• 제목/요약/키워드: Graph with diameter 2

검색결과 45건 처리시간 0.025초

행렬 하이퍼큐브 그래프 : 병렬 컴퓨터를 위한 새로운 상호 연결망 (Matrix Hypercube Graphs : A New Interconnection Network for Parallel Computer)

  • 최선아;이형옥임형석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.293-296
    • /
    • 1998
  • In this paper, we propose a matrix hypercube graph as a new topology for parallel computer and analyze its characteristics of the network parameters, such as degree, routing and diameter. N-dimensional matrix hypercube graph MH(2,n) contains 22n vertices and has relatively lower degree and smaller diameter than well-known hypercube graph. The matrix hypercube graph MH(2,n) and the hypercube graph Q2n have the same number of vertices. In terms of the network cost, defined as the product of the degree and diameter, the former has n2 while the latter has 4n2. In other words, it means that matrix hypercube graph MH(2,n) is better than hypercube graph Q2n with respect to the network cost.

  • PDF

A Relationship between the Second Largest Eigenvalue and Local Valency of an Edge-regular Graph

  • Park, Jongyook
    • Kyungpook Mathematical Journal
    • /
    • 제61권3호
    • /
    • pp.671-677
    • /
    • 2021
  • For a distance-regular graph with valency k, second largest eigenvalue r and diameter D, it is known that r ≥ $min\{\frac{{\lambda}+\sqrt{{\lambda}^2+4k}}{2},\;a_3\}$ if D = 3 and r ≥ $\frac{{\lambda}+\sqrt{{\lambda}^2+4k}}{2}$ if D ≥ 4, where λ = a1. This result can be generalized to the class of edge-regular graphs. For an edge-regular graph with parameters (v, k, λ) and diameter D ≥ 4, we compare $\frac{{\lambda}+\sqrt{{\lambda}^2+4k}}{2}$ with the local valency λ to find a relationship between the second largest eigenvalue and the local valency. For an edge-regular graph with diameter 3, we look at the number $\frac{{\lambda}-\bar{\mu}+\sqrt{({\lambda}-\bar{\mu})^2+4(k-\bar{\mu})}}{2}$, where $\bar{\mu}=\frac{k(k-1-{\lambda})}{v-k-1}$, and compare this number with the local valency λ to give a relationship between the second largest eigenvalue and the local valency. Also, we apply these relationships to distance-regular graphs.

DIAMETERS AND CLIQUE NUMBERS OF QUASI-RANDOM GRAPHS

  • Lee, Tae Keug;Lee, Changwoo
    • Korean Journal of Mathematics
    • /
    • 제11권1호
    • /
    • pp.65-70
    • /
    • 2003
  • We show that every quasi-random graph $G(n)$ with $n$ vertices and minimum degree $(1+o(1))n/2$ has diameter either 2 or 3 and that every quasi-random graph $G(n)$ with n vertices has a clique number of $o(n)$ with wide spread.

  • PDF

CLASSIFICATION OF TWO-REGULAR DIGRAPHS WITH MAXIMUM DIAMETER

  • Kim, Byeong Moon;Song, Byung Chul;Hwang, Woonjae
    • Korean Journal of Mathematics
    • /
    • 제20권2호
    • /
    • pp.247-254
    • /
    • 2012
  • The Klee-Quaife problem is finding the minimum order ${\mu}(d,c,v)$ of the $(d,c,v)$ graph, which is a $c$-vertex connected $v$-regular graph with diameter $d$. Many authors contributed finding ${\mu}(d,c,v)$ and they also enumerated and classied the graphs in several cases. This problem is naturally extended to the case of digraphs. So we are interested in the extended Klee-Quaife problem. In this paper, we deal with an equivalent problem, finding the maximum diameter of digraphs with given order, focused on 2-regular case. We show that the maximum diameter of strongly connected 2-regular digraphs with order $n$ is $n-3$, and classify the digraphs which have diameter $n-3$. All 15 nonisomorphic extremal digraphs are listed.

새로운 상호연결망 하프 버블정렬 그래프 설계 및 성질 분석 (Design and feature analysis of a new interconnection network : Half Bubblesort Graph)

  • 서정현;심현;이형옥
    • 한국정보통신학회논문지
    • /
    • 제21권7호
    • /
    • pp.1327-1334
    • /
    • 2017
  • 버블정렬 그래프는 노드 대칭이며 데이터 정렬 알고리즘에 활용 할 수 있다. 본 연구에서는 버블정렬 그래프의 망 비용을 개선한 하프 버블정렬 그래프를 제안하고 분석한다. 하프 버블정렬 그래프 $HB_n$의 노드수는 n!이고 분지수는 ${\lfloor}n/2{\rfloor}+1$이다. 하프 버블정렬 그래프의 분지수는 버블정렬 그래프의 분지수의 $${\sim_=}0.5$$배 이고, 지름은 $${\sim_=}0.9$$배 이다. 버블정렬 그래프의 망 비용은 $${\sim_=}0.5n^3$$이고, 하프 버블정렬 그래프의 망 비용은 $${\sim_=}0.2n^3$$이다. 하프 버블정렬 그래프는 버블정렬 그래프의 서브 그래프임을 증명하였다. 추가로 라우팅 알고리즘을 제안하였고 지름을 분석하였다. 마지막으로 버블정렬 그래프와 망 비용을 비교 하였다.

THE ANNIHILATOR IDEAL GRAPH OF A COMMUTATIVE RING

  • Alibemani, Abolfazl;Bakhtyiari, Moharram;Nikandish, Reza;Nikmehr, Mohammad Javad
    • 대한수학회지
    • /
    • 제52권2호
    • /
    • pp.417-429
    • /
    • 2015
  • Let R be a commutative ring with unity. The annihilator ideal graph of R, denoted by ${\Gamma}_{Ann}(R)$, is a graph whose vertices are all non-trivial ideals of R and two distinct vertices I and J are adjacent if and only if $I{\cap}Ann(J){\neq}\{0\}$ or $J{\cap}Ann(I){\neq}\{0\}$. In this paper, we study some connections between the graph-theoretic properties of this graph and some algebraic properties of rings. We characterize all rings whose annihilator ideal graphs are totally disconnected. Also, we study diameter, girth, clique number and chromatic number of this graph. Moreover, we study some relations between annihilator ideal graph and zero-divisor graph associated with R. Among other results, it is proved that for a Noetherian ring R if ${\Gamma}_{Ann}(R)$ is triangle free, then R is Gorenstein.

On Comaximal Graphs of Near-rings

COVERING COVER PEBBLING NUMBER OF A HYPERCUBE & DIAMETER d GRAPHS

  • Lourdusamy, A.;Tharani, A. Punitha
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제15권2호
    • /
    • pp.121-134
    • /
    • 2008
  • A pebbling step on a graph consists of removing two pebbles from one vertex and placing one pebble on an adjacent vertex. The covering cover pebbling number of a graph is the smallest number of pebbles, such that, however the pebbles are initially placed on the vertices of the graph, after a sequence of pebbling moves, the set of vertices with pebbles forms a covering of G. In this paper we find the covering cover pebbling number of n-cube and diameter two graphs. Finally we give an upperbound for the covering cover pebbling number of graphs of diameter d.

  • PDF

RCR 네트워크에서 최단경로를 위한 탐색 알고리즘 (A Searching Algorithm for Shortest Path in RCR Network)

  • 김성열
    • 한국전자통신학회논문지
    • /
    • 제5권5호
    • /
    • pp.444-448
    • /
    • 2010
  • RCR 네트워크 토폴로지[1]는 짧은 지름, 대칭성 등의 특징을 가지고 있어 병렬컴퓨팅 환경을 구성하기에 적합한 상호접속네트워크의 일종이다. Hu and Cao[2]에 의하여 이 토폴로지 분석에 대한 재검토가 이루어졌으며, 그래프 비연결성, 직경, bisection width 등에 대한 오류가 있음을 지적하였다. 이 논문에서는 RCR 네트워크 토폴로지 특성을 분석하고, [2]의 결과에도 여전히 남아있는 '연결그래프가 되기 위한 조건' 및 직경에 대한 오류를 정정한다. 그리고 RCR 네트워크에서 최단경로를 구하기 위한 알고리즘을 제안한다.

On Diameter, Cyclomatic Number and Inverse Degree of Chemical Graphs

  • Sharafdini, Reza;Ghalavand, Ali;Ashrafi, Ali Reza
    • Kyungpook Mathematical Journal
    • /
    • 제60권3호
    • /
    • pp.467-475
    • /
    • 2020
  • Let G be a chemical graph with vertex set {v1, v1, …, vn} and degree sequence d(G) = (degG(v1), degG(v2), …, degG(vn)). The inverse degree, R(G) of G is defined as $R(G)={\sum{_{i=1}^{n}}}\;{\frac{1}{deg_G(v_i)}}$. The cyclomatic number of G is defined as γ = m - n + k, where m, n and k are the number of edges, vertices and components of G, respectively. In this paper, some upper bounds on the diameter of a chemical graph in terms of its inverse degree are given. We also obtain an ordering of connected chemical graphs with respect to the inverse degree.