A Relationship between the Second Largest Eigenvalue and Local Valency of an Edge-regular Graph

Jongyook Park
Department of Mathematics, Kyungpook National University, Daegu 41566, Republic of Korea
e-mail: jongyook@knu.ac.kr

Abstract. For a distance-regular graph with valency k, second largest eigenvalue r and diameter D, it is known that $r \geq \min \left\{\frac{\lambda+\sqrt{\lambda^{2}+4 k}}{2}, a_{3}\right\}$ if $D=3$ and $r \geq \frac{\lambda+\sqrt{\lambda^{2}+4 k}}{2}$ if $D \geq 4$, where $\lambda=a_{1}$. This result can be generalized to the class of edge-regular graphs. For an edge-regular graph with parameters (v, k, λ) and diameter $D \geq 4$, we compare $\frac{\lambda+\sqrt{\lambda^{2}+4 k}}{2}$ with the local valency λ to find a relationship between the second largest eigenvalue and the local valency. For an edge-regular graph with diameter 3, we look at the number $\frac{\lambda-\bar{\mu}+\sqrt{(\lambda-\bar{\mu})^{2}+4(k-\bar{\mu})}}{2}$, where $\bar{\mu}=\frac{k(k-1-\lambda)}{v-k-1}$, and compare this number with the local valency λ to give a relationship between the second largest eigenvalue and the local valency. Also, we apply these relationships to distance-regular graphs.

1. Introduction

In 2010, Koolen and Park [4] gave a lower bound on the second largest eigenvalue of a distance-regular graph with diameter 3 in terms of valency k and intersection numbers a_{1} and a_{3}.

Theorem 1.1. (cf. [4, Lemma 6]) Let Γ be a distance-regular graph with valency k and diameter 3 . Then the second largest eigenvalue r of Γ satisfies

$$
r \geq \min \left\{\frac{\lambda+\sqrt{\lambda^{2}+4 k}}{2}, a_{3}\right\}
$$

where $\lambda=a_{1}$.

Received March 31, 2021; revised July 13, 2021; accepted July 13, 2021.
2020 Mathematics Subject Classification: 05E30.
Key words and phrases: edge-regular graphs, distance-regular graphs, second largest eigenvalues, local valency.
This research was supported by Kyungpook National University Research Fund, 2019.

In 2011, Koolen, Park and Yu [6] generalized this theorem to the class of distance-regular graphs with diameter at least 4 . We note that in [6, Theorem 3.1], they assumed that the valency k is at least three, but it is also true for $k=2$.

Theorem 1.2. (cf. [6, Theorem 3.1]) Let Γ be a distance-regular graph with valency k, diameter $D \geq 4$. Then the second largest eigenvalue r of Γ satisfies

$$
r \geq \frac{\lambda+\sqrt{\lambda^{2}+4 k}}{2}
$$

where $\lambda=a_{1}$.
The proof of Theorem 1.2 also works for edge-regular graphs with diameter $D \geq 4$. And for edge-regular graphs Γ with diameter 3 , the proof of Theorem 1.1 works if we replace a_{3} by $\bar{a}_{3}(x)=\frac{1}{\left|\Gamma_{3}(x)\right|} \sum_{y \in \Gamma_{3}(x)} a_{3}(x, y)$, where x is a vertex of Γ.

In this paper, we will try to give a lower bound on the second largest eigenvalue r of an edge-regular graph with parameters (v, k, λ) in terms of λ. In order to do so, we will compare $\frac{\lambda+\sqrt{\lambda^{2}+4 k}}{2}$ with the local valency λ for edge-regular graphs with diameter $D \geq 4$. Since a lower bound on $\frac{\lambda+\sqrt{\lambda^{2}+4 k}}{2}$ does not give an immediate lower bound on the second largest eigenvalue of an edge-regular graph with diameter 3 , we will consider the number $\frac{\lambda-\bar{\mu}+\sqrt{(\lambda-\bar{\mu})^{2}+4(k-\bar{\mu})}}{2}$, where $\bar{\mu}=\frac{k(k-1-\lambda)}{v-k-1}$. Once we have a relationship between r and λ for edge-regular graphs with diameter $D \geq 3$, we apply it to the class of distance-regular graphs with diameter $D \geq 3$. Then we obtain that for a distance-regular graph with diameter $D \geq 4$, the second largest eigenvalue is at least $\lambda+\sqrt{2}$. For a distance-regular graph with diameter 3, we can show that the second largest eigenvalue is larger than $\lambda+1$ if the number v of vertices is large compared to λk.

2. Definitions and Preliminaries

All the graphs considered in this paper are finite, undirected and simple. The reader is referred to [1] for more information. Let Γ be a connected graph with vertex set $V(\Gamma)$. The distance $d_{\Gamma}(x, y)$ between two vertices $x, y \in V(\Gamma)$ is the length of a shortest path between x and y in Γ. The diameter $D=D(\Gamma)$ of Γ is the maximum distance between any two vertices of Γ. For each $x \in V(\Gamma)$, let $\Gamma_{i}(x)$ be the set of vertices of Γ at distance i from $x(0 \leq i \leq D)$. In addition, define $\Gamma_{-1}(x)=\emptyset$ and $\Gamma_{D+1}(x)=\emptyset$. For the sake of simplicity, let $\Gamma(x)=\Gamma_{1}(x)$ and we denote $x \sim y$ if two vertices x and y are adjacent. In particular, Γ is regular with valency k if $k=|\Gamma(x)|$ holds for all $x \in V(\Gamma)$. The graph Γ is called edge-regular with parameters (v, k, λ) if it has v vertices, is regular with valency k and satisfies that any two adjacent vertices of Γ have λ commnon neighbors. Note that for any vertex x of an edge-regular graph with parameters (v, k, λ), the subgraph induced on $\Gamma(x)$ is a regular graph with valency λ.

For a connected graph Γ with diameter D, we choose two vertices x, y at distance $i=d_{\Gamma}(x, y)$, and consider the numbers $c_{i}(x, y)=\left|\Gamma_{i-1}(x) \cap \Gamma(y)\right|, a_{i}(x, y)=$ $\left|\Gamma_{i}(x) \cap \Gamma(y)\right|$ and $b_{i}(x, y)=\left|\Gamma_{i+1}(x) \cap \Gamma(y)\right|(0 \leq i \leq D)$. We say that the intersection number $c_{i}\left(a_{i}\right.$ and b_{i}, respectively) exists if the number $c_{i}(x, y)\left(a_{i}(x, y)\right.$ and $b_{i}(x, y)$, respectively) does depend only on $i=d_{\Gamma}(x, y)$ not on the choice of x and y with $d_{\Gamma}(x, y)=i$. Set $c_{0}=b_{D}=0$ and observe $a_{0}=0$ and $c_{1}=1$. A connected graph Γ with diameter D is called a distance-regular graph if there exist intersection numbers c_{i}, a_{i}, b_{i} for all $i=0,1, \ldots, D$. Note that a distance-regular graph is edge-regular with parameters $\left(v, b_{0}, a_{1}\right)$.

For any connected graph Γ with diameter D, the distance-i graph $\Gamma_{i}(0 \leq i \leq D)$ is the graph whose vertices are those of Γ and edges are the 2 -subsets of vertices at mutual distance i in Γ. In particular, $\Gamma_{1}=\Gamma$. An antipodal graph is a connected graph Γ with diameter $D>1$ for which its distance- D graph Γ_{D} is a disjoint union of complete graphs. A graph Γ is called bipartite if it has no odd cycle. (If Γ is a distance-regular graph with diameter D and bipartite, then $a_{1}=a_{2}=\ldots=a_{D}=$ 0.)

For a connected graph Γ with diameter D, the adjacency matrix $A=A(\Gamma)$ is the matrix whose rows and columns are indexed by $V(\Gamma)$, where the (x, y)-entry is 1 whenever $x \sim y$ and 0 otherwise. The eigenvalues of Γ are the eigenvalues of $A(\Gamma)$. For a partition $\Pi=\left\{P_{1}, P_{2}, \ldots, P_{\ell}\right\}$ of the vertex set $V(\Gamma)$, we look at the numbers $\beta_{i j}(1 \leq i, j, \leq \ell)$, where vertices in P_{i} have averagely $\beta_{i j}$ neighbors in P_{j}. Then the quotient matrix $Q=Q(\Pi)$ corresponding to the partition Π is the $\ell \times \ell$ matrix whose (i, j)-entry is $\beta_{i j}$. Note that the eigenvalues of the quotient matrix Q interlace the eigenvalues of Γ (see [2, Corollary 2.5.4]).

3. Edge-regular Graphs with Diameter at Least 4

Recall that the same proof of Theorem 1.2 also works for any edge-regular graph Γ with parameters (v, k, λ) and diameter $D \geq 4$, and hence the second largest eigenvalue r of Γ is at least $\frac{\lambda+\sqrt{\lambda^{2}+4 k}}{2}$.

In this section, for an edge-regular graph Γ with parameters (v, k, λ), second largest eigenvalue r and diameter $D \geq 4$, we compare $\frac{\lambda+\sqrt{\lambda^{2}+4 k}}{2}$ with the local valency λ to find a relationship between r and λ. Note that if $k=2$, then Γ is an n-gon for $n \geq 8$ and $r>\lambda+1$.
Lemma 3.1. Let Γ be an edge-regular graph with parameters (v, k, λ). Then for any positive integer $t, \frac{\lambda+\sqrt{\lambda^{2}+4 k}}{2}>\lambda+t$ if and only if $\lambda<\frac{1}{t} k-t$.

Proof. Let t be a positive integer. Clearly, $\frac{\lambda+\sqrt{\lambda^{2}+4 k}}{2}>\lambda+t$ is equivalent to $\sqrt{\lambda^{2}+4 k}>\lambda+2 t$. Since $\lambda+2 t>0$, we know that $\sqrt{\lambda^{2}+4 k}>\lambda+2 t$ is equivalent to $\lambda^{2}+4 k>(\lambda+2 t)^{2}=\lambda^{2}+4 t \lambda+4 t^{2}$. As $\lambda^{2}+4 k>\lambda^{2}+4 t \lambda+4 t^{2}$ is equivalent to $t \lambda<k-t^{2}$, we conclude that $\frac{\lambda+\sqrt{\lambda^{2}+4 k}}{2}>\lambda+t$ if and only if $\lambda<\frac{1}{t} k-t$. This finishes the proof.

Remark 3.2. (i) As $\lambda \geq 0$, the condition $\lambda<\frac{k}{t}-t$ is meaningful when $k>t^{2}$.
(ii) For $t=1$, we have that $\frac{\lambda+\sqrt{\lambda^{2}+4 k}}{2}>\lambda+1$ if and only if $\lambda<k-1$. And $\lambda<k-1$ is true except when the graph is a complete graph. (It also can be obtained from an easy calculation, $\frac{\lambda+\sqrt{\lambda^{2}+4 k}}{2}=\frac{\lambda+\sqrt{\lambda^{2}+4\left(\lambda+1+b_{1}\right)}}{2}=$ $\frac{\lambda+\sqrt{(\lambda+2)^{2}+4 b_{1}}}{\left.b_{1}=k-\lambda-1 .\right)} \geq \lambda+1$ with equality holds if and only if $b_{1}=0$, where
(iii) For $t=2$, we have that $\frac{\lambda+\sqrt{\lambda^{2}+4 k}}{2}>\lambda+2$ if and only if $\lambda<\frac{1}{2} k-2$ (and $k>4$). In Theorem 3.4, we will also consider the case $\lambda \geq \frac{1}{2} k-2$ for distance-regular graphs with diameter $D \geq 4$.

We combine Theorem 1.2 and Lemma 3.1, and then we obtain the following result.

Theorem 3.3. Let Γ be an edge-regular graph with parameters (v, k, λ), second largest eigenvalue r and diameter $D \geq 4$. For any positive integer t, if $\lambda<\frac{1}{t} k-t$, then $r>\lambda+t$.

Proof. Since $D \geq 4$, Theorem 1.2 implies that $r \geq \frac{\lambda+\sqrt{\lambda^{2}+4 k}}{2}$. Assume that $\lambda<\frac{1}{t} k-t$, then Lemma 3.1 says that $\frac{\lambda+\sqrt{\lambda^{2}+4 k}}{2}>\lambda+t$. Thus, we obtain that $r>\lambda+t$. This finishes the proof.

We apply this result to the class of distance-regular graphs with diameter $D \geq 4$. Then we obtaind the following result.

Theorem 3.4. Let Γ be a distance-regular graph with valency $k \geq 2$, intersection number $a_{1}=\lambda$, second largest eigenvalue r and diameter $D \geq 4$. Then $r \geq \lambda+\sqrt{2}$.

Proof. If $k=2$, then Γ is an n-gon for $n \geq 8$ and $r \geq \sqrt{2}=\lambda+\sqrt{2}($ as $\lambda=0)$. So, we may assume that $k \geq 3$.

If $\lambda \geq \frac{1}{2} k-1$, then by [5, Theorem 16], we know that Γ is the flag graph of a regular generalized D-gon of order (s, s) for some $s \geq 2$, and the second largest eigenvalue r of Γ satisfies $r \geq \lambda+\sqrt{2 s} \geq \lambda+2$ (see, [1, Section 6.5] or [3]).

If $\frac{1}{2} k-2 \leq \lambda<\frac{1}{2} k-1$, then Γ satisfies either (k is even and $\lambda=\frac{1}{2} k-2$) or (k is odd and $\lambda=\frac{1}{2} k-\frac{3}{2}$). The first case implies that $r \geq \lambda+2$ as $\frac{\lambda+\sqrt{\lambda^{2}+4 k}}{2} \geq \lambda+2$. And the second case implies that $r>\lambda+\sqrt{3}$ as $\frac{\lambda+\sqrt{\lambda^{2}+4 k}}{2}>\lambda+\sqrt{3}$.

If $\lambda<\frac{1}{2} k-2$, then by Theorem 3.3, we know that $r>\lambda+2$. This finishes the proof.

Remark 3.5. (i) In Theorem 3.4, $r=\lambda+\sqrt{2}$ holds only for the 8-gon.
(ii) The flag graph of a regular generalized 4-gon of order (2,2) has second largest eigenvalue $r=3=1+2=\lambda+2$. And some antipodal distance-regular graphs with diameter 4 satisfy that k is even, $\lambda=\frac{1}{2} k-2$ and $r=\frac{\lambda+\sqrt{\lambda^{2}+4 k}}{2}=\lambda+2$ (see, [1, p.421]).

4. Edge-regular Graphs With Diameter 3

Recall that for an edge-regular graph Γ with parameters (v, k, λ) and diameter 3 , if we replace a_{3} by $\bar{a}_{3}(x)$ and follow the proof of Theorem 1.1, then we obtain that the second largest eigenvalue of Γ is at least $\min \left\{\frac{\lambda+\sqrt{\lambda^{2}+4 k}}{2}, \bar{a}_{3}(x)\right\}$, where x is a vertex of Γ and $\bar{a}_{3}(x)=\frac{1}{\left|\Gamma_{3}(x)\right|} \sum_{y \in \Gamma_{3}(x)} a_{3}(x, y)$. If $\bar{a}_{3}(x) \geq \frac{\lambda+\sqrt{\lambda^{2}+4 k}}{2}$, then we find a result similar to Lemma 3.3. But it is not true in general for edge-regular graphs with diameter 3 .

In this section, for an edge-regular graph Γ with parameters (v, k, λ), second largest eigenvalue r and diameter 3, we compare $\frac{\lambda-\bar{\mu}+\sqrt{(\lambda-\bar{\mu})^{2}+4(k-\bar{\mu})}}{2}$ with the local valency λ to find a relationship between r and λ. Note that if $k=2$, then Γ is an n-gon for $n \in\{6,7\}$ and $r \geq \lambda+1$.

Lemma 4.1. Let Γ be an edge-regular graph with parameters (v, k, λ), second largest eigenvalue r and diameter 3 . Then $r \geq \frac{\lambda-\bar{\mu}+\sqrt{(\lambda-\bar{\mu})^{2}+4(k-\bar{\mu})}}{2}$, where $\bar{\mu}=\frac{k(k-1-\lambda)}{v-k-1}$.

Proof. Let x be a vertex of Γ. Consider a partition $P=\left\{\{x\}, \Gamma_{1}(x), \Gamma_{2}(x) \cup \Gamma_{3}(x)\right\}$ of the set of vertices of Γ. As there are $v-k-1$ vertices in $\Gamma_{2}(x) \cup \Gamma_{3}(x)$, we know that vertices in $\Gamma_{2}(x) \cup \Gamma_{3}(x)$ have averagely $\bar{\mu}=\frac{k(k-1-\lambda)}{v-k-1}$ neighbors in $\Gamma(x)$. Then one can easily see that the following matrix Q is the quotient matrix corresponding to the partition P :

$$
Q=\left(\begin{array}{ccc}
0 & k & 0 \\
1 & \lambda & k-1-\lambda \\
0 & \bar{\mu} & k-\bar{\mu}
\end{array}\right)
$$

Note that the matrix Q has eigenvalues

$$
k>\frac{\lambda-\bar{\mu}+\sqrt{(\lambda-\bar{\mu})^{2}+4(k-\bar{\mu})}}{2}>\frac{\lambda-\bar{\mu}-\sqrt{(\lambda-\bar{\mu})^{2}+4(k-\bar{\mu})}}{2} .
$$

Thus, we know that the second largest eigenvalue r of Γ is at least the second largest eigenvalue of Q (see for example [2, Corollary 2.5.4]). This finishes the proof.

In [6, Proposition 3.2], it was shown that for a distance-regular graph with second largest eigenvalue r, intersection numbers $a_{1}=\lambda, c_{2}=\mu$ and diameter 3 , $r>\lambda+1-\mu$ holds. We generalize this to the class of edge-regular graphs (with diameter 3).

Lemma 4.2. Let Γ be an edge-regular graph with parameters (v, k, λ), second largest eigenvalue r and diameter 3 . Then $r>\lambda+1-\bar{\mu}$, where $\bar{\mu}=\frac{k(k-1-\lambda)}{v-k-1}$.

Proof. Note that $r>0$ (see for example Lemma 4.1). If $\lambda-\bar{\mu}<-2$, then $\lambda+1-\bar{\mu}<-1<r$ holds. So, we may assume that $\lambda-\bar{\mu} \geq-2$.

Since $k>\lambda+1$, we have $k-\bar{\mu}>\lambda+1-\bar{\mu}$, and this implies that $(\lambda-\bar{\mu})^{2}+$ $4(k-\bar{\mu})>(\lambda-\bar{\mu})^{2}+4(\lambda+1-\bar{\mu})=(\lambda+2-\bar{\mu})^{2}$. As $\lambda+2-\bar{\mu} \geq 0$, we obtain that $\sqrt{(\lambda-\bar{\mu})^{2}+4(k-\bar{\mu})}>\lambda+2-\bar{\mu}$, and hence $\frac{\lambda-\bar{\mu}+\sqrt{(\lambda-\bar{\mu})^{2}+4(k-\bar{\mu})}}{2}>\lambda+1-\bar{\mu}$ holds. Thus, by Lemma 4.1, we know that $r>\lambda+1-\bar{\mu}$. This finishes the proof.

Remark 4.3. (i) Lemma 4.2 is also true for edge-regular graphs with diameter at least 4. But we have a better bound for edge-regular graphs with diameter at least 4. (see for example Lemma 3.3)
(ii) For distance-regular graphs with diameter $3, c_{2}=\frac{k(k-1-\lambda)}{k_{2}}>\frac{k(k-1-\lambda)}{k_{2}+k_{3}}=\bar{\mu}$ holds. Thus, Lemma 4.2 slightly strengthens a result of [6, Proposition 3.2].

Lemma 4.4. Let Γ be an edge-regular graph with parameters (v, k, λ) and diameter 3. Let s be an integer satisfying $k>s \lambda+s^{2}$. If $v>(\lambda+1+s) \frac{k-\lambda-1}{k-s \lambda-s^{2}} k+k+1$, then $\frac{\lambda-\bar{\mu}+\sqrt{(\lambda-\bar{\mu})^{2}+4(k-\bar{\mu})}}{2}>\lambda+s$, where $\bar{\mu}=\frac{k(k-1-\lambda)}{v-k-1}$.

Proof. From the assumption $v>(\lambda+1+s) \frac{k-\lambda-1}{k-s \lambda-s^{2}} k+k+1$, we have that $v-k-1>(\lambda+1+s) \frac{k-\lambda-1}{k-s \lambda-s^{2}} k$. Since $v-k-1>0$ and $k-s \lambda-s^{2}>0$, we obtain that $k-s \lambda-s^{2}>(\lambda+1+s) \frac{k(k-\lambda-1)}{v-k-1}=(\lambda+1+s) \bar{\mu}$.

Multiply by 4 and then we obtain that $4 k-4 s \lambda-4 s^{2}>4 \lambda \bar{\mu}+4 \bar{\mu}+4 s \bar{\mu}$.
Add $\lambda^{2}+\bar{\mu}^{2}$ to both sides. Then we have that $\lambda^{2}+\bar{\mu}^{2}+4 k-4 s \lambda-4 s^{2}>\lambda^{2}+\bar{\mu}^{2}+$ $4 \lambda \bar{\mu}+4 \bar{\mu}+4 s \bar{\mu}$, i.e., $(\lambda-\bar{\mu})^{2}+4(k-\bar{\mu})>(\lambda+\bar{\mu})^{2}+4 s(\lambda+\bar{\mu})+(2 s)^{2}=(\lambda+\bar{\mu}+2 s)^{2}$ holds. Since $\sqrt{(\lambda-\bar{\mu})^{2}+4(k-\bar{\mu})}>\sqrt{(\lambda+\bar{\mu}+2 s)^{2}}=|\lambda+\bar{\mu}+2 s| \geq \lambda+\bar{\mu}+2 s$, we obtain that $\frac{\lambda-\bar{\mu}+\sqrt{(\lambda-\bar{\mu})^{2}+4(k-\bar{\mu})}}{2}>\lambda+s$. This finishes the proof.

In the following theorem, we consider the case $s=1$. And we find that the second largest eigenvalue of an edge-regular graph with parameters (v, k, λ) and diameter 3 is larger than $\lambda+1$ when v is large compared to λk.

Theorem 4.5. Let Γ be an edge-regular graph with parameters (v, k, λ), second largest eigenvalue r and diameter 3 . If $v>(\lambda+3) k+1$, then $r>\lambda+1$.

Proof. Note that $k>\lambda+1$ holds (as the diameter of Γ is 3). Set $s=1$ in Lemma 4.4. Then Lemma 4.4 says that $v>(\lambda+3) k+1$ implies that $\frac{\lambda-\bar{\mu}+\sqrt{(\lambda-\bar{\mu})^{2}+4(k-\bar{\mu})}}{2}>\lambda+1$. By Lemma 4.1, we obtain that $r \geq \frac{\lambda-\bar{\mu}+\sqrt{(\lambda-\bar{\mu})^{2}+4(k-\bar{\mu})}}{2}>\lambda+1$. This finishes the proof.

We apply this result to the class of distance-regular graphs with intersection number $a_{1}=\lambda=0$ and diameter 3 . Then we obtaind the following result.

Theorem 4.6. Let Γ be a distance-regular graph with valency $k \geq 2$, intersection number $a_{1}=\lambda=0$, second largest eigenvalue r and diameter 3 . Then $r \geq \lambda+1$.

Proof. If the graph Γ has more than $3 k+1$ vertices, then by Theorem 4.5, we know that $r>\lambda+1$. So, we assume that Γ has at most $3 k+1$ vertices. Then by [7, Theorem 1], we know that Γ is either a 7 -gon, a Taylor graph or a bipartite graph. Note that a 7 -gon satisfies $r>1=\lambda+1$ and that a Taylor graph with $\lambda=0$ satisfies $r=1=\lambda+1$. So, we may assume that Γ is bipartite. Then Γ satisfies that $r \geq \sqrt{k-c_{2}} \geq 1=\lambda+1$, and $r=1$ if and only if Γ is a Taylor graph. This finishes the proof.

Remark 4.7. In Theorem 4.6, $r=\lambda+1$ with $\lambda=0$ holds only for a Taylor graph, for example, the 6 -gon and the 3 -cube.

References

[1] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, SpringerVerlag, Berlin, 1989.
[2] A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Universitext, Springer, 2012.
[3] E. R. van Dam and W. H. Haemers, Spectral characterizations of some distanceregular graphs, Journal of Algebraic Combinatorics, 15(2002), 189-202.
[4] J. H. Koolen and J. Park, Shilla distance-regular graphs, European Journal of Combinatorics, 31(2010), 2064-2073.
[5] J. H. Koolen and J. Park, Distance-regular graphs with a_{1} or c_{2} at least half the valency, Journal of Combinatorial Theory, Series A, 119(2012), 546-555.
[6] J. H. Koolen, J. Park and H. Yu, An inequality involving the second largest and smallest eigenvalue of a distance-regular graph, Linear Algebra and its Applications, 434(2011), 2404-2412.
[7] J. Park, The distance-regular graphs with valency $k \geq 2$, diameter $D \geq 3$ and $k_{D-1}+$ $k_{D} \leq 2 k$, Discrete Mathematics, 340(2017), 550-561.

