• 제목/요약/키워드: Gorenstein ideal

검색결과 26건 처리시간 0.019초

HILBERT FUNCTIONS OF STANDARD k-ALGEBRAS DEFINED BY SKEW-SYMMETRIZABLE MATRICES

  • Kang, Oh-Jin
    • 대한수학회지
    • /
    • 제54권5호
    • /
    • pp.1379-1410
    • /
    • 2017
  • Kang and Ko introduced a skew-symmetrizable matrix to describe a structure theorem for complete intersections of grade 4. Let $R=k[w_0,\;w_1,\;w_2,\;{\ldots},\;w_m]$ be the polynomial ring over an algebraically closed field k with indetermiantes $w_l$ and deg $w_l=1$, and $I_i$ a homogeneous perfect ideal of grade 3 with type $t_i$ defined by a skew-symmetrizable matrix $G_i(1{\leq}t_i{\leq}4)$. We show that for m = 2 the Hilbert function of the zero dimensional standard k-algebra $R/I_i$ is determined by CI-sequences and a Gorenstein sequence. As an application of this result we show that for i = 1, 2, 3 and for m = 3 a Gorenstein sequence $h(R/H_i)=(1,\;4,\;h_2,\;{\ldots},\;h_s)$ is unimodal, where $H_i$ is the sum of homogeneous perfect ideals $I_i$ and $J_i$ which are geometrically linked by a homogeneous regular sequence z in $I_i{\cap}J_i$.

INJECTIVE DIMENSIONS OF LOCAL COHOMOLOGY MODULES

  • Vahidi, Alireza
    • 대한수학회보
    • /
    • 제54권4호
    • /
    • pp.1331-1336
    • /
    • 2017
  • Assume that R is a commutative Noetherian ring with non-zero identity, a is an ideal of R, X is an R-module, and t is a non-negative integer. In this paper, we present upper bounds for the injective dimension of X in terms of the injective dimensions of its local cohomology modules and an upper bound for the injective dimension of $H^t_{\alpha}(X)$ in terms of the injective dimensions of the modules $H^i_{\alpha}(X)$, $i{\neq}t$, and that of X. As a consequence, we observe that R is Gorenstein whenever $H^t_{\alpha}(R)$ is of finite injective dimension for all i.

A HALF-CENTERED STAR-OPERATION ON AN INTEGRAL DOMAIN

  • Qiao, Lei;Wang, Fanggui
    • 대한수학회지
    • /
    • 제54권1호
    • /
    • pp.35-57
    • /
    • 2017
  • In this paper, we study the natural star-operation defined by the set of associated primes of principal ideals of an integral domain, which is called the g-operation. We are mainly concerned with the ideal-theoretic properties of this star-operation. In particular, we investigate DG-domains (i.e., integral domains in which each ideal is a g-ideal), which form a proper subclass of the DW-domains. In order to provide some original examples, we examine the transfer of the DG-property to pullbacks. As an application of the g-operation, it is shown that w-divisorial Mori domains can be seen as a Gorenstein analogue of Krull domains.

THE ANNIHILATOR IDEAL GRAPH OF A COMMUTATIVE RING

  • Alibemani, Abolfazl;Bakhtyiari, Moharram;Nikandish, Reza;Nikmehr, Mohammad Javad
    • 대한수학회지
    • /
    • 제52권2호
    • /
    • pp.417-429
    • /
    • 2015
  • Let R be a commutative ring with unity. The annihilator ideal graph of R, denoted by ${\Gamma}_{Ann}(R)$, is a graph whose vertices are all non-trivial ideals of R and two distinct vertices I and J are adjacent if and only if $I{\cap}Ann(J){\neq}\{0\}$ or $J{\cap}Ann(I){\neq}\{0\}$. In this paper, we study some connections between the graph-theoretic properties of this graph and some algebraic properties of rings. We characterize all rings whose annihilator ideal graphs are totally disconnected. Also, we study diameter, girth, clique number and chromatic number of this graph. Moreover, we study some relations between annihilator ideal graph and zero-divisor graph associated with R. Among other results, it is proved that for a Noetherian ring R if ${\Gamma}_{Ann}(R)$ is triangle free, then R is Gorenstein.

SOME REMARKS ON TYPES OF NOETHERIAN LOCAL RINGS

  • Lee, Kisuk
    • 충청수학회지
    • /
    • 제27권4호
    • /
    • pp.625-633
    • /
    • 2014
  • We study some results which concern the types of Noetherian local rings, and improve slightly the previous result: For a complete unmixed (or quasi-unmixed) Noetherian local ring A, we prove that if either $A_p$ is Cohen-Macaulay, or $r(Ap){\leq}depth$ $A_p+1$ for every prime ideal p in A, then A is Cohen-Macaulay. Also, some analogous results for modules are considered.

ON TYPES OF NOETHERIAN LOCAL RINGS AND MODULES

  • Lee, Ki-Suk
    • 대한수학회지
    • /
    • 제44권4호
    • /
    • pp.987-995
    • /
    • 2007
  • We investigate some results which concern the types of Noetherian local rings. In particular, we show that if r(Ap) ${\le}$ depth Ap + 1 for each prime ideal p of a quasi-unmixed Noetherian local ring A, then A is Cohen-Macaulay. It is also shown that the Kawasaki conjecture holds when dim A ${\le}$ depth A + 1. At the end, we deal with some analogous results for modules, which are derived from the results studied on rings.