feedback systems and the Plucker matrix, $'L^{aug}'$ in augmented (m+d)-input, (p+d)-output, (n+d)-th order static output feedback systems - is presented for numerical checking of necessary conditions of complete static and complete minimum d-th order dynamic output feedback pole-assignments, respectively, and also for discernment of deterministic computation condition of their pole-assignable real solutions. Through the construction of L, it is shown that certain generically pole-assignable strictly proper mp > n system is actually none pole-assignable over any (real and complex) output feedbacks, by intrinsic rank deficiency of some submatrix of L. And it is also concretely illustrated that this none pole-assignable mp > n system by static output feedback can be arbitrary pole-assignable system via minimum d-th order dynamic output feedback, which is constructed by deterministic computation under full­rank of some submatrix of $L^{aug}$.

Evaluation Subgroups of Mapping Spaces over Grassmann Manifolds

  • Abdelhadi Zaim
    • Kyungpook Mathematical Journal
    • /
    • 제63권1호
    • /
    • pp.131-139
    • /
    • 2023
  • Let Vk,n (ℂ) denote the complex Steifel and Grk,n (ℂ) the Grassmann manifolds for 1 ≤ k < n. In this paper, we compute, in terms of the Sullivan minimal models, the evaluation subgroups and, more generally, the relative evaluation subgroups of the fibration p : Vk,k+n (ℂ) → Grk,k+n (ℂ). In particular, we prove that G* (Grk,k+n (ℂ), Vk,k+n (ℂ) ; p) is isomorphic to Grel* (Grk,k+n (ℂ), Vk,k+n (ℂ) ; p) ⊕ G* (Vk,k+n (ℂ)).