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ON (m,n)-IDEALS OF AN ORDERED

ABEL-GRASSMANN GROUPOID

Faisal Yousafzai, Asad Khan, and Aiyared Iampan

Abstract. In this paper, we introduce the concept of (m,n)-ideals
in a non-associative ordered structure, which is called an ordered
Abel-Grassmann’s groupoid, by generalizing the concept of (m,n)-
ideals in an ordered semigroup [14]. We also study the (m,n)-regular
class of an ordered AG-groupoid in terms of (m,n)-ideals.

1. Introduction

The concept of a left almost semigroup (LA-semigroup) was first given
by Kazim and Naseeruddin in 1972 [3]. In [2], the same structure is
called a left invertive groupoid. Protić and Stevanović called it an Abel-
Grassmann’s groupoid (AG-groupoid) [13].

An AG-groupoid is a groupoid S satisfying the left invertive law
(ab)c = (cb)a for all a, b, c ∈ S. This left invertive law has been ob-
tained by introducing braces on the left of ternary commutative law
abc = cba. An AG-groupoid satisfies the medial law (ab)(cd) = (ac)(bd)
for all a, b, c, d ∈ S. Since AG-groupoids satisfy medial law, they be-
long to the class of entropic groupoids which are also called abelian
quasigroups [15]. If an AG-groupoid S contains a left identity (unitary
AG-groupoid), then it satisfies the paramedial law (ab)(cd) = (dc)(ba)
and the identity a(bc) = b(ac) for all a, b, c, d ∈ S [6].
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An AG-groupoid is a useful algebraic structure, midway between
a groupoid and a commutative semigroup. An AG-groupoid is non-
associative and non-commutative in general, however, there is a close
relationship with semigroup as well as with commutative structures. It
has been investigated in [6] that if an AG-groupoid contains a right
identity, then it becomes a commutative semigroup. The connection of
a commutative inverse semigroup with an AG-groupoid has been given
by Yousafzai et. al. in [17] as, a commutative inverse semigroup (S, .)
becomes an AG-groupoid (S, ∗) under a ∗ b = ba−1r−1 ∀ a, b, r ∈ S.
An AG-groupoid S with left identity becomes a semigroup under the
binary operation “◦e” defined as, x ◦e y = (xe)y for all x,y ∈ S [18].
An AG-groupoid is the generalization of a semigroup theory [6] and has
vast applications in collaboration with semigroups like other branches
of mathematics. Many interesting results on AG-groupoids have been
investigated in [6, 9, 10]. The structure of AG-groupoids and other gen-
eralizations have been recently considered and studied by Mushtaq and
Khan in [11, 12], respectively. Minimal ideals of an AG-groupoid were
also considered and studied in [4].

If S is an AG-groupoid with product · : S × S → S, then ab · c and
(ab)c both denote the product (a · b) · c.

Definition 1.1. [19] An AG-groupoid (S, ·) together with a partial
order ≤ on S that is compatible with an AG-groupoid operation, mean-
ing that for x, y, z ∈ S,

x ≤ y ⇒ zx ≤ zy and xz ≤ yz,

is called an ordered AG-groupoid.

Let (S, ·,≤) be an ordered AG-groupoid. If A and B are nonempty
subsets of S, we let

AB = {xy ∈ S | x ∈ A, y ∈ B},
and

(A] = {x ∈ S | x ≤ a for some a ∈ A}.

Definition 1.2. [19] Let (S, ·,≤) be an ordered AG-groupoid. A
nonempty subset A of S is called a left (resp. right) ideal of S if the
followings hold:

(i) SA ⊆ A (resp. AS ⊆ A);
(ii) x ∈ A and y ∈ S, y ≤ x implies y ∈ A.
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Equivalently, (SA] ⊆ A (resp. (AS] ⊆ A). If A is both a left and a right
ideal of S, then A is called a two-sided ideal or an ideal of S.

A nonempty subset A of an ordered AG-groupoid (S, ·,≤) is called
an AG-subgroupoid of S if xy ∈ A for all x, y ∈ A.

It is clear to see that every left and and right ideals of an ordered
AG-groupoid is an AG-subgroupoid.

Let (S, ·,≤) be an orderedAG-groupoid and let A and B be nonempty
subsets of S, then the following was proved in [16]:

(i) A ⊆ (A];
(ii) If A ⊆ B, then (A] ⊆ (B];
(iii) (A] (B] ⊆ (AB];
(iv) (A] = ((A]];
(v) ((A] (B]] = (AB].

Also for every left (resp. right) ideal T of S, (T ] = T.
The concept of (m,n)-ideals in ordered semigroups were given by J.

Sanborisoot and T. Changphas in [14] which was obtained by generaliz-
ing the idea of (m,n)-ideals in semigroup [5]. It’s natural to ask whether
the concept of (m,n)-ideals in orderedAG-groupoids is valid or not? The
aim of this paper is to deal with (m,n)-ideals in ordered AG-groupoids.
We introduce the concept of (m,n)-ideals in ordered AG-groupoids as
follows:

Definition 1.3. Let (S, ·,≤) be an ordered AG-groupoid and let
m,n be non-negative integers. An AG-subgroupoid A of S is called an
(m,n)-ideal of S if the followings hold:

(i) AmS · An ⊆ A;
(ii) for x ∈ A and y ∈ S, y ≤ x implies y ∈ A.

Here, A0 is defined as A0S · An = SAn = S if n = 0 and AmS · A0 =
AmS = S if m = 0. Equivalently, an AG-subgroupoid A of S is called
an (m,n)-ideal of S if

(AmS · An] ⊆ A.

If A is an (m,n)-ideal of an ordered AG-groupoid (S, ·,≤), then (A] =
A.

Note that the powers of an ordered AG-groupoid (S, ·,≤) are non-
commutative and non associative, that is aa · a 6= a · aa and (aa · a)a 6=
a(aa·a) for all a ∈ S. But a unitary ordered AG-groupoid has associative
powers, that is (aa · a)a = a(aa · a) for all a ∈ S.
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Assume that (S, ·,≤) is a unitary ordered AG-groupoid. Let us define
am+1 = ama and am = ((((aa)a)a)...a)a = am−1a = aam−1 for all a ∈ S
where m ≥ 4. Also, we can show by induction, (ab)m = ambm and
aman = am+n hold for all a, b ∈ S and m,n ≥ 4. Throughout this paper,
we will use m,n ≥ 4.

2. (m,n)-ideals in ordered AG-groupoids

Definition 2.1. If there is an element 0 of an ordered AG-groupoid
(S, ·,≤) such that x · 0 = 0 · x = x ∀ x ∈ S, we call 0 a zero element of
S.

Example 2.2. Let S = {a, b, c, d, e} with a left identity d. Then the
following multiplication table and order shows that (S, ·,≤) is a unitary
ordered AG-groupoid with a zero element a.

· a b c d e
a a a a a a
b a e e c e
c a e e b e
d a b c d e
e a e e e e

≤:= {(a, a), (a, b), (c, c), (a, c), (d, d), (a, e), (e, e), (b, b)}.

Lemma 2.3. If R and L are the right and the left ideals of a unitary
ordered AG-groupoid (S, ·,≤) respectively, then (RL] is an (m,n)-ideal
of S.

Proof. Let R and L be the right and the left ideals of S respectively,
then

(((RL)m]S · ((RL)n]] ⊆ (((RL)m](S] · ((RL)n]] ⊆ ((RL)mS · ((RL)n]]

= ((RmLm · S)(RnLn)] = ((RmLm ·Rn)(SLn)]

= ((LmRm ·Rn)(SLn)] = ((RnRm · Lm)(SLn)]

= ((RmRn · Lm)(SLn)] = ((Rm+nLm)(SLn)]

= (S(Rm+nLm · Ln)] = (S(LnLm ·Rm+n)]

= ((SS] · Lm+nRm+n] ⊆ (SS · Lm+nRm+n]
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= (SLm+n · SRm+n] = (Rm+nS · Lm+nS]

= ((RmRn · (SS])(LmLn · (SS])]

⊆ (((RmRn] · (SS])((LmLn] · (SS])]

⊆ ((RmRn · SS)(LmLn · SS)]

= ((SS ·RnRm)(SS · LnLm)]

⊆ (((SS] ·RnRm)((SS] · LnLm)] = (SRm+n · SLm+n].

Now

(SRm+n · SLm+n] = ((S ·Rm+n−1R)(S · Lm+n−1L)]

= ((S(Rm+n−2R ·R))(S(Lm+n−2L · L))]

= (S(RR ·Rm+n−2))(S(LL · Lm+n−2))

⊆ ((SS ·RRm+n−2)(SS · LLm+n−2)]

⊆ ((SR · SRm+n−2)(SL · SLm+n−2)]

⊆ ((Rm+n−2S ·RS)(L · SLm+n−2)]

⊆ ((Rm+n−2S · (RS])(L · SLm+n−2)]

⊆ ((Rm+n−2S ·R)(S · LLm+n−2)]

⊆ (((RS] ·Rm+n−2)(SLm+n−1)]

⊆ (RRm+n−2 · SLm+n−1]

⊆ (SRm+n−1 · SLm+n−1].

Thus

(((RL)m]S · ((RL)n]] ⊆ (SRm+n · SLm+n] ⊆ (SRm+n−1 · SLm+n−1]

⊆ ... ⊆ (SR · SL] ⊆ (SR · (SL]]

⊆ (SR · L] ⊆ ((SS ·R)L]

= ((RS · S)L] ⊆ (((RS] · S)L] ⊆ (RL].

Also

(RL] · (RL] ⊆ (RL ·RL] = (LR · LR] = ((LR ·R)L]

= ((RR · L)L] ⊆ (((RS] · S)L] ⊆ (RL].

This shows that (RL] is an (m,n)-ideal of S.

Definition 2.4. An (m,n)-ideal M of an orderedAG-groupoid (S, ·,≤
) with zero is said to be nilpotent if M l = {0} for some positive integer
l.
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Definition 2.5. An (m,n)-ideal A of an orderedAG-groupoid (S, ·,≤
) with zero is said to be 0-minimal if A 6= {0} and {0} is the only (m,n)-
ideal of S properly contained in A.

Theorem 2.6. Let (S, ·,≤) be a unitary ordered AG-groupoid with
zero. If S has the property that it contains no non-zero nilpotent (m,n)-
ideals and if R (L) is a 0-minimal right (left) ideal of S, then either
(RL] = {0} or (RL] is a 0-minimal (m,n)-ideal of S.

Proof. Assume that R (L) is a 0-minimal right (left) ideal of S such
that (RL] 6= {0}, then by Lemma 2.3, (RL] is an (m,n)-ideal of S. Now
we show that (RL] is a 0-minimal (m,n)-ideal of S. Let {0} 6= M ⊆ (RL]
be an (m,n)-ideal of S. Note that since (RL] ⊆ R∩L, we have M ⊆ R∩L.
Hence M ⊆ R and M ⊆ L. By hypothesis, Mm 6= {0} and Mn 6= {0}.
Since {0} 6= (SMm] = (MmS], therefore

{0} 6= (MmS] ⊆ (RmS] = (Rm−1R · S] = (SR ·Rm−1]

= (SR ·Rm−2R] ⊆ (RRm−2 · (RS]]

⊆ (RRm−2 ·R] = (Rm],

and

(Rm] ⊆ S(Rm] ⊆ (SRm] ⊆ (SS ·RRm−1]

⊆ (Rm−1R · S] = ((Rm−2R ·R)S]

= ((RR ·Rm−2)S] ⊆ (SRm−2 · (RS]]

⊆ (SRm−2 ·R] ⊆ ((SS ·Rm−3R)R]

= ((RRm−3 · SS)R] ⊆ (((RS] ·Rm−3S)R]

⊆ ((R ·Rm−3S)R] ⊆ ((Rm−3 · (RS])R]

⊆ (Rm−3R ·R] = (Rm−1],

therefore {0} 6= (MmS] ⊆ (Rm] ⊆ (Rm−1] ⊆ ... ⊆ (R] = R. It is easy
to see that (MmS] is a right ideal of S. Thus (MmS] = R since R is
0-minimal. Also

{0} 6= (SMn] ⊆ (SLn] = (S · Ln−1L]

⊆ (Ln−1 · (SL]] ⊆ (Ln−1L] = (Ln],
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and

(Ln] ⊆ (SLn] ⊆ (SS · LLn−1] ⊆ (Ln−1L · S]

= ((Ln−2L · L)S] ⊆ ((SL] · Ln−2L]

⊆ (L · Ln−2L] ⊆ (Ln−2 · SL]

⊆ (Ln−2L] = (Ln−1] ⊆ ... ⊆ (L],

therefore {0} 6= (SMn] ⊆ (Ln] ⊆ (Ln−1] ⊆ ... ⊆ (L] = L. It is easy to see
that (SMn] is a left ideal of S. Thus (SMn] = L since L is 0-minimal.
Therefore

M ⊆ (RL] = ((MmS] · (SMn]] = (MnS · SMm]

= ((SMm · S)Mn] ⊆ ((SMm · SS)Mn]

⊆ ((S ·MmS)Mn] = ((Mm · SS)Mn]

⊆ (MmS ·Mn] ⊆M.

Thus M = (RL], which means that (RL] is a 0-minimal (m,n)-ideal of
S.

Note that if (S, ·,≤) is a unitary ordered AG-groupoid and M ⊆ S,
then it is easy to see that (SM2] and (SM ] are the left and the right
ideals of S respectively.

Theorem 2.7. Let (S, ·,≤) be a unitary ordered AG-groupoid with
zero. If R (L) is a 0-minimal right (left) ideal of S, then either (RmLn] =
{0} or (RmLn] is a 0-minimal (m,n)-ideal of S.

Proof. Assume that R (L) is a 0-minimal right (left) ideal of S such
that (RmLn] 6= {0}, then Rm 6= {0} and Ln 6= {0}. Hence {0} 6= Rm ⊆ R
and {0} 6= Ln ⊆ L, which shows that Rm = R and Ln = L since R (L) is
a 0-minimal right (left) ideal of S. Thus by lemma 2.3, (RmLn] = (RL]
is an (m,n)-ideal of S. Now we show that (RmLn] is a 0-minimal (m,n)-
ideal of S. Let {0} 6= M ⊆ (RmLn] = (RL] ⊆ R ∩ L be an (m,n)-ideal
of S. Hence

{0} 6= (SM2] ⊆ (MM · SS] = (MS ·MS] ⊆ ((RS] · (RS]] ⊆ R,

and {0} 6= (SM ] ⊆ (SL] ⊆ L. Thus R = (SM2] and (SM ] = L since R
(L) is a 0-minimal right (left) ideal of S. Since

(SM2] ⊆ (MM · SS] = (SM ·M ] ⊆ (SM ],
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therefore

M ⊆ (RmLn] ⊆ (((SM)m]((SM)n]] = ((SM)m(SM)n]

= (SmMm · SnMn] = (SS ·MmMn] ⊆ (MnMm · S]

⊆ ((SS)(Mm−1M) ·Mn] = ((MMm−1)(SS) ·Mn]

⊆ (MmS ·Mn] ⊆M,

Thus M = (RmLn], which shows that (RmLn] is a 0-minimal (m,n)-ideal
of S.

Theorem 2.8. Let (S, ·,≤) be a unitary ordered AG-groupoid. As-
sume that A is an (m,n)-ideal of S and B is an (m,n)-ideal of A such
that B is idempotent. Then B is an (m,n)-ideal of S.

Proof. It is trivial that B is an AG-subgroupoid of S. Secondly, since
(AmS · An] ⊆ A and (BmA ·Bn] ⊆ B, then

(BmS ·Bn] ⊆ ((BmBm · S)(BnBn)] = ((BnBn)(S ·BmBm)]

= (((S ·BmBm)Bn)Bn] ⊆ (((Bn ·BmBm)(SS))Bn]

= (((Bm ·BnBm)(SS))Bn] = ((S(BnBm ·Bm))Bn]

= ((S(BnBm ·Bm−1B))Bn] = ((S(BBm−1 ·BmBn))Bn]

= ((S(Bm ·BmBn))Bn] ⊆ ((Bm(SS ·BmBn))Bn]

= ((Bm(BnBm · SS))Bn] ⊆ ((Bm(SBm ·Bn))Bn]

⊆ ((Bm((SS ·Bm−1B)Bn))Bn] ⊆ ((Bm(BmS ·Bn))Bn]

⊆ ((Bm(AmS · An])Bn] ⊆ (BmA ·Bn] ⊆ B,

which shows that B is an (m,n)-ideal of S.

Lemma 2.9. Let (S, ·,≤) be a unitary ordered AG-groupoid. Then
〈a〉(m,n) = (amS · an] is an (m,n)-ideal of S.
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Proof. Assume that S is a unitary AG-groupoid. It is easy to see that
(〈a〉(m,n))

n ⊆ 〈a〉(m,n) . Now

(((〈a〉(m,n))
mS)(〈a〉(m,n))

n] = (((((amS)an))m]S · (((amS)an)n]]

⊆ (((amS)an)mS · ((amS)an)n]

= (((ammSm)amn)S · (amnSn)ann]

= (ann(amnSn) · S((ammSm)amn)]

= ((S((ammSm)amn) · amnSn)ann]

= ((amn · (S((ammSm)amn))Sn)ann]

⊆ (amnS · ann] ⊆ (amnSn · ann]

= ((amS · an)n] ⊆ (((amS · an)]n]

= ((〈a〉(m,n))
n] ⊆ (〈a〉(m,n)],

which shows that 〈a〉(m,n) is an (m,n)-ideal of S.

Theorem 2.10. Let (S, ·,≤) be a unitary ordered AG-groupoid and
〈a〉(m,n) be an (m,n)-ideal of S. Then the following statements hold:

(i) ((〈a〉(1,0))mS] = (amS];

(ii) (S(〈a〉(0,1))n] = (San];

(iii) ((〈a〉(1,0))mS · (〈a〉(0,1))n] = (amS · an].

Proof. (i) As 〈a〉(1,0) = (aS], we have

((〈a〉(1,0))
mS] = (((aS])mS] ⊆ (((aS)m]S] ⊆ ((aS)mS]

= ((aS)m−1(aS) · S] = (S(aS) · (aS)m−1]

⊆ ((aS)(aS)m−1] = ((aS) · (aS)m−2(aS)]

= ((aS)m−2(aS · aS)] = ((aS)m−2(a2S)]

= ... = ((aS)m−(m−1)(am−1S)] [if m is odd]

= ... = ((am−1S)(aS)m−(m−1)] [if m is even]

= (amS].

Analogously, we can prove (ii) and (iii) as well.

Corollary 2.11. Let (S, ·,≤) be a unitary ordered AG-groupoid
and let 〈a〉(m,n) be an (m,n)-ideal of S. Then the following statements
hold:

(i) ((〈a〉(1,0))mS] = (Sam];
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(ii) (S(〈a〉(0,1))n] = (anS];

(iii) ((〈a〉(1,0))mS · (〈a〉(0,1))n] = (Sam · anS].

3. (m,n)-ideals in (m,n)-regular ordered AG-groupoids

Definition 3.1. Let m,n be non-negative integers and (S, ·,≤) be
an ordered AG-groupoid. We say that S is (m,n)-regular if for every
element a ∈ S there exists some x ∈ S such that a ≤ amx · an. Note
that a0 is defined as an operator element such that amx · a0 = amx = x
if m = 0, and a0x · an = xan = x if n = 0.

Let L(0,n), R(m,0) and A(m,n) denote the sets of (0, n)-ideals, (m, 0)-
ideals and (m,n)-ideals of an ordered AG-groupoid (S, ·,≤) respectively.

Theorem 3.2. Let (S, ·,≤) be a unitary ordered AG-groupoid. Then
the following statements hold:

(i) S is (0, 1)-regular if and only if ∀ L ∈ L(0,1), L = (SL];
(ii) S is (2, 0)-regular if and only if ∀R ∈ R(2,0), R = (R2S] such that

every R is semiprime;
(iii) S is (0, 2)-regular if and only if ∀U ∈ A(0,2), U = (U2S] such that

every U is semiprime.

Proof. (i) Let S be (0, 1)-regular, then for a ∈ S there exists x ∈ S
such that a ≤ xa. Since L is (0, 1)-ideal, therefore (SL] ⊆ L. Let a ∈ L,
then a ≤ xa ∈ (SL] ⊆ L. Hence L = (SL]. Converse is simple.

(ii) Let S be (2, 0)-regular and R be (2, 0)-ideal of S, then it is easy
to see that R = (R2S]. Now for a ∈ S there exists x ∈ S such that
a ≤ a2x. Let a2 ∈ R, then

a ≤ a2x ∈ RS = (R2S] · S ⊆ (R2S · S] = (SS ·R2] ⊆ (R2S] = R,

which shows that every (2, 0)-ideal is semiprime.
Conversely, let R = (R2S] for every R ∈ R(2,0). Since (Sa2] is a

(2, 0)-ideal of S such that a2 ∈ (Sa2], therefore a ∈ (Sa2]. Thus

a ∈ (Sa2] = (((Sa2)2]S] ⊆ ((Sa2 · Sa2)S] = ((a2S · a2S)S]

= ((a2(a2S · S))S] ⊆ ((a2 · Sa2)S] = ((S · Sa2)a2]
⊆ (Sa2] ⊆ (a2S],

which implies that S is (2, 0)-regular.
Analogously, we can prove (iii).
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Lemma 3.3. Let (S, ·,≤) be a unitary ordered AG-groupoid. Then
the following statements hold:

(i) If S is (0, n)-regular, then ∀L ∈ L(0,n), L = (SLn];
(ii) If S is (m, 0)-regular, then ∀ R ∈ R(m,0), R = (RmS];
(iii) If S is (m,n)-regular, then ∀ U ∈ A(m,n), U = (UmS · Un].

Proof. It is simple.

Corollary 3.4. Let (S, ·,≤) be a unitary ordered AG-groupoid.
Then the following statements hold:

(i) If S is (0, n)-regular, then ∀ L ∈ L(0,n), L = (LnS];
(ii) If S is (m, 0)-regular, then ∀ R ∈ R(m,0), R = (SRm];
(iii) If S is (m,n)-regular, then ∀ U ∈ A(m,n), U = (Um+nS] =

(SUm+n].

Theorem 3.5. Let (S, ·,≤) be a unitary (m,n)-regular ordered AG-
groupoid. Then for every R ∈ R(m,0) and L ∈ L(0,n), R ∩ L = (RmL] ∩
(RLn].

Proof. It is simple.

Theorem 3.6. Let (S, ·,≤) be a unitary (m,n)-regular ordered AG-
groupoid. If M (N) is a 0-minimal (m, 0)-ideal ((0, n)-ideal) of S such
that (MN ] ⊆M ∩N, then either (MN ] = {0} or (MN ] is a 0-minimal
(m,n)-ideal of S.

Proof. Let M (N) be a 0-minimal (m, 0)-ideal ((0, n)-ideal) of S. Let
O = (MN ], then clearly O2 ⊆ O. Moreover

(OmS ·On] = ((MN ]mS · (MN ]n] ⊆ (((MN)m]S · ((MN)n]]

⊆ ((MN)mS · (MN)n] = ((MmNm)S ·MnNn]

⊆ ((MmS)S · SNn] ⊆ (SMm · SNn]

⊆ (MmS · SNn] ⊆ ((MmS] · (SNn]]

⊆ (MN ] = O,

which shows that O is an (m,n)-ideal of S. Let {0} 6= P ⊆ O be a
non-zero (m,n)-ideal of S. Since S is (m,n)-regular, therefore by using
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Lemma 3.3, we have

{0} 6= P = (PmS · P n] ⊆ ((Pm · SS)P n] = ((S · PmS)P n]

⊆ ((P n · PmS)(SS)] = ((P nS)(PmS · S)]

⊆ (P nS · SPm] = (PmS · SP n]

= ((PmS] · (SP n]].

Hence (PmS] 6= {0} and (SP n] 6= {0}. Further P ⊆ O = (MN ] ⊆M∩N
implies that P ⊆M and P ⊆ N. Therefore {0} 6= (PmS] ⊆ (MmS] ⊆M
which shows that (PmS] = M since M is 0-minimal. Likewise, we can
show that (SP n] = N. Thus we have

P ⊆ O = (MN ] = ((PmS] · (SP n]] = (PmS · SP n]

= (P nS · SPm] ⊆ ((SPm · SS)P n]

⊆ ((S · PmS)P n] ⊆ (PmS · P n] ⊆ P.

This means that P = (MN ] and hence (MN ] is 0-minimal.

Theorem 3.7. Let (S, ·,≤) be a unitary (m,n)-regular ordered AG-
groupoid. If M (N) is a 0-minimal (m, 0)-ideal ((0, n)-ideal) of S, then
either M ∩N = {0} or M ∩N is a 0-minimal (m,n)-ideal of S.

Proof. Once we prove that M ∩N is an (m,n)-ideal of S, the rest of
the proof is the same as in Theorem 3.5. Let O = M ∩N, then it is easy
to see that O2 ⊆ O. Moreover

(OmS ·On] ⊆ ((MmS] ·Nn] ⊆ (MNn] ⊆ (SNn] ⊆ N.

But, we also have

(OmS ·On] ⊆ (MmS ·Nn] ⊆ ((Mm · SS)Nn] = ((S ·MmS)Nn]

= ((Nn ·MmS)S] ⊆ ((Mm ·NnS)(SS)]

= ((MmS)(NnS · S)] ⊆ (MmS · SNn]

⊆ (MmS ·NnS] = (Nn(MmS · S)]

⊆ (Nn · SMm] ⊆ (Nn ·MmS] = (Mm ·NnS]

⊆ (Mm · (SNn]] ⊆ (MmN ] ⊆ (MmS] ⊆M.

Thus (OmS · On] ⊆ M ∩ N = O and therefore O is an (m,n)-ideal of
S.
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4. Conclusions

All the results of this paper can be obtain for an AG-groupoid without
order which will give us the extension of the carried out in [1] on (m,n)-
ideals in an AG-groupoid. Also the results of this paper can be trivially
followed for a locally associative ordered AG-groupoid which will gener-
alize and extend the concept of a locally associative AG-groupoid [7].
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