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Abstract
In this paper we compare parameter estimation by Grassmann manifold optimization and sequential candi-

date set algorithm in a structured principal fitted component (PFC) model. The structured PFC model extends
the form of the covariance matrix of a random error to relieve the limits that occur due to too simple form of the
matrix. However, unlike other PFC models, structured PFC model does not have a closed form for parameter
estimation in dimension reduction which signals the need of numerical computation. The numerical computation
can be done through Grassmann manifold optimization and sequential candidate set algorithm. We conducted
numerical studies to compare the two methods by computing the results of sequential dimension testing and trace
correlation values where we can compare the performance in determining dimension and estimating the basis.
We could conclude that Grassmann manifold optimization outperforms sequential candidate set algorithm in di-
mension determination, while sequential candidate set algorithm is better in basis estimation when conducting
dimension reduction. We also applied the methods in real data which derived the same result.

Keywords: Grassmann manifold, principal fitted component, semi-parametric dimension reduc-
tion, sequential fitting

1. Introduction

As the scale of data researchers utilize gets bigger and bigger, dimension reduction has become an
emerging issue when analyzing data. So far principal component analysis has been the most widely
used method. When the primary interest for a regression Y |X ∈ Rp is given in the dimension reduction
of X, the principal component analysis utilizes information abstracted from the marginal distribution
of X alone and does not relate to the response Y . The so-called principal fitted component (PFC)
(Cook, 2007) should be one of its alternatives, which cooperates the relation between Y and X for
reducing the dimension of X. For other methodologies to reduce the dimension of X, readers are
recommended to read Yoo (2016). The PFC is a model-based dimension reduction method, and it
has three variations, depending on the forms of the covariance matrix of a random error. More details
about the variations will be discussed in later sections.
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In this paper, the so-called structured PFC model is primarily focused on. Different from the
other two variations, the structured PFC does not have a closed form in estimating a parameter to
attain dimension reduction. In Cook (2007), a sequential estimation procedure is originally suggested
within a set of candidate vectors for the dimension reduction. However, according to Cook (2007), the
estimation must be done through Grassmann manifold optimization. Recently, Adragni et al. (2012)
developed an R-package for the Grassmann manifold optimization, which makes the estimation under
the structured PFC model possible.

So far, any decent numerical studies have never been done for estimation through the manifold op-
timization and never compared the two estimation approaches under the structured PFC. The purpose
of this paper is to compare the estimation performances between sequential candidate set procedure
and Grassmann manifold optimization intensively for various forward and inverse regression setups.

The organization of the paper is as follows. In Section 2, various forms of principal fitted compo-
nent model are explained and in Section 3, Grassmann manifold optimization and sequential candidate
set algorithm are explained in detail. The same section also introduce likelihood-ratio test statistics
and a way to measure how well dimension reduction is done. Section 4 is devoted to the numerical
studies we conducted for various forward and inverse simulated regressions and in Section 5, a real
data example is presented. Lastly we summarize our work in Section 6.

For notational convenience, we define that Σ = cov(X) and for a p × q matrix B, SB stands for a
subspace spanned by the columns of B.

2. Principal fitted component models

2.1. Isotonic principal fitted component model

Consider the following inverse regression model for X ∈ Rp given Y = y:

Xy = µ + Γνy + σε, (2.1)

where µ ∈ Rp×d, d < p and ΓTΓ = Id. The vector νy ∈ Rd is an unknown function of y that is assumed
to have a positive definite sample covariance matrix and is centered to have 0 as the mean so that∑

y νy = 0. Also it is assumed that ε ∼ N(0, Ip).
According to Cook (2007), for Γ in model (2.1), we have that

Y X|ΓTX,

where stands for statistical independence. In Cook (2007), conditional independence indicates that
ΓTX can replace X without loss of information on a regression of Y |X. This indicates that the p × d
matrix Γ is the key to attain dimension reduction of X, so its recovery should be the primary interest.
It is natural that Γ is estimated through maximizing the likelihood function of (2.1) .

Then, the maximum likelihood estimator of Γ is the first d-largest eigenvectors of Σ̂, where Σ̂ is
the usual moment estimator of Σ. Since this reduction coincides the principal component analysis for
X and the random vector ε assumes to have the identity covariance matrix, the model in (2.1) is called
an isotonic principal component model.

However, this reduction does not utilize the relation with X and the response Y , so it is changed
as follows by replacing νy with βfy:

Xy = µ + Γβfy + σε, (2.2)
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where β ∈ Rd×r is unknown and fy ∈ Rr is a known function of the response with
∑

y fy = 0. For the
choices for fy, Cook (2007) suggests one or combinations of Y , Y2, exp(Y) and q-dimensional dummy
variables constructed by its categorization with (q + 1) levels. Then, again, for model (2.2), we have
that Y X|ΓTX, and Γ is estimated by maximizing its likelihood function and the maximum likelihood
estimator of Γ under model (2.2) is the first d-largest eigenvectors of Σ̂fit = XTPFX/n, where X and
F stand for the matrices with stacking (Xy − X̄)T and fT

y as rows, respectively, and PF = F(FTF)−1FT.
The model in (2.2) is called an isotonic principal fitted component (PFC) model, because fy is utilized
when estimating Γ.

2.2. Structured principal fitted component

The isotonic principal fitted component model may be limited in its use due to the simple structure of
the covariance matrix of ε, and therefore it can be extended as follows:

Xy = µ + Γβfy + ΓΩ
1
2 ε + Γ0Ω

1
2
0 ε0, (2.3)

where Ω ∈ Rd×d and Ω0 ∈ R(p−d)×(p−d) are full-rank positive-definite matrices with Ω1/2Ω1/2 = Ω

and Ω1/2
0 Ω

1/2
0 = Ω0. Also Γ0 ∈ Rp×(p−d) is an orthogonal complement of Γ with ΓT

0Γ = 0 and
ΓT

0Γ0 = I(p−d). The two random errors, ε ∈ Rd and ε0 ∈ R(p−d), are assumed to be independent and
normally distributed with zero means and the identity covariance matrices.

The model in (2.3) is equivalently expressed as follows:

Xy = µ + Γβfy + ε∗,

where ε∗ ∈ Rp ∼ N(0,ΓΩΓT + Γ0Ω0Γ
T
0 ).

Under model (2.3), we still have that Y X|ΓTX. However, unfortunately, we do not have a closed
form for the maximum likelihood estimator of Γ here and further details regarding this fact will be
discussed in later sections. The model (2.3) is called a structured principal fitted component model,
which is the primary model discussed in this paper.

2.3. Unstructured principal fitted component

The structured PFC model is generalized by releasing the restriction of the covariance matrix of the
random error. Suppose that Xy has the following PFC model with cov(ε) = ∆, which is unknown and
positive-definite:

Xy = µ + Γβfy + ε. (2.4)

Different from the first two PFC models, we have Y X|(∆−1Γ)TX, so (∆−1Γ)TX replaces X
without loss of information on Y |X. The maximum likelihood estimator ∆̂of ∆ is Σ̂res, which is equal
to Σ̂− Σ̂fit. Cook and Forzani (2009) show that ∆−1Γ is estimated by the the first d-largest eigenvectors
of ∆̂

−1/2
Σ̂fit∆̂

−1/2
. Since the covariance structure of ε is fully free, the model in (2.4) is called an

unstructured principal fitted component. Like the isotonic PFC, the unstructured PFC has a closed
form to estimate the parameters required for dimension reduction.
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3. Estimation in structured principal fitted component model

3.1. Estimation of structured principal fitted component model and its benefit

According to Cook (2007), the log-likelihood LsPFC under the structured PFC model in (2.3) is par-
tially maximized for Γ as follows:

LsPFC (Γ) =

(
−

n
2

)
log

∣∣∣ΓT
0 Σ̂Γ0

∣∣∣ − n
2

log
∣∣∣ΓTΣ̂resΓ

∣∣∣ . (3.1)

As observed from (3.1), the maximum likelihood estimation of Γ is clearly associated with both
Σ̂ and Σ̂res simultaneously. This is why there is no closed form for Γ. Still, our goal is to estimate Γ
by maximizing (3.1). In other words, our goal is to restore Γ0 to minimize the partial log-likelihood
in (3.1). When we assume that we know Γ0, it should be noted that there is no unique orthogonal
complement Γ of Γ0. Therefore when the column space SΓ of Γ is the main interest, any orthogonal
complement of Γ0 should be fine, because it spans the same subspace. Because of this no uniqueness
of Γ, our new primary target becomes SΓ instead of Γ itself and this is why Γ should be estimated in
a manifold.

The structured principal fitted component model has advantage over the isotonic PFC model, be-
cause the error covariance matrix that the latter assumes is too simple. In this sense, the unstructured
PFC model might seem like the most appealing choice, but this model requires the inverse of Σ̂res
which is the maximum likelihood estimator of ∆. Therefore, if ∆ is not well-estimated due to its
relatively small sample size compared to the number of predictors, the accuracy in dimension re-
duction should be problematic. On the other hand, since the covariance of the random error in the
structured PFC model is not estimable, there is no need to estimate it when we consider the structured
PFC model. This saves the number of parameters in estimation, which a clear advantage over the
unstructured PFC model. The so-called envelope model developed by Cook et al. (2010) is based
on the structured PFC model, and there are many descendants of the envelope model (Cook, 2018).
This becomes a strong statement why the structured PFC model and its estimation are important to
investigate.

3.2. Grassmann manifold optimization

Grassmann manifold optimization is specialized for orthogonally constrained optimization problems.
Let’s say the objective of an optimization is maximizing f (U) where U is a (p × d), d < p semi
orthogonal matrix where UTU = Id. The function f is invariant to right orthogonal transformation,
f (UO) = f (U), for any d × d orthogonal matrix O. This invariant characteristic of f allows any
orthonormal basis of the subspace spanned by the columns of U to be the argument of f . Therefore the
optimization can be handled over the set of d-dimensional linear subspace of Rp and this collection
of linear subspace compose a Grassmann manifold. A function that is optimized over Grassmann
manifold is parametrized and maximized in terms of d(p − d) angles. Although optimization in such
setting may seem difficult, the optimization can be done very smoothly with efficient algorithms using
directional derivatives on the manifold with the help of the geometry of Grassmann manifold (Gallivan
et al., 2003).

We will explain optimization in Grassmann manifold in more detail with an example of approx-
imating n centered p-dimensional vectors X1, . . . ,Xn, so that

∑
Xi=1 is 0 with corresponding vectors

Bi that lie in d-dimensional subspace of Rp. In such setting, Bi can be expressed as Bi = UCi where
U is a semi-orthogonal basis matrix for d-dimensional subspace and Ci is the coordinates of Bi in
terms of U. Then the goal of this example will be minimizing

∑
i=1 ||Xi −UCi||

2 and as it is minimized
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over Ci with U fixed, it can be rewritten as (3.2). Therefore, maximizing trace(UUTΣ̂) where Σ̂ is the
sample covariance matrix of Xi’s is equivalent to minimizing

∑
i=1 ||Xi − UCi||

2.

min
Ci

∑
i=1

‖Xi − UCi‖
2 =

∑
i=1

∥∥∥Xi − UUTXi

∥∥∥2
. (3.2)

In this example, function f is also invariant as f (U) = trace(UUTΣ̂). Our goal of this optimization
can be easily achieved as it is known that f (U) is maximized when the first d-largest eigenvectors of
Σ̂ are chosen as the columns of U. However in more complicated settings, the optimization needs
somewhat complicated numerical computations.

Under structured PFC model, we can consider the Equation in (3.1) as the objective function since
we estimate Γ through maximizing the partial log-likelihood. Therefore, the Grassmann manifold
becomes the parameter space for SΓ.

The basic gradient algorithm of optimization without any restriction is simple and intuitive, but
it has the risk of falling into local optimums, so there is a modified version of the basic algorithm,
stochastic gradient algorithm. It contains various options including the option of applying simulated
annealing to the optimization process to avoid converging to local optimum especially when f (U)
is multimodal. Following Adragni et al. (2012), we will first review the basic gradient algorithm
briefly and move on to stochastic gradient algorithm which are the two referenced algorithms for the
GrassmannOptim R-package.

3.2.1. Basic gradient algorithm

When U is a p × d semi-orthogonal matrix, f (U) is an invariant function and SU = {UO|O ∈

Rd×d,OOT = Id} ∈ G(d,p). In this setting, the goal is to find the subspace ŜU = argmax f (U) when
the parameter space for SU is the Grassmann manifold. Three matrices need to be defined before-
hand. V is a (p × (p − d)) semi-orthogonal matrix which is a completion of U so that Q = (U,V) is a
(p × p) orthogonal matrix. The directional derivative of f , B = (5 f (U))TV, is a (p × (p − d)) matrix

and A =

[
0d B
−BT 0p−d

]
, a (p × p) skew-symmetric matrix, is also needed. The basic gradient algorithm

proceeds as the following.

1. We begin with the initial matrix Q at t = 0.

2. Repeat step 2 until ||B|| < ε.

(a) Get directional derivative B using Q. Using B, calculate matrix A.

(b) Update Q to Qt+1 = Qt{δA}, δ ∈ (0, 1) so that f (Ut+1) > f (Ut).

3. Then ŜU is the subspace spanned by the first d-columns of the lastly updated Q.

When determining a specific matrix as the initial matrix is difficult, the algorithm will randomly
set the initial matrix. If there is no analytical expression for B, B can be approximated as αi j =

{ f (Ũ)− f (U)}/ε, i = 1, . . . , d, j = 1, . . . , p− d. Ũ = Q exp{εEi j} where Ei j is a (p, p) skew-symmetric
matrix of all 0 except 1 in (i, j) and ( j, i). Also, for a more thorough inspection in step 2, we can
generate several candidates of Qt+1 by choosing a sequence of values for δ within the range of (0, 1)
at each iteration instead of choosing only one value for δ at a time.



726 Chaeyoung Lee, Jae Keun Yoo

3.2.2. Stochastic gradient algorithm

The alternative of the basic algorithm is the stochastic gradient algorithm which is a modified algo-
rithm to lower the possibility of converging into local optimums by including additional steps and
options.

It consists of two iterative loops; the inner loop and the outer loop. The main goal of the inner
loop is to avoid local optimum by searching the neighborhood of the candidate for maximum number
of iterations. The outer loop acts as a cooling procedure of the annealing process. At first, we start
with a high temperature and cools the temperature down according to the cooling ratio until the tem-
perature reaches a preset threshold. This process allows the inner loop to search more thoroughly in
various temperatures. Since the outer loop is included, initial temperature T0 and the cooling ratio τ
is additionally required before getting into the algorithm. Stochastic gradient algorithm proceeds as
the following.

1. We start with the starting subspace Ut and repeat step 1 M times.

(a) Compute the directional derivative B.

(b) Generate a d × (p − d) matrix W of wi j where wi j’s are d(p − d) independent realizations from
standard normal distribution.

(c) Get candidate value Y following Qt+1 = Qt{δA} starting from Qt = (Ut,Vt) in the direction of
B +
√

TtW.

(d) Set Ut+1 = Y with prob min{exp(d f /Tt), 1}. Else, set Ut+1 = Ut and go back to step 1-(a).

2. Decrease Tt to Tt+1 = d f /τ, τ > 1.

3. Let t = t + 1 and go back to step 1 if Tt+1 is higher than the threshold. Stop otherwise.

3.3. Sequential candidate set algorithm

Under structured PFC model, ŜΓ can also be estimated by sequential candidate set algorithm. If the
likelihood is over a multimodal surface, a simple gradient optimization process may not lead to the
optimal solution. In this case, sequential candidate set algorithm may lower this possibility.

We will start with briefly going over sPFCPC method which is a method where LsPFC is evaluated
according to PC directions. In sPFCPC, the PC directions make up one possible candidate set. There-
fore, we consider all possible subsets of d-sample PC directions γ̂(1), . . . , γ̂(d) and calculate LsPFC for
each subsets. From all the possible subsets, we choose the subset with the highest LsPFC. However
when there are too many combinations of possible subsets, this method may be hard to implement. An
alternative method is the sequential candidate set algorithm which handles this problem by choosing
PC directions sequentially in each step instead of going over all possible subsets at once. Sequential
candidate set algorithm proceeds as the following.

1. We find γ̂(1) = argmax LsPFC(h) where the likelihood maximum is calculated over (p × 1) vector h
in PC candidate set A = {γ̂ j, j = 1, . . . , p}.

2. Then we find γ̂(2) = argmaxLsPFC(γ̂(1),h), where the likelihood maximum is calculated over (p×1)
vector h in the reduced PC candidate set A − {γ̂(1)}.

3. We continue this process until the final maximization γ̂(d)=argmaxLsPFC(γ̂(1), . . . , γ̂(d−1),h) covers
candidate set A − {γ̂(1), . . . , γ̂(d−1)}.



Comprehensive studies of Grassmann manifold optimization and sequential candidate set algorithm 727

Also, considering the eigenvectors of Σ̂fit and Σ̂res which are PFC directions and residual compo-
nent (RC) directions respectively as candidate sets is also possible. As a result, there are three possible
candidate sets that can be considered; sets consisted of the PC, PFC, and RC directions. If the estima-
tor is evaluated over all three candidate sets, the method is called sPFCall. Since sPFCall contains all
possible candidate sets, the maximum likelihood by sPFCall is bigger or, at least, equal to those by Σ̂,
Σ̂fit and Σ̂res. Naturally, we will use sPFCall in our numerical studies as default for the best results.

3.4. Dimension estimation

When estimating Γ, d is required. Once d is fixed, Γ is estimated through Grassmann optimization
or sequential candidate algorithm. In practice, however, d is unknown and therefore needs to be
estimated. Following Yoo (2018), this estimation is done through a series of hypothesis tests and this
process is called sequential dimension testing. When m = 0, . . . , p − 1, it starts by testing H0 : d = m
versus H1 : d = p with m = 0. If H0 is rejected from this first testing, we do the same testing after
increasing m to 1. We continue this process until H0 is not rejected for the first time and the final m
is the determined dimension. For instance, if the null hypothesis H0 : d = 1 is not rejected for the
first time, we conclude that d̂ = 1. Define that Lfull = −n/2 log |Σ̂res| and Lm = −n/2 log |Γ̂

>
Σ̂resΓ̂| −

n/2 log |Γ̂
T
0 Σ̂Γ̂0|. Then the statistic of the test for m = 0, . . . , p − 1 is

λ̂m = −2
(
Lm − Lfull

)
∼ χ2

p(p−m).

4. Numerical simulation

In this section, we summarize the results of the numerical simulations we conducted to compare the
parameter estimation of Grassmann manifold optimization and sequential candidate set algorithm. We
focused on comparing the determined dimension by sequential dimension testing with α = 0.05. To
better understand how well the two methods estimate ŜΓ compared to the true SΓ, we also calculated
the trace correlation of ŜΓ and SΓ.

To evaluate the estimation of how well Γ ∈ Rp×d is estimated by its estimate Γ̂ ∈ Rp×d, we
calculated trace correlation

r =

√
1
d

trace
(
Γ̂

(
Γ̂

T
Γ̂

)−1
Γ̂

T
Γ

(
ΓTΓ

)−1
ΓT

)
for all replications. The trace correlation includes information of the correlation between Γ and Γ̂.
Thus, bigger r indicates that the two values are closer to each other than a smaller r.

4.1. Model construction

Three models in total were considered for numerical simulation. We set p = 5 and n = 100 for all
models. Model 1 is under inverse regression setting as the following

Model 1 : Xy = Γβy + ε∗,

where Γ = (1, 0, 0, 0, 0)(0, 1, 0, 0, 0)T, β = (1, 1)T, and ε∗ ∈ Rp ∼ N(0,ΓΩΓT + Γ0Ω0Γ
T
0 ). Γ0 is an

orthogonal complement of Γ. Also, we setΩ = σId,Ω0 = σ0I(p−d) and y’s in model 1 were generated
as random variables that follow N(0, σy).

In the case of model 1, we varied the values of σ, σ0, and σy for the numerical simulation. σ
and σ0 construct the error term of the generated Xy and σy determines the variance of the randomly
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Figure 1: M1: When σ is 1, 2, 3, 4 while σy = σ0 = 1(first two plots) and σ0 is 0.6, 1.5, 3, 4 while σ = σy =

1(last two plots).

Figure 2: M1: When σy is 1, 2, 3, 4 while σ = σ0 = 1.

generated y. For σ and σy we tested using values 1, 2, 3, 4 and with σ0, we used 0.6, 1.5, 3, 4 for a
broader observation.

Unlike model 1, model 2 and model 3 are under forward regression setting which were generated
as the following

Model 2 : Y = 1.5(X1 + 5)(X2 + X3 + 2) + 0.5ε,
Model 3 : Y = X1(X1 + X2 + X3 + 1) + 0.5ε,

where ε ∼ N(0, σ2). X’s in model 2 and model 3 were generated by X1 = W1, X2 = V1 + W2/2,
X3 = −V1 + W2/2, X4 = V2 + V3, and X5 = −V2 + V3 when V = (V1,V2,V3)T and W = (W1,W1)T.
V and W were drawn both from normal distribution and non-normal distribution to see if there are
noticeable differences in the two cases. For the normal case, V and W were both generated from
N(0, 1) and for the non-normal case, V and W were generated from t6, Ga(0.25, 1) respectively. We
varied the value of σ using values 1, 2, 3, 4 for the numerical simulation.

4.2. Numerical simulation results

All three models were generated 1,000 times and the generated data was fitted using the structured
PFC model in (2.3). For model fitting, we set fy = (y, y2, y3)T and d = 2.
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Table 1: M1: Percentages of determined d̂ by sequential dimension test when σ = 1, 2, 3, 4 and σy = σ0 = 1

Grassmann Sequential
d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2 d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2

σ = 1 0.0 21.8 78.1 0.10 0.0 99.9 0.1 0.0
σ = 2 0.1 17.4 78.9 3.60 0.0 99.4 0.6 0.0
σ = 3 1.4 14.2 69.7 14.7 1.3 98.3 0.4 0.0
σ = 4 7.6 13.0 62.7 16.7 5.5 93.5 0.9 0.1

Table 2: M1: Percentages of determined d̂ by sequential dimension test when σy = 1, 2, 3, 4 and σ = σ0 = 1

Grassmann Sequential
d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2 d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2

σy = 1 0 22.1 77.8 0.1 0 99.7 0.3 0
σy = 2 0 9.2 90.7 0.1 0 99.7 0.3 0
σy = 3 0 6.2 93.6 0.2 0 99.6 0.4 0
σy = 4 0 6.2 93.6 0.2 0 99.7 0.3 0

Table 3: M1: Percentages of determined d̂ by sequential dimension test when σ0 = 0.6, 1.5, 3, 4 and
σ = σy = 1

Grassmann Sequential
d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2 d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2

σ0 = 0.6 0 17.1 82.8 0.1 0 99.5 0.50 0.0
σ0 = 1.5 0 15.3 84.3 0.4 0 99.9 0.10 0.0
σ0 = 3 0 16.0 83.8 0.2 0 94.5 0.53 0.2
σ0 = 4 0 17.2 82.7 0.1 0 85.5 14.0 0.5

We compared the numerical simulation results of the three models using trace correlation values
and the results of sequential dimension testing.

4.2.1. Model 1: Normal cases in inverse regression setting

Box plots in Figure 1 and Figure 2 summarize the simulation results of the trace correlation obtained
from model 1. Overall, sequential candidate set algorithm is slightly better but does not have no-
ticeable difference with Grassmann manifold optimization. Trace correlation obtained from the two
methods are mostly around 0.8 and show almost identical trends. Among σy, σ0, and σ, σ showed the
biggest fluctuation in the trace correlation value especially when Grassmann optimization was used in
estimation. Trace correlation was highest when σ is 1 and for 2, 3, and 4, the value decreased a little
for both methods. Therefore, we can conclude that the varying the distribution of Y does not have
much influence in estimation compared to varying the errors of Xy since the varying values of σy do
not make much significant difference.

The results of the sequential dimension test for model 1 is in Table 1–3. The biggest difference
between the two methods is that sequential candidate set algorithm tends to underestimate in all cases.
On the other hand, estimation by Grassmann manifold optimization determined d̂ as 2 which is the
true value with at least 60 percent in all cases. The best result with Grassmann optimization is when
σy = 4, where almost 94 percent of all trials determined d̂ as 2. However, the percent drops to 77 when
σy = 1, which indicates that changing the value of σy can lead to some fluctuation in the dimension
test results when compared with the other cases.
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Figure 3: M2: box plot of trace correlation when σ is 1, 2, 3, 4 in normal case(first two plots) and in non-normal
case(last two plots).

Table 4: M2:Percentages of determined d̂ by sequential dimension test when σ is 1, 2, 3, 4 in normal case and in
non-normal case

Normal Non-normal
Grassmann Sequential Grassmann Sequential

d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2 d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2 d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2 d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2
σ = 1 0 1.8 78.7 19.5 0 93.9 6.0 0.1 0 0.2 34.5 65.3 0 49.3 49.8 0.9
σ = 2 0 2.5 81.6 15.9 0 93.3 6.6 0.1 0 1.2 47.9 50.9 0 60.5 38.9 0.6
σ = 3 0 2.6 83.4 14.0 0 93.7 6.3 0.0 0 1.8 54.2 44.0 0 68.8 30.8 0.4
σ = 4 0 3.5 83.8 12.7 0 94.0 6.0 0.0 0 1.6 61.8 36.6 0 72.8 26.6 0.6

4.2.2. Model 2: Normal and non-normal cases in forward regression setting

Box plots in Figure 3 summarize the simulation results obtained from model 2. In model 2, we
also compared normal and non-normal cases. In both cases, sequential candidate set algorithm out-
performed Grassmann manifold optimization in estimation and was more robust as well. From the
similar trace correlation values for all the four different values of σ, we can infer that σ-values are
not significant in basis estimation in this case. Also there is little difference between the normal and
non-normal cases as we can observe from the box plots.

Table 4 summarizes the percentage of the determined dimensions in normal and non-normal cases
of model 2. The performance of normal cases was better showing a similar trend with model 1.
Grassmann manifold optimization mostly determined dimension as 2 while sequential candidate set
algorithm underestimated the dimensions. Also, as σ increased, the percentage of determining d̂ as
2 increased which is similar with the results obtained from model 1. On the other hand, the result of
the non-normal case was quite different from the normal case. Although the fact that as σ increase
the performance of dimension determination gets better still remains, the percentage of determining
d̂ as 2 decreased to 34 percent when σ = 1. Instead, the percentage of overestimation increased to
65 percent. On contrary, when sequential candidate set algorithm was used, performance was better
when σ was smaller and when σ = 1, almost 50 percent of the tests determined d̂ as 2 which is the
best result obtained with sequential candidate set algorithm.

4.2.3. Model 3: Normal and non-normal cases in forward regression setting

Figure 4 shows the simulation results of the normal and non-normal cases of model 3. Like model
2, sequential candidate set algorithm show better performance in basis estimation than Grassmann
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Figure 4: M3: box plot of trace correlation when σ is 1, 2, 3, 4 in normal case(first two plots) and in non-normal
case(last two plots).

Table 5: M3: Percentages of determined d̂ by sequential dimension test when σ is 1, 2, 3, 4

Normal Non-normal
Grassmann Sequential Grassmann Sequential

d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2 d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2 d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2 d̂ = 0 d̂ = 1 d̂ = 2 d̂ > 2
σ = 1 10.4 10.5 51.9 27.2 9.8 62.5 26.9 0.8 0.0 3.7 79.4 16.9 0.0 92.4 7.0 0.6
σ = 2 25.6 14.3 45.2 14.9 25.3 63.4 11.0 0.3 0.0 5.8 79.8 14.4 0.2 90.9 7.7 1.2
σ = 3 42.9 11.2 39.2 6.7 44.8 51.5 3.5 0.2 2.7 5.2 76.3 15.8 2.4 90.0 6.9 0.7
σ = 4 60.9 9.3 25.0 4.8 62.2 35.7 2.1 0.0 7.9 5.1 69.3 17.7 7.7 85.7 6.1 0.5

optimization. Also the performance is better when σ is smaller which is clearly apparent in the
normal case.

Table 5 summarizes the results of the sequential dimension test of model 3. Results were better
when Grassmann optimization was used in both normal and non-normal cases. Also for both normal
and non-normal cases, the performance of dimension testing was better when σwas smaller. However
unlike model 2, the performance of Grassmann optimization was better in non-normal case where at
least 70 percent of all trials determined d̂ as 2. On the other hand, sequential candidate set algorithm
underestimated in most cases as usual. In the normal case, Grassmann optimization underestimated
almost 70 percent of the total trials at most when the value of σ got bigger resulting in poorer perfor-
mance compared to the non-normal case for both methods. As a result, when σ = 4, the percentage
of determining the dimension as 2 dropped to 25 and 35 percent for Grassmann optimization and
sequential algorithm respectively.

5. Application on real data: BigMac data

In this section we compared the estimation of Grassmann manifold optimization and sequential can-
didate set algorithm by applying the two methods to Big Mac data from Enz (1991).

This data includes economic data of n = 45 cities from 1991 with 9 predictors; bread, busfare, en-
gsal, engtax, service, teachsal, teachtax, vacdays, and workhrs. They respectively describe minimum
labor to purchase one kilogram of bread, lowest cost of 10 kilometers ride on public transportation,
annual salary of electrical engineer, tax rate paid by electrical engineer, annual cost of 19 chosen ser-
vices, salary of primary school teachers, tax rate for primary teachers, average days of vacation in one
year, and average hours of work in one year. These predictors are expected to be related and therefore
help explain the price of BigMac in each city. The response of this data is the average minutes of labor
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Table 6: Comparison of time required in estimation (M2)

Grassmann Optimization Sequential Candidate test
2.7711 secs 0.1026 secs

Table 7: BigMac data: p-values obtained from sequential dimension testing

Grassmann Optimization Sequential Candidate Set Algorithm
H0 : d̂ = 0 H0 : d̂ = 1 H0 : d̂ > 2 d̂ ≥ 3 H0 : d̂ = 0 H0 : d̂ = 1 H0 : d̂ > 2 d̂ ≥ 3

p-values 0.02438 0 0 0 0.02440 0.13319 0.36664 0.12305

needed to buy a BigMac in 45 different cities. The Economist magazine introduced this concept of
BigMac index and implied that the price of BigMac can be used as an index to explain the economy
of a country which the 9 predictors are assumed to represent in this dataset.

We used Grassmann manifold optimization and sequential candidate set algorithm to estimate Γ
under structured PFC model with fy = (y, y2, y3). The p-values in Table 7 are obtained from the sequen-
tial dimension testing when Grassmann manifold optimization and sequential candidate set algorithm
were used to determine d̂. Grassmann manifold optimization determined d̂ as 3 while sequential
candidate algorithm determined d̂ as 1. Given the fact that SIR with 9 slices determined d̂ as 4, we
can conclude that like the numerical simulation result, Grassmann optimization is better in dimen-
sion determination. We can also check that sequential candidate set algorithm tends to underestimate
dimension like the results of the numerical simulations.

6. Discussion

In this article, estimation by Grassmann manifold optimization and sequential candidate set algorithm
in structured PFC model were compared. Trace correlation was calculated to measure the accuracy of
the estimated Γ̂ and results of sequential dimension testing were presented to compare the determined
dimensions by the two methods.

In terms of basis estimation, we compared the trace correlation obtained from the two methods.
We could conclude that in forward regression setting, sequential candidate set algorithm shows better
performance with smaller variance. In inverse regression setting, sequential candidate set algorithm
outperformed Grassmann manifold optimization in both performance and robustness.

From sequential dimension test results, we could conclude that Grassmann manifold optimization
outperforms sequential candidate set algorithm in all settings and cases. The biggest cause of this
result is the tendency of sequential candidate set algorithm to underestimate dimensions.

In addition to performance comparison of the two methods through trace correlation and sequential
dimension testing, we also compared the computation time. Table 6 shows the computation time for
one iteration of model 2. While Grassmann manifold optimization took 2.7711 seconds, sequential
candidate set algorithm only needed 0.1026 seconds in computation. This shows that the accuracy of
Grassmann optimization is at the expense of longer computation time.

Overall, among the two methods, there is no one optimal method that shows great performance
in both Γ̂ estimation and d̂ determination. Therefore, sequential candidate set algorithm would be
a better choice when gaining higher accuracy of estimating Γ̂ is the main objective and Grassmann
manifold optimization would be better when higher accuracy of d̂ determination is the main objective.
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