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Abstract 

It is presented in this paper that the static output feedback (SOF) pole-assignment problem of some linear 

time-invariant systems can be completely resolved by parametrization in real Grassmann space. For the real 

Grassmannian parametrization, the so-called Plücker matrix is utilized as a linear matrix formula formulated from 

the SOF variable’s coefficients of a characteristic polynomial constrained in Grassmann space. It is found that the 

exact SOF pole assignability is determined by the linear independency of columns of Plücker sub-matrix and by 

full-rank of that sub-matrix. It is also presented that previous diverse pole-assignment methods and various 

computation algorithms of the real SOF gains for 2-input, 2-output, 4th order systems are unified in a deterministic 

way within this real Grassmannian parametrization method. 
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Ⅰ. Introduction

The 2-input, 2-output systems are a small

class of general multivariable systems that are

commonly encountered in practical applications

such as gas-turbine fuel oil control in airplane

systems, reel-to-reel tape drivers, artificial

ventilation systems for respiratory failure patients,

etc. However, the necessary and sufficient

condition of exact pole-assignment by static

output feedback (SOF) in 2-input, 2-output, th

order strictly proper linear time-invariant systems,

has been not known, and also stable computation

algorithms covering whole solutions of the exact

real SOF gains have been not developed [1]-[6].

The study of SOF pole-assignment for the exact

pole locations was pioneered by Kimura [3],

where it is proved that if      in -input,

-output, th order system, the pole-assignment

by SOF can always be available in controllable

and observable systems over distinct poles,

provided that slight modification of the poles to

be assigned is tolerable. A decade later, within

the same state space frame of Kimura, a

sufficient condition of exact pole-assignment

(EPA) was derived by Fletcher and Magni

without furnishing stable computation algorithms

[7]-[9].

We propose in this paper a new EPA method

based on the real Grassmannian space frame for
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resolving the SOF pole-assignment together with

its related computation problems in frequency

domain. In mathematical viewpoint, the basic

coordinate setting for solving the nonlinear SOF

equations for pole-assignment is naturally carried

out in the specific Grassmann space without

introducing the general affine space [10],[11]. For

the real parametrization in Grassmann space, the

Plücker matrix formula    is introduced

[12]-[15]. In this paper, the exact pole assignablitiy

of 2-input, 2-output, 4th order strictly proper

linear systems (simply, (2,2,4) systems) is examined.

Through the real Grassmannian parametrization

approach, a necessary and sufficient condition is

explicitly derived for the exact pole assignablitiy

and the real SOF gains of EPA for the desired

pole positions are always algebraically computable

in a deterministic way, which can generalize and

unify previous diverse methods for SOF pole-

assignment and various computation algorithms

of the real SOF gains.

Ⅱ. Preliminaries

Regarding the pole assignabilities by SOF, the

following two classifications are widely used:

exact pole-assignment (EPA) and generic pole-

assignment (GPA) [15].

Definition 1. An th order linear system with

rational transfer function matrix   

is exactly pole assignable by real SOF if any th

order monic polynomial    
 ⋯

with coefficients ⋯ in R
n can be achieved

by the closed-loop characteristic equation using

some real SOF .

Definition 2. An th order linear system with

rational transfer function matrix  is generically

pole assignable by real SOF if the coefficient set

⋯ of the achievable closed-loop characteristic

polynomial  by real SOF , is open and

dense in Rn.

In Definitions 1 and 2,  and  are

right coprime polynomial matrices. In this

section, a specific construction algorithm of

   for the (2,2,4) systems is introduced [5].

Consider a (2,2,4) system described by

   (1)

where  is a strictly proper rational transfer

function matrix.

A feedback control input   is

applied to the systems. It is easily shown that

the desired 4th order closed-loop characteristic

polynomial  is written by

  det (2)

where    
 ⋯ is an open-loop

characteristic polynomial.

Equation (2) can be expressed as follows

through matrix theory

det
 det  

  det  

  det
  detdet

(3)

From the signal flow graph viewpoint, the

elements of  and  can be written as

below [1],[6],

 



 


 

 

  
 


 


 

 


where   ⋯ is a numerator polynomial

of  .

And over the desired closed-loop characteristic

polynomial  , the Equation (3) becomes
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where ⋯ are closed-loop poles and

  
 

   for all   ⋯,

 det  
  , and

 det   .
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Equating the coefficients of the same orders

on both sides of Equation (4) yields

   (5)

where
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In Equations (4) and (5), it is known that the

numerical construction algorithm of the Plücker

matrix formula    in (2,2,4) systems is

implemented by the following procedure:

1st column of  : Filled by the coefficients of

an open-loop characteristic polynomial  .

2nd column of  : Filled by the coefficients of

 , which is matched with the gain .

M

5th column of : Filled by the coefficients of

 , which is matched with the gain .

6th column of : Filled by the coefficients of

the interacting factor   ,

which is matched with the gain .

For the reduced formula, Equation (4) is

rearranged into


  



    (6)

And equating the coefficient of the same

orders on both sides of Equation (6) yields

subsub  sub (7)

where

sub 
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Remark 1. In algebraic geometry, the elements

 ⋯    of  in Equation (5) are named

inhomogeneous Plücker coordinates of Grassmann

space Grass(2,4), constrained in a quadratic

equation     , whose solution set is

called Grassmann variety.

Remark 2. The general Plücker matrix formula

   for general  systems can be

numerically constructed through the application

of Binet-Cauchy theorem to determinantal matrix

formula det and its comparisons with

the signal flow graph analysis of the closed-loop

determinant  in Mason’s gain formula [14].

Ⅲ. Main Result

In Theorem 1, the necessary and sufficient

condition for the exact pole assignability of (2,2,4)

systems is explicitly provided for the Plucker

matrix formula in Equation (7).

Theorem 1. The 2-input, 2-output, 4th order

strictly proper linear systems are exactly pole

assignable if and only if the last column  in 

is zero under sub  . ■

Proof: The sufficient condition is obviously

obtained by setting  to be zero in sub of

Equation (7). If  is zero, then sub can be

obtained under the condition sub   for

any given sub regardless of the relation for .

So EPA is satisfied.

Next, we will prove the necessary condition by

contradiction. Assume that  is not zero and the

(2,2,4) system is exactly pole assignable. Because

sub  , there happen three cases for the

matrix sub when  is not zero.

Case 1. One of 4 columns, ⋯ in sub is

zero.

Case 2. Some 2 columns of sub are linearly

dependent.

Case 3. Every two columns of sub are linearly

independent

Case 1: If one of the 1st 4 columns of sub,

(1355)
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  ⋯ , is zero under sub  , then the

four real SOF variables except  variable are

always determined from subsub  sub. Putting the

four values in the 5 variable quadratic equation

(QE), the QE      is reduced into a

1 variable 1st order linear equation. Thus, the real

solution-set of the SOF equtions,    and QE,

is complete on the real field R except a singular

zero-value point where the gain multiplied to 

in the QE is zero.

Case 2: In Case 2, there are three situations.

i) Two columns,   or   in sub, are

linearly dependent.

If two columns of sub,  or  are

linearly dependent, then from sub
′ sub

′  sub
′ , four

SOF variables where one combined variable X is

represented by      or       for

real constants  and , are always determined

by real values. Putting the four real values into

    , the QE is reduced into a 1

variable 2nd order equation. Thus by the algebraic

character of the 1 variable 2nd order equation

constructed for some real vector , these (2,2,4)

systems are NPA with some real-disconnected

interval on the SOF gain variables in R.

ii) Two columns,  and one column of

{   } in sub, are linearly dependent.

If two columns in sub, i   ⋯ are

linearly dependent, then from sub
′ sub

′  sub
′ , four

variables where a combined variable  is

represented by     for real constant ,

are always determined by real values. Putting

the four real values into     , the QE

is reduced into a 1 variable 1st order equation

with a singular point. For example, let   ,

then from          , the

 is obtained by

  

 

In this case,  is one of     and

    indicate the real values of   ,

respectively, in sub
′ sub

′  sub
′ . In this way, the

SOF  has a singular point at    for a

special real vector . Thus, these (2,2,4) systems

are exactly pole assignable except a singular

point at  .

iii) Two columns,   or  or  

or  in sub, are linearly dependent.

If two columns in sub,   or  or  

or , are linearly independent, then from

sub
′ sub

′  sub
′ , four SOF variables where one

combined variable  is represented by    

for real constant , are always determined by

real values. Putting the four real values in , the

QE is reduced into a 1 variable 1st order equation

with a singular point. For example, let    and

   then from      ,  is obtained by

    . Therefore,  is given by

  

 

In this case, the SOF  has a singular point at

    for a special real vector . Thus,

these (2,2,4) systems are exactly pole assignable

except a singular point at  and .

Case 3: If every 2 columns of sub
′ are linearly

independent under sub  , then from the 1st

4 diagonalized matrix sub
′ in sub

′ sub
′  sub

′ , 2∼4

variables among 
′ ⋯

′ in sub
′ become linear

functions over the last remaining variable, 
′ .

i) 4 variable linear function case:

In sub
′ by rank-nullity theorem, rank (sub

′ ) +

null (sub
′ ) = number of columns of sub

′ . Thus,

the 1st 4 variables in sub
′ sub

′  sub
′ depend upon

the last 1 variable 
′ .
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In this case, let ′ ′ ′ ′  ′

where 
′ indicates the th column of sub

′ , then all

4 variables 
′ ⋯

′ are linear functions on the

variable 
′ . Thus the QE,      is

always reduced into a 1 variable 2nd order

equation of 
′ constructed through arbitrary

selection of 4 variables among 5 variables in the

QE for some real vector .

ii) 3 variable linear function case:

In the same way as i), 3 variables among 4

variables 
′ ⋯

′ in sub
′ sub

′  sub
′ depend upon the last

1 variable 
′ . For example, let ′′ ′  ′ ,

then 3 variables 
′  
′  
′ have linear functions with

the variable 
′ . Thus the QE,      is

always reduced into a 1 variable 2nd order

equation of 
′ constructed through arbitrary

selection of 3 variables among 5 variables in the

QE for some real vector .

iii) 2 variable linear function case:

In the same way as ii), 2 variables among 4

variables 
′ ⋯

′ in sub
′ sub

′  sub
′ depend upon the

last 1 variable 
′ . For example, let ′ ′  ′ ,

then 2 variables 
′  
′ have linear functions with

the variable 
′ . Thus the QE,      is

always reduced into a 1 variable 1st or 2nd order

equation of 
′ constructed through arbitrary

selection of 2 variables among 5 variables in the

QE for some real vector .

For the above three cases, 2-input, 2-output,

4th order strictly proper linear systems are not

exactly pole assignable if  is not zero. This is

contradictory to the assumption. ■

Remark 3. The necessary and sufficient

condition for the EPA of (2,2,4) systems given in

Theorem 1 is equivalent to the condition,

det   (called, rank-one systems) and no

linear combination of the set of  vanishes

[11],[15].

Ⅳ. Numerical Example

Consider a 2-input, 2-output, 4th order strictly

proper system [16] with the system matrices

given by

 











   
   
   
   

  











 
 
 
 

  


 


   

   

First, exact pole assignability is checked using

the condition in Theorem 1.

Step 1: The system transfer function 

  is obtained by

 











  

 

  




  

 

  



From Equation (5),    is constructed by











     
     

     
     

     











































(8)

without constraint of . In the rank test,

sub  , and the last column,  of sub is

zero. Thus, the condition for EPA in Theorem 1

is satisfied. So, this SOF system has EPA

feature by real SOF. Next, the control gain  is

obtained since the system satisfies pole assignability.

Step 2: From arbitrary desired pole positions

of     , the real coefficients of the

closed-loop characteristic polynomial  are

obtained by           . From 

sub  , the reduced row echelon form sub
′ sub

′ 

sub
′  is obtained by











   
   
   
   




































(9)

From Equation (9),  is calculated with

(1357)



Static output feedback pole assignment of 2-input, 2-output, 4th order systems in Grassmann space 243

  ××  and the real solution  is

directly obtained by

 



 


 

 




 


 

 

Ⅴ. Conclusion

It is presented that the static output feedback

pole-assignment problem and its related stabilization

problem of 2-input, 2-output, 4th order strictly

proper linear systems can be completely resolved

by the real Grassmannian paramerization method

within Plücker matrix formula   , as a self-

contained algorithm in Grassmann space. In this

paper, the necessary and sufficient condition was

provided for the exact pole assignablitiy of static

output feedback problem in 2-input, 2-output, 4th

order linear systems. Futhermore, it can be shown

that previous diverse pole-assignment methods

and various computation algorithms of real gains are

unified using this real Grassmannian parametrization

method.
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