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RCR 네트워크에서 최단경로를 위한 탐색 알고리즘 

김성열

A Searching Algorithm for Shortest Path in RCR Network

Seong-yeol Kim

요 약

RCR 네트워크 토폴로지[1]는 짧은 지름, 대칭성 등의 특징을 가지고 있어 병렬컴퓨팅 환경을 구성하기에 적

합한 상호접속네트워크의 일종이다. Hu and Cao[2]에 의하여 이 토폴로지 분석에 대한 재검토가 이루어졌으며, 

그래프 비연결성, 직경, bisection width 등에 대한 오류가 있음을 지적하였다. 이 논문에서는  RCR 네트워크 

토폴로지 특성을 분석하고, [2]의 결과에도 여전히 남아있는 '연결그래프가 되기 위한 조건' 및 직경에 대한 오

류를 정정한다. 그리고 RCR 네트워크에서 최단경로를 구하기 위한 알고리즘을 제안한다.

ABSTRACT

RCR network[1] is a topology for interconnection networks having many desirable properties for building scalable parallel 

machines. This had been analyzed by Hu and Cao[2] to deal with problems of disconnected graph, bisection width and diameter. We 

analyze some properties of RCR again and revise the condition for connected graph and network diameter. And we present an 

efficient algorithm for finding next node on a shortest path.
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I. Introduction

In a parallel system, the interconnection topology 

plays an  important  role in determining the overall 

performance of the system. If the network cannot 

provide adequate performance, for a particular 

application, nodes will frequently be forced to wait 

for data to arrive. This networks include Mesh, 

Rings, Hypercube, X-Tree, Cube Connected  Cy-

cles[3], Butterfly[4], Shuffle Exchange, Shuffled- 

Mesh[5], HCC[6,7], etc. Among the various parallel 

interconnection  topologies, a new family of scalable 

interconnection network topology named RCR 

(Recursive Cube of Rings)[1] was proposed. RCR(k, 

r, j) is the notation for a RCR where k is 

dimension of the cube, r is the number of nodes on 

a ring and j is the number of expansions from 

general seed. This topology has many desirable 
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properties for building scalable parallel machines 

such as fixed degree, small diameter, high bisection 

width and symmetry. Even though this topology 

was nice, it made a little mistake in defining its 

properties. The work [2] gave three notices 

including disconnected graph, bisection width and 

network diameter. But we found the diameter 

defined in [2] is applicable to some k, r, j but not 

to others. The routing algorithm presented in [1] 

does not find a shortest path from source node to 

destination node.

In this paper we define the condition for RCR(k, 

r, j) to be a connected graph and network diameter 

of RCR(k, r, j). Then we propose an algorithm for 

finding next node to make a shortest path.

II. Condition for Being A Connected Graph

RCR(k, r, j) is a network which cubes are 

connected by rings[1]. Address of a node n is 

notated as [An, bn], where 0≤bn≤r-1, An = 

ak+j-1ak+j-2...ai...a0, and ai∈{0, 1}. Let ai of An be 

An(ai) hereafter. In this network, each node has k  

cube-links and two ring-links when r > 2, 

belonging to a k-cube as well as a ring. [Am, bm], 

a cube-neighbor of [An, bn], has address in which 

only one bit Am(ai) is different from An(ai), where i 

= -bj-x (mod k + j), 1≤x≤k. Two ring-neighbors 

are [An, bn±1(mod r)].

Hu[2] described that RCR(k,1,j) is a disconected 

graph. However, many cases being disconncted on 

RCR(k, r, j) exist. One of them is from [00000, 1] 

to [00100, 1] on RCR(2,2,3). We now define the 

condition for RCR(k, r, j) being a conected graph.

Theorem 1: RCR(k, r, j) is a connected graph , 

iff k(r−1)≥j.

Proof: According to generation of RCR(k, r, j), 

node n has (k+2) neighbors containing k cube-links 

and two ring-links when r > 2.

[Am, bm], one of k cube-neighbors of [An, bn], is 

different from n by only one bit ax, where An(ax)≠

Am(ax), x∈X, X = {−bj −1,−bj −2, ...,−bj −k  

(mod k+j)} and bn = bm. These k+1 nodes, node n 

and it’'s k cube-neighbors, make a cube together 

with other 2k−k−1 nodes which have same 

addresses except ax, x∈X. This means that these 

2k nodes are connected by k×2k−1 cube-links.

But if we want to connect from node n to a 

node d where Ad(ay) ≠ An(ay), y∉X, we must 

move through a ring-link. [At, bn+1], a 

ring-neighbor of [At, bn] which is a part of the 

cube including [An, bn], has cube-neighbors that 

have the addresses different from At by only one 

bit ay where y∈Y, Y ={−(b+1)j−1,−(b+1)j −2, ...,

−(b+1)j−k}. Similarly, these (k+1) nodes make a 

cube together with other 2k−k−1 nodes which 

have same addresses except ay, y ∈Y, 

where Y=

{−(b+1)j−1,−(b+1)j−2,...,−(b+1)j−k(mod k+ j)} 

= {−bj+k−1, ...,−bj+1,−bj(mod k+j)}

From this fact, we find that Y has k consecutive 

bit positions to (−bj−1) position in X. Therefore 

node n can be connected to any arbitrary node if 

and only if k × r is greater or equal to k + j.

III. New Definition of Network Diameter

Hu[2] defined network diameter D= k+j+br/2c+1. 

But in RCR(2, 7, 3), distance from [00000, 0] to 

[11111, 5] is 10, not 9. One of feasible shortest 

path is as follows. [00000, 0]→ [10000, 0]→[11000, 

0]→[11000, 1]→[11001, 1]→ [11011, 1]→[11011, 2]→

[11111, 2]→[11111, 3]→ [11111, 4]→[11111, 5]

Here, distance from [00000, 0] to [11111, 2] is 7, 

where 5 cube hops plus 2 ring hops. Later, the 

path from [11111,2] to [11111,5] is traversed only 

on ring side. Now we define network diameter.

Theorem 2: For a connected RCR(k, r, j), 

network diameter D is k + j + [j/k]+[r/2].

Proof: In order to move from [Ac, bc] to [Ad, bd], 



한국전자통신학회논문지 제5권 제5호

446

we first move from [Ac, bc] to [Ad, t], then to [Ad, 

bd]. When Ad= Ac, that is A c(a i )≠A c(a i ) , 

0≤i≤k+ j-1  the first movement needs k+j+x 

hops, k+j cube hops and x ring hops, as described 

in Theorem 1. Here, x is [(k+j)/k]−1 at maximum, 

since more k bits can be covered when we use one 

ring link. So t can be b+x or b−x depending on 

the direction traversed on rings.

In order to reach from [Ad, t] to [Ad, bd], a path 

is traversed from t to bd on a ring. It requires 

maximally [r/2].

Therefore the maximum distance between two 

nodes is k+j+x+[r/2] = k+j+[j/k]+[r/2].

IV. Algorithm for Finding Next Node
on A Shortest Path

Sun[1] proposed a routing algorithm and insisted 

the algorithm can find a shortest path from [Ac, bc] 

to [Ad, bd]. According to the algorithm, in case of 

Ac = Ad and bc≠bd, next node would be [Ac, bv] 

such that |bv−bd|≤|bc−bd|. The selection of next 

node is wrong in some cases. For example, if [Ac, 

1] is the source node, [Ac, 5] is the destination 

node and r = 6, then choice of [Ac, 0] makes a 

shorter path than [Ac, 2], while |2−5|≤|1−5|.

We propose an efficient routing algorithm that 

guarantee a shortest path. This algorithm is very 

simple and clear. The function FindingNextNode is 

to find next node to make a shortest path. Let’'s 

consider the connection from [Ac, bc] to [Ad, bd].

In case that Ac = Ad and bc≠bd, the path is 

traversed only on a ring. So we have to choose 

either b+1 or b−1 which is closer to bd. In our 

algorithm, the function DistanceOnRing(bc, bd) 

returns the distance from bc to bd on a ring and 

the ring size r is declared as a global variable.

In other case that Ac≠Ad, we transfer through a 

cube link. However, if there is no cube link closer 

to destination, we should choose a ring link. The 

function FindCubeNeighbor([Ac, bc], [Ad, bd]) 

returns a cube-neighbor of [Ac, bc] for connecting 

to [Ad, bd]. If this function returns [Ac, bc], this 

means that there is no cube link. For this case, we 

choose a ring link closer to [Ad, bd].

The function Distance([Ac, bc], [Ad, bd], 

direction) computes the distance from [Ac, bc] to 

[Ad, bd] depending on a specific direction, where 

(direction = +1) means that the path moves to 

forward direction on a ring and (direction = -1) 

means to backward direction on a ring. We 

compare the cost produced by traversing to forward 

direction and to backward direction and then choose 

small one. The cost is determined by addition of 

two costs, one is the cost from [Ac, bc] to [Ad, t] 

and the other is the cost of from [Ad, t] to [Ad, 

bd]. If (direction = +1), then t will be bc+x, 

otherwise, t will be bc−x', where x (or x') is ring 

hops that needs to travel from [Ac, bc] to [Ad, t]. 

The function Distance first calculate cube hops by 

executing Ac⊕Ad. After that, ring hops required to 

traverse from [Ac, bc] to [Ad, t] is added to this 

cubehops in the while-block. Later, the distance 

from [Ad, t] to [Ad, bd] on a ring is added to 

compute total cost.

global varibles : int k, r, j  

            // k, r, j : come from RCR( )

node FindingNextNode(node[Ac,bc],node[Ad,bd]) {

//[Ac,bc]:current node, [Ad,bd]:destination node, 

//[An,bn]:next node

if (Ac=Ad and bc=bd) return [Ac, bc];

if (Ac=Ad and bc≠bd) { d1 = DistanceOnRing(bc 

+ 1, bd);

             d2 = DistanceOnRing(bc−1, bd);

             if (d1≤d2) bn=bc+1 else bn= bc−1 

             return [Ac, bn]; }

if (Ac≠Ad ) {

   [An,bn] = FindCubeNeighbor([Ac,bc], [Ad,bd]);

// finding a cube neighbor lead to destination

   if(Ac≠An) {bn=bc return [An, bn]; }
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   d1 = Distance([Ac, bc], [Ad, bd] , +1 ); 

    // the case of travelling forward on a ring

   d2 = Distance([Ac, bc], [Ad, bd] , -1); 

    // the case of travelling backward on a ring

   if (d1≤d2) bn = bc + 1 (mod r);

      else bn = bc −1 (mod r);

   return [An, bn];

   } }

Ⅴ. Conclusion

As a interconnection network topology for bui-

lding scalable parallel machine, RCR network, has 

many desirable properties such as fixed degree, 

small diameter, high bisection width and symmetry. 

RCR topology was proposed by Y.Sun[1] and 

discussed again by H.Hu[2]. We analyzed some 

properties of RCR network, made a correction for 

some mistakes that still remains, and proposed an 

algorithm for finding next node for the destination 

to make shortest path. 
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APPENDIX

FUNCTIONS USED IN OUR ALGORITHM

global varibles : int k, r, j ;

node  FindCubeNeighbor (

                 )  {

  ⊕    

for    ≤  

       × mod 
   An y Any

    

return   

}

  Distance (   

             ) {

 ⊕ 

cubeHopSum = the number of bits of 1 in At

d = cubeHopSum 

while ( ) {

   cubeHops = 




 ×mod 
   if (cubeHops ≥1) 
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       cubeHopSum = cubeHopSum- cubeHops; 

   if ( cubeHopSum == 0 ) break;

   d = d + 1;

      + direction (mod r)

}

return  d+DistanceOnRing( ) ;

}

   DistanceOnRing (       ) {

     −  ;

   if (≤⌊⌋ ) return d ;

         else return ( r- d);

}                                           ■
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