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DIAMETERS AND CLIQUE NUMBERS

OF QUASI-RANDOM GRAPHS

Tae Keug Lee and Changwoo Lee

Abstract. We show that every quasi-random graph G(n) with n
vertices and minimum degree (1 + o(1))n/2 has diameter either 2
or 3 and that every quasi-random graph G(n) with n vertices has a
clique number of o(n) with wide spread.

1. Introduction

Let us consider the random graph model for graphs with n vertices
and edge probability p = 1/2. Thus the probability space Ω(n) consists
of all labeled graphs G of order n, and the probability P (G) of G in Ω(n)

is given by P (G) = 2−(n
2). For a graph property P , it may happen that

P{G ∈ Ω(n) | G satisfies P} → 1 as n →∞.

In this case, a typical graph in Ω(n), which we denote by G1/2(n), has
property P with overwhelming probability as n becomes large. We ab-
breviate this by saying that a random graph G1/2(n) almost surely has
property P . For details of these concepts, see [1] or [6].

One would like to construct graphs that behave just like a random
graph G1/2(n). Of course, it is logically impossible to construct a truly
random graph. Thus Chung, Graham, and Wilson defined in [3] quasi-
random graphs, which simulate G1/2(n) without much deviation. Among
many equivalent quasi-random properties studied in [3] and [2], we list
only three needed in this paper. Let G(n) denote a graph on n vertices.
A family {G(n)} of graphs (or for brevity, a graph G = G(n)) is said
quasi-random if it satisfies any one of and hence all of the following.
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Uniform edge density property: For each subset S ⊆ V (G), the num-
ber e(S) of edges in G[S] is e(S) = 1

4
|S|2 + o(n2). Here, G[S] denotes

the subgraph of G induced by S.

Induced subgraph property: For fixed s, each labeled graph M(s) on

s vertices occurs (1 + o(1))ns/2(s
2) times as an induced subgraph of G.

Uniform edge density property for bisectors: For each subset S ⊆
V (G), the number e(S, S) of edges between S and S satisfies e(S, S) =
1
2
|S||S|+ o(n2), where S = V (G)− S.

We showed in [4] and [5] how much quasi-random graphs deviate
from random graphs G1/2(n) in connectedness and Hamiltonicity. In
this paper, we investigate the same questions in diameter and clique
number.

2. Diameters

In this section, we investigate the diameter of a quasi-random graph.
It is well known that G1/2(n) has diameter 2 almost surely [1]. For quasi-
random graphs G(n), the diameter does not behave in quite the same
way even with a degree restriction.

Theorem 1. Let G = G(n) be a quasi-random graph and δ(G) de-
note the minimum degree of G. If δ(G) = (1 + o(1))n/2, then the
diameter of G is either 2 or 3.

Proof. Let δ(G) = (1 + o(1))n/2 and let u and v be vertices of G.
Then for sufficiently large n, G is connected by Corollary 3 in [4] and so
we may consider the diameter of G. If u and v have the neighborhoods
N(u) and N(v) such that N(u)∩N(v) 6= ∅, there is a u-v path of length
at most 2. Now suppose that N(u) ∩ N(v) = ∅. Then we have the
disjoint union

V (G) = N(u) ∪N(v) ∪ S,
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where S ⊆ V (G) with |S| = o(n). Thus, using the uniform edge density
property for bisectors, we have

e(N(u), N(v)) = e(N(u), N(u))− e(N(u), S)

≥ e(N(u), N(u))− |N(u)||S|
=

1

2
|N(u)||N(u)|+ o(n2)− |N(u)||S|

≥ 1

2
(1 + o(1))

(n

2

)2

+ o(n2)−O(n)o(n)

= (1 + o(1))
n2

8
.

Therefore, for sufficiently large n, there is an edge between N(u) and
N(v) and hence we have a u-v path of length 3. Notice that the diameter
of G cannot be 1. This implies that G has diameter 2 or 3 for sufficiently
large n.

We showed that every quasi-random graph G(n) with minimum de-
gree (1 + o(1))n/2 has diameter 2 or 3. Let p be a prime satisfying
p ≡ 1 (mod 4). We define Paley graph Qp as follows: The vertex set
is {0, 1, . . . , p− 1} and ij is an edge precisely when i− j is a quadratic
residue of p. Note that Paley graph Qp on p vertices is quasi-random [4]
and strongly regular with parameters {(p − 1)/2, (p − 5)/4, (p − 1)/4}
[1]. Here is an example of quasi-random graph whose diameter is 2.

Example 2. Any two non-adjacent vertices of Paley graph Qp have
(p − 1)/4 common neighbors and any two adjacent vertices of Qp have
(p− 5)/4 common neighbors. Hence Qp has diameter 2 for all p.

The following is an example of quasi-random graph whose diameter
is 3.

Example 3. Let us define G(n) for n = p + 2 as follows. We add
two new vertices u and v to Paley graph Qp and next join u to all even
numbered vertices of Qp and v to all odd numbered vertices of Qp. Then
G(n) is a quasi-random graph with δ = (1 + o(1))n/2. Moreover, the
distance between u and v is 3. Therefore, G(n) has diameter 3 for all p.

The following example shows that there are quasi-random graphs with
diameter larger than 3 if the degree condition in Theorem 1 is not con-
sidered.
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Example 4. Let k ≥ 2 be a fixed integer and let Pk be a path of
order k that is disjoint from Qp. We hitch an end vertex of Pk to a vertex
of Qp introducing a new edge. Then the resulting graph G(n), n = p+k,
is a connected quasi-random graph with δ = 1 and has diameter k + 2
for all p.

3. Clique Numbers

In this section, we investigate the clique number of a quasi-random
graph.

A maximal complete subgraph of a graph is called a clique of the
graph. The clique number cl(G) of a graph G is the maximum order
of a clique of G, equivalently, cl(G) is simply the maximum order of a
complete subgraph. The independence number β(G) of a graph G is the
maximum cardinality of an independent set of G. We know that a set
S of vertices in a graph G is independent if and only if S is a clique in
the complement G. Thus, β(G) = cl(G).

It is well known that for almost every random graph G1/2(n), the
clique number is around 2 log2 n (see [1]). For quasi-random graphs, we
have the following from Theorem 1 in [5], which contrasts with the case
of a random graph.

Theorem 5. Let G = G(n) be a quasi-random graph on n vertices.
Then the clique number cl(G) of G satisfies cl(G) = o(n) and is bounded
away from zero by any positive constant.

Proof. To prove this, it suffices to show that the complement G(n) of
a quasi-random graph G(n) is quasi-random. To check the uniform edge
density property, we let S be a set of vertices of G(n). Then we have

eG(S) =

(|S|
2

)
− eG(S)

=
|S|(|S| − 1)

2
−

( |S|2
4

+ o(n2)
)

=
|S|2
4
− |S|

2
− o(n2)

=
|S|2
4

+ o(n2),

which means that G(n) is quasi-random.
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Example 6. Let Π be a projective geometry of dimension k over
the field F2, that is, the set of all 1-dimensional subspaces of a (k + 1)-
dimensional vector space over F2. We define a graph G whose vertices
are the points of Π and where two vertices are adjacent if and only if
their scalar product is zero. This graph G may be regarded as follows:
The vertex set of G is the set of all nonempty subsets of {1, 2, . . . , k}
and two vertices x and y are adjacent if and only if |x∩ y| ≡ 0 (mod 2).

Let H be the subgraph of G induced by subsets with odd number of
elements. Then H is a quasi-random graph of order n = 2k [3]. Since a
clique of H corresponds a set of linearly independent vectors, it is easy
to see that cl(H) ≤ log2 n.

Example 7. Let n be a square with n ≡ 1 (mod 4). We define a
graph Gn of order n as follows: The vertex set of Gn is the field Fn

and two vertices x and y are adjacent if and only if x − y is a nonzero
square in Fn. Then Gn is a quasi-random graph of order n [3]. Since the
elements in the subfield of order

√
n form a clique, it is easy to see that

cl(Gn) ≥ √
n.

We know that the clique number cl(G(n)) of a quasi-random graph
G(n) of order n satisfies cl(G(n)) = o(n) and that almost every random
graph G1/2(n) has clique number around 2 log2 n. However, Examples
6 and 7 show that clique numbers of quasi-random graphs are widely
spread. But it still remains to determine tight bounds for clique numbers
of quasi-random graphs.
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