
한국전자통신학회논문지 제5권 제5호

444

RCR 네트워크에서 최단경로를 위한 탐색 알고리즘

김성열

A Searching Algorithm for Shortest Path in RCR Network

Seong-yeol Kim

요 약

RCR 네트워크 토폴로지[1]는 짧은 지름, 대칭성 등의 특징을 가지고 있어 병렬컴퓨팅 환경을 구성하기에 적

합한 상호접속네트워크의 일종이다. Hu and Cao[2]에 의하여 이 토폴로지 분석에 대한 재검토가 이루어졌으며,

그래프 비연결성, 직경, bisection width 등에 대한 오류가 있음을 지적하였다. 이 논문에서는 RCR 네트워크

토폴로지 특성을 분석하고, [2]의 결과에도 여전히 남아있는 '연결그래프가 되기 위한 조건' 및 직경에 대한 오

류를 정정한다. 그리고 RCR 네트워크에서 최단경로를 구하기 위한 알고리즘을 제안한다.

ABSTRACT

RCR network[1] is a topology for interconnection networks having many desirable properties for building scalable parallel

machines. This had been analyzed by Hu and Cao[2] to deal with problems of disconnected graph, bisection width and diameter. We

analyze some properties of RCR again and revise the condition for connected graph and network diameter. And we present an

efficient algorithm for finding next node on a shortest path.

키워드

RCR(Recursive Cube of Rings), Connected graph, Network diameter, Shortest Path

울산과학대학 컴퓨터정보학부(green@mogent.net)

접수일자 : 2010. 09. 20 심사(수정)일자 : 2010. 10. 01 게재확정일자 : 2010. 10. 15

I. Introduction

In a parallel system, the interconnection topology

plays an important role in determining the overall

performance of the system. If the network cannot

provide adequate performance, for a particular

application, nodes will frequently be forced to wait

for data to arrive. This networks include Mesh,

Rings, Hypercube, X-Tree, Cube Connected Cy-

cles[3], Butterfly[4], Shuffle Exchange, Shuffled-

Mesh[5], HCC[6,7], etc. Among the various parallel

interconnection topologies, a new family of scalable

interconnection network topology named RCR

(Recursive Cube of Rings)[1] was proposed. RCR(k,

r, j) is the notation for a RCR where k is

dimension of the cube, r is the number of nodes on

a ring and j is the number of expansions from

general seed. This topology has many desirable

RCR 네트워크에서 최단경로를 위한 탐색 알고리즘

 445

properties for building scalable parallel machines

such as fixed degree, small diameter, high bisection

width and symmetry. Even though this topology

was nice, it made a little mistake in defining its

properties. The work [2] gave three notices

including disconnected graph, bisection width and

network diameter. But we found the diameter

defined in [2] is applicable to some k, r, j but not

to others. The routing algorithm presented in [1]

does not find a shortest path from source node to

destination node.

In this paper we define the condition for RCR(k,

r, j) to be a connected graph and network diameter

of RCR(k, r, j). Then we propose an algorithm for

finding next node to make a shortest path.

II. Condition for Being A Connected Graph

RCR(k, r, j) is a network which cubes are

connected by rings[1]. Address of a node n is

notated as [An, bn], where 0≤bn≤r-1, An =

ak+j-1ak+j-2...ai...a0, and ai∈{0, 1}. Let ai of An be

An(ai) hereafter. In this network, each node has k

cube-links and two ring-links when r > 2,

belonging to a k-cube as well as a ring. [Am, bm],

a cube-neighbor of [An, bn], has address in which

only one bit Am(ai) is different from An(ai), where i

= -bj-x (mod k + j), 1≤x≤k. Two ring-neighbors

are [An, bn±1(mod r)].

Hu[2] described that RCR(k,1,j) is a disconected

graph. However, many cases being disconncted on

RCR(k, r, j) exist. One of them is from [00000, 1]

to [00100, 1] on RCR(2,2,3). We now define the

condition for RCR(k, r, j) being a conected graph.

Theorem 1: RCR(k, r, j) is a connected graph ,

iff k(r−1)≥j.

Proof: According to generation of RCR(k, r, j),

node n has (k+2) neighbors containing k cube-links

and two ring-links when r > 2.

[Am, bm], one of k cube-neighbors of [An, bn], is

different from n by only one bit ax, where An(ax)≠

Am(ax), x∈X, X = {−bj −1,−bj −2, ...,−bj −k

(mod k+j)} and bn = bm. These k+1 nodes, node n

and it’'s k cube-neighbors, make a cube together

with other 2k−k−1 nodes which have same

addresses except ax, x∈X. This means that these

2k nodes are connected by k×2k−1 cube-links.

But if we want to connect from node n to a

node d where Ad(ay) ≠ An(ay), y∉X, we must

move through a ring-link. [At, bn+1], a

ring-neighbor of [At, bn] which is a part of the

cube including [An, bn], has cube-neighbors that

have the addresses different from At by only one

bit ay where y∈Y, Y ={−(b+1)j−1,−(b+1)j −2, ...,

−(b+1)j−k}. Similarly, these (k+1) nodes make a

cube together with other 2k−k−1 nodes which

have same addresses except ay, y ∈Y,

where Y=

{−(b+1)j−1,−(b+1)j−2,...,−(b+1)j−k(mod k+ j)}

= {−bj+k−1, ...,−bj+1,−bj(mod k+j)}

From this fact, we find that Y has k consecutive

bit positions to (−bj−1) position in X. Therefore

node n can be connected to any arbitrary node if

and only if k × r is greater or equal to k + j.

III. New Definition of Network Diameter

Hu[2] defined network diameter D= k+j+br/2c+1.

But in RCR(2, 7, 3), distance from [00000, 0] to

[11111, 5] is 10, not 9. One of feasible shortest

path is as follows. [00000, 0]→ [10000, 0]→[11000,

0]→[11000, 1]→[11001, 1]→ [11011, 1]→[11011, 2]→

[11111, 2]→[11111, 3]→ [11111, 4]→[11111, 5]

Here, distance from [00000, 0] to [11111, 2] is 7,

where 5 cube hops plus 2 ring hops. Later, the

path from [11111,2] to [11111,5] is traversed only

on ring side. Now we define network diameter.

Theorem 2: For a connected RCR(k, r, j),

network diameter D is k + j + [j/k]+[r/2].

Proof: In order to move from [Ac, bc] to [Ad, bd],

한국전자통신학회논문지 제5권 제5호

446

we first move from [Ac, bc] to [Ad, t], then to [Ad,

bd]. When Ad= Ac, that is A c(a i)≠A c(a i) ,

0≤i≤k+ j-1 the first movement needs k+j+x

hops, k+j cube hops and x ring hops, as described

in Theorem 1. Here, x is [(k+j)/k]−1 at maximum,

since more k bits can be covered when we use one

ring link. So t can be b+x or b−x depending on

the direction traversed on rings.

In order to reach from [Ad, t] to [Ad, bd], a path

is traversed from t to bd on a ring. It requires

maximally [r/2].

Therefore the maximum distance between two

nodes is k+j+x+[r/2] = k+j+[j/k]+[r/2].

IV. Algorithm for Finding Next Node
on A Shortest Path

Sun[1] proposed a routing algorithm and insisted

the algorithm can find a shortest path from [Ac, bc]

to [Ad, bd]. According to the algorithm, in case of

Ac = Ad and bc≠bd, next node would be [Ac, bv]

such that |bv−bd|≤|bc−bd|. The selection of next

node is wrong in some cases. For example, if [Ac,

1] is the source node, [Ac, 5] is the destination

node and r = 6, then choice of [Ac, 0] makes a

shorter path than [Ac, 2], while |2−5|≤|1−5|.

We propose an efficient routing algorithm that

guarantee a shortest path. This algorithm is very

simple and clear. The function FindingNextNode is

to find next node to make a shortest path. Let’'s

consider the connection from [Ac, bc] to [Ad, bd].

In case that Ac = Ad and bc≠bd, the path is

traversed only on a ring. So we have to choose

either b+1 or b−1 which is closer to bd. In our

algorithm, the function DistanceOnRing(bc, bd)

returns the distance from bc to bd on a ring and

the ring size r is declared as a global variable.

In other case that Ac≠Ad, we transfer through a

cube link. However, if there is no cube link closer

to destination, we should choose a ring link. The

function FindCubeNeighbor([Ac, bc], [Ad, bd])

returns a cube-neighbor of [Ac, bc] for connecting

to [Ad, bd]. If this function returns [Ac, bc], this

means that there is no cube link. For this case, we

choose a ring link closer to [Ad, bd].

The function Distance([Ac, bc], [Ad, bd],

direction) computes the distance from [Ac, bc] to

[Ad, bd] depending on a specific direction, where

(direction = +1) means that the path moves to

forward direction on a ring and (direction = -1)

means to backward direction on a ring. We

compare the cost produced by traversing to forward

direction and to backward direction and then choose

small one. The cost is determined by addition of

two costs, one is the cost from [Ac, bc] to [Ad, t]

and the other is the cost of from [Ad, t] to [Ad,

bd]. If (direction = +1), then t will be bc+x,

otherwise, t will be bc−x', where x (or x') is ring

hops that needs to travel from [Ac, bc] to [Ad, t].

The function Distance first calculate cube hops by

executing Ac⊕Ad. After that, ring hops required to

traverse from [Ac, bc] to [Ad, t] is added to this

cubehops in the while-block. Later, the distance

from [Ad, t] to [Ad, bd] on a ring is added to

compute total cost.

global varibles : int k, r, j

 // k, r, j : come from RCR()

node FindingNextNode(node[Ac,bc],node[Ad,bd]) {

//[Ac,bc]:current node, [Ad,bd]:destination node,

//[An,bn]:next node

if (Ac=Ad and bc=bd) return [Ac, bc];

if (Ac=Ad and bc≠bd) { d1 = DistanceOnRing(bc

+ 1, bd);

 d2 = DistanceOnRing(bc−1, bd);

 if (d1≤d2) bn=bc+1 else bn= bc−1

 return [Ac, bn]; }

if (Ac≠Ad) {

 [An,bn] = FindCubeNeighbor([Ac,bc], [Ad,bd]);

// finding a cube neighbor lead to destination

 if(Ac≠An) {bn=bc return [An, bn]; }

RCR 네트워크에서 최단경로를 위한 탐색 알고리즘

 447

 d1 = Distance([Ac, bc], [Ad, bd] , +1);

 // the case of travelling forward on a ring

 d2 = Distance([Ac, bc], [Ad, bd] , -1);

 // the case of travelling backward on a ring

 if (d1≤d2) bn = bc + 1 (mod r);

 else bn = bc −1 (mod r);

 return [An, bn];

 } }

Ⅴ. Conclusion

As a interconnection network topology for bui-

lding scalable parallel machine, RCR network, has

many desirable properties such as fixed degree,

small diameter, high bisection width and symmetry.

RCR topology was proposed by Y.Sun[1] and

discussed again by H.Hu[2]. We analyzed some

properties of RCR network, made a correction for

some mistakes that still remains, and proposed an

algorithm for finding next node for the destination

to make shortest path.

References

 [1] Y.Sun, P.Y.S.Cheung and X.Lin, ”"Recursive

Cube of Rings: New Topology for Inter-

connection Networks”", IEEE Trans. Parallel

and Distributed System, vol.11, no.3, pp.275-

286, 2000.

 [2] H.Hu, N.GU, and J.Cao, ”"A Note Recursive

Cube of Rings Network”", IEEE Trans.

Parallel and Distributed System, vol.16, no.10,

pp.1007- 1008, 2005.

 [3]]F.P. Preparataand J.E. Vuillemin, The cube-

connected cycles: A versatile network for

parallel computation, in: Proc. of the 12th

Annual IEEE Symposium on Foundations of

Computer Science, pp.140-147, 1979.

 [4] S.N. Bhatt, F.R.K. Chung, J.-W. Hong, F.T.

Leightonand A.L. Rosemberg, Optimal sim-

ulations by butterfly networks, in: Proc. of

the 20th AnnualACM Symposium on the

Theory of Computing, pp.192-204, 1988.

 [5] G. Bongiovanni, G.A. De Biase, A. Massiniand

A. Monti, *The ShuffledMesh: a flexible and

efficient model for parallel computing*,

Telecommunication Systems v63.13 pp.21-27,

2000.

 [6] Toshinori Takabatake, Keiichi Kaneko, Hideo

Ito, "Generalized Hierarchical Completely-Con-

nected Networks", International Symposium

on Parallel Architectures, 1999.

 [7] Toshinori Takabatake, Tomoki Nakamigawa,

Hideo Ito, “Connectivity Of Generalized Hier-

archical Completely-Connected Networks”,

Journal of Interconnection Networks, Vol.9,

no.1, pp. 127-139, 2008.

APPENDIX

FUNCTIONS USED IN OUR ALGORITHM

global varibles : int k, r, j ;

node FindCubeNeighbor (

  ) {

  ⊕ 

for    ≤  

  × mod 
   An y Any

  

return 

}

 Distance ( 

  ) {

 ⊕ 

cubeHopSum = the number of bits of 1 in At

d = cubeHopSum

while () {

 cubeHops = 




 ×mod 
 if (cubeHops ≥1)

한국전자통신학회논문지 제5권 제5호

448

 cubeHopSum = cubeHopSum- cubeHops;

 if (cubeHopSum == 0) break;

 d = d + 1;

    + direction (mod r)

}

return d+DistanceOnRing() ;

}

 DistanceOnRing (    ) {

   − ;

 if (≤⌊⌋) return d ;

 else return (r- d);

} ■

저자 소개

김성열(Seong-yeol Kim)

1994년 조선대학교 전자계산학과

(이학사)

1996년 조선대학교대학원 전자계

산학과(이학석사)

2000년 조선대학교대학원 전자계산학과(이학박사)

2002년～현재 울산과학대학 컴퓨터정보학부 부교수

※ 관심분야 : 정보보안, 분산시스템, 무선인터넷, 가

상화, 임베디드시스템, 클라우드컴퓨팅

