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A Searching Algorithm for Shortest Path in RCR Network
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ABSTRACT

RCR network[1] is a topology for interconnection networks having many desirable properties for building scalable parallel
machines. This had been analyzed by Hu and Cao[2] to deal with problems of disconnected graph, bisection width and diameter. We
analyze some properties of RCR again and revise the condition for connected graph and network diameter. And we present an
efficient algorithm for finding next node on a shortest path.
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|. Introduction cles[3], Butterfly[4], Shuffle Exchange, Shuffled-

Mesh[5], HCCI[6,7], etc. Among the various parallel

In a parallel system, the interconnection topology  interconnection topologies, a new family of scalable
plays an important role in determining the overall —interconnection network topology named RCR
performance of the system. If the network cannot (Recursive Cube of Rings)[1] was proposed. RCR(k,
provide adequate performance, for a particular 7, J) is the notation for a RCR where k is
application, nodes will frequently be forced to wait  dimension of the cube, r is the number of nodes on
for data to arrive. This networks include Mesh, @ ring and j is the number of expansions from
Rings, Hypercube, X-Tree, Cube Connected Cy-  general seed. This topology has many desirable
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properties for building scalable parallel machines
such as fixed degree, small diameter, high bisection
width and symmetry. Even though this topology
was nice, it made a little mistake in defining its
The work [2]
including disconnected graph, bisection width and

properties. gave three notices

network diameter. But we found the diameter
defined in [2] is applicable to some k, r, j but not
to others. The routing algorithm presented in [1]
does not find a shortest path from source node to
destination node.

In this paper we define the condition for RCR(k,
r, j) to be a connected graph and network diameter
of RCR(k, r, j). Then we propose an algorithm for

finding next node to make a shortest path.

II. Condition for Being A Connected Graph

RCR(k, r, j) is a network which cubes are
connected by rings[1]. Address of a node n is
notated as [A, bul, where 0<b,<r-1, A, =
Ak+j-18k+-2.-ai..a0, and a€{0, 1}. Let a of A, be
An(a) hereafter. In this network, each node has k
when r > 2
belonging to a k-cube as well as a ring. [Am, bml,
a cube-neighbor of [A,, bunl, has address in which
only one bit Am(a) is different from An(a;), where i

cube-links and two ring-links

= ~bj-x (mod k + j), 1<x<k. Two ring—neighbors
are [A,, butl(mod r)].

Hul2] described that RCR(k,1,j) is a disconected
graph. However, many cases being disconncted on
RCR(, r, j) exist. One of them is from [00000, 1]
to [00100, 1] on RCR(2,23). We now define the
condition for RCR(k, r, j) being a conected graph.

Theorem 1: RCR(k, r, j) is a connected graph |,
iff k(r—1)=j.

Progf: According to generation of RCR(k, r, ),
node n has (k+2) neighbors containing k cube-links
and two ring-links when r > 2.

[An, bml, one of k cube—neighbors of [A,, bul, is

different from n by only one bit a,, where Aj(ay)#
An(ay), x€X, X = {=b —1,-b —2, .,-b —k
(mod k+j)} and b, = bm. These k+1 nodes, node n
and it'’s k cube-neighbors, make a cube together
with other 2°—k—1 nodes which have
addresses except a,, x&€X. This means that these
2% nodes are connected by kx2 ! cube-links.

same

But if we want to connect from node n to a
node d where Aqlay) # An(ay), yZX, we must
move through a ring-link. [A, bytl]l, a
ring—neighbor of [A, b, which is a part of the
cube including [A,, b, has cubeneighbors that
have the addresses different from A: by only one
bit ay where y€Y, Y ={—(b+1)j—1,—(b+1)j —2, ..,
—(b+1)j—k}. Similarly, these (k+1) nodes make a
cube together with other %—k—1 nodes which
have same addresses except ay, v €Y,

where Y=

{=(b+1)j—1,—(b+1)j—2,...,— (b+1)j —k(mod k+ j)}

= {—=bj+k—1, ..,—bj+1,—bj(mod k+j)}

From this fact, we find that Y has k consecutive
bit positions to (—bj—1) position in X. Therefore
node n can be connected to any arbitrary node if
and only if k % r is greater or equal to kK + J.

Ill. New Definition of Network Diameter

Hul2] defined network diameter D= k+j+br/2c+1.
But in RCR(2, 7, 3), distance from [00000, 0] to
[11111, 5] is 10, not 9. One of feasible shortest
path is as follows. [00000, 0]— [10000, 0]—[11000,
0l—-{11000, 1]—{11001, 1]— [11011, 1}-{11011, 2}~
[11111, 2]-[11111, 31— [11111, 4]->[11111, 5]

Here, distance from [00000, 0] to [11111, 2] is 7,
where 5 cube hops plus 2 ring hops. Later, the
path from [11111,2] to [11111,5] is traversed only
on ring side. Now we define network diameter.

Theorem 2: For a connected RCR(k, r, J),
network diameter D is k + j + [j/kl+[r/2].

Progf: In order to move from [A., b to [Ag, bdl,
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we first move from [A., b to [Aqg £], then to [Ag,
bal. When 4 ,= A, thatis A (a)*A (a )
0<i<k+j—1 the first movement needs k+j+x
hops, k+j cube hops and x ring hops, as described
in Theorem 1. Here, x is [(k+j)/k]—1 at maximum,
since more k bits can be covered when we use one
ring link. So ¢ can be b+x or b—x depending on
the direction traversed on rings.

In order to reach from [Aq, t] to [Ag bal, a path
is traversed from ¢ to bq on a ring. It requires
maximally [r/2].

Therefore the maximum distance between two
nodes is ktj+x+[r/2] = k+j+(i/kl+r/2l.

IV. Algorithm for Finding Next Node
on A Shortest Path

Sun[1] proposed a routing algorithm and insisted
the algorithm can find a shortest path from [A., bl
to [Ag, bal. According to the algorithm, in case of
A, = Aq and b.#bg, next node would be [A., by
such that [by—bal<|b.—bdl. The selection of next
node is wrong in some cases. For example, if [A.
1] is the source node, [A. 5] is the destination
node and r = 6, then choice of [A., 0] makes a
shorter path than [A., 2], while [2—5|<|1—5|.

We propose an efficient routing algorithm that
guarantee a shortest path. This algorithm is very
simple and clear. The function FindingNextNode is
to find next node to make a shortest path. Let'’s
consider the connection from [Ac, bl to [Ag, bal.

In case that A. = Agq and b.#bg, the path is
traversed only on a ring. So we have to choose
either b+l or b—1 which is closer to bg. In our
algorithm, the function DistanceOnRing(b., ba)
returns the distance from b. to by on a ring and
the ring size r is declared as a global variable.

In other case that Ac#=A4, we transfer through a
cube link. However, if there is no cube link closer
to destination, we should choose a ring link. The
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function FindCubeNeighbor([A., b, [Aq, bal)
returns a cube—neighbor of [A., b. for connecting
to [Aq, bal. If this function returns [A., be), this
means that there is no cube link. For this case, we
choose a ring link closer to [Ag, bal.

The Distance(TAc, b, [As bd,
direction) computes the distance from [A., bd to

function

[Ag, bal depending on a specific direction, where
(direction = +1) means that the path moves to
forward direction on a ring and (direction = -1)
means to backward direction on a ring. We
compare the cost produced by traversing to forward
direction and to backward direction and then choose
small one. The cost is determined by addition of
two costs, one is the cost from [A., b to [Ag £
and the other is the cost of from [Ag ¢/ to [Aqg,
bal. If (direction = +1), then t will be betx,
otherwise, ¢t will be b.—x’, where x (or x') is ring
hops that needs to travel from [A., b. to [Aq, £l
The function Distance first calculate cube hops by
executing Ac.DAq4 After that, ring hops required to
traverse from [A., b to [Aq ¢] is added to this
cubehops in the while-block. Later, the distance
from [Aqg, t] to [Agq bal on a ring is added to
compute total cost.

global varibles : int k, r, j
// k, r, j: come from RCR( )
node FindingNextNode(node[A.,b.]J,node[Aq,bal) {
/A b J:current  node, [Agbal:destination node,
//TAnbalmext node
if (Ac=Aq and b.=bg) return [A., bel;
if (Ac=Aq and b.#bg) { dl = DistanceOnRing(b.
+ 1, ba);
d2 = DistanceOnRing(b.—1, bq);
if (d1<d2) b,=b.+1 else b= b.—1
return [A., bul; }
if (Ac#Aq ) {
[A,bn] = FindCubeNeighbor([Ae,be), [Agbal);
// finding a cube neighbor lead to destination
if(Ac#As) {ba=b. return [A,, bl }
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dl = Distance([A,, bel, [Ag, bal , +1 );
// the case of travelling forward on a ring
d2 = Distance([A., bel, [Ag, bal , -1);
// the case of travelling backward on a ring
if (d1<d2) by, = b + 1 (mod r);
else by = be —1 (mod r);
return [Ay, buls
b}

V. Conclusion

As a interconnection network topology for bui—
Iding scalable parallel machine, RCR network, has
many desirable properties such as fixed degree,
small diameter, high bisection width and symmetry.

RCR topology was proposed by Y.Sun[l] and
discussed again by HHu[2]. We analyzed some
properties of RCR network, made a correction for
some mistakes that still remains, and proposed an
algorithm for finding next node for the destination
to make shortest path.
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APPENDIX

FUNCTIONS USED IN OUR ALGORITHM
global varibles : int k, 1, j ;
node FindCubeNeighbor (
nodeAb ). node [A,b,] ) |
A, =A;4,=ADA,;
for (i=1; i <k i++)
y=—(bxj)—i(mod k+j);
If(A,(y) =1) A, (y) =A,(v);
break; }}
return [A4,,b.];

}

int Distance (node[A,b,], node[A,;b,]

n?

sint direction ) {
Af = Ac@ A(] )
cubeHopSum = the number of bits of 1 in A,
d = cubeHopSum
while (1) {

Ji=k
cubeHops = Y A,[b, % k— jj(mod k+j)];

=1

if (cubeHops >1)
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cubeHopSum = cubeHopSum- cubeHops;
if ( cubeHopSum == 0 ) break;
d=d+1;
b,=0b,+ + direction (mod r)
}
return 7 DistanceOnRing(b,,b,) ;

}
int DistanceOnRing ( int b,,int b; ) {
=lbc—0bdl ;
if (d< Lr/2] ) return z;

else return ( 5 — );
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