• 제목/요약/키워드: Gold surfaces

검색결과 155건 처리시간 0.029초

Electrostatic Properties of N-Acetyl-Cysteine-Coated Gold Surfaces Interacting with ZrO2 Surfaces

  • Park, Jin-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.2855-2860
    • /
    • 2012
  • The coating N-acetyl cysteine (NAC) on gold surfaces may be used to design the distribution of either gold particle adsorbed to the $ZrO_2$ surface or vice versa by adjusting the electrostatic interactions. In this study, it was performed to find out electrostatic properties of the NAC-coated-gold surface and the $ZrO_2$ surface. The surface forces between the surfaces were measured as a function of the salt concentration and pH value using the AFM. By applying the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to the surface forces, the surface potential and charge density of the surfaces were quantitatively acquired for each salt concentration and each pH value. The dependence of the potential and charge density on the concentration was explained with the law of mass action, and the pH dependence was with the ionizable groups on the surface.

Electrostatic Properties of N-Acetyl-Cysteine-Coated Gold Surfaces Interacting with TiO2 Surfaces

  • Park, Jin-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권4호
    • /
    • pp.902-906
    • /
    • 2009
  • It is found that that the coating N-acetyl cysteine (NAC) on gold surfaces may be used to design the distribution of either gold particle adsorbed to the $TiO_2$ surface or vice versa by adjusting the electrostatic interactions. In this study, we investigated electrostatic properties of the NAC-coated-gold surface and the $TiO_2$ surface. The surface forces between the surfaces were measured as a function of the salt concentration and pH value using the AFM. By applying the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to the surface forces, the surface potential and charge density of the surfaces were quantitatively acquired for each salt concentration and each pH value. The surface potential and charge density dependence on the salt concentration was explained with the law of mass action, and the pH dependence was with the ionizable groups on the surface.

Effect of 11-Mercaptoundecylphosphoric-acid Layer Formation on Gold Surfaces Interacting with Titanium Dioxide Surfaces

  • Park, Jin-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2861-2866
    • /
    • 2010
  • We studied effects of the 11-Mercaptoundecylphosphoric-acid layer formation on gold surfaces that have the interactions with the titanium dioxide surface for design of gold- titanium dioxide distribution. The atomic force microscope (AFM) was used to measure forces between the surfaces as a function of the salt concentration and pH value. The forces were analyzed with the DLVO (Derjaguin-Landau-Verwey-Overbeek) theory, to evaluate the potential and charge density of the surfaces quantitatively for each salt concentration and each pH value. The interpretation for the evaluation was performed with the law of mass action and the ionizable groups on the surface.

Physical Properties of Mercaptopyruvic-acid Layer Formed on Gold Surfaces

  • Park, Jin-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2611-2616
    • /
    • 2011
  • We studied the physical properties of the mercaptopyruvic-acid layer formed on gold surfaces, which has the interactions with the titanium dioxide surface for design of gold- titanium dioxide distribution. Surface force measurements were performed, using the atomic force microscope (AFM), between the surfaces as a function of the salt concentration and pH value. The forces were analyzed with the DLVO (Derjaguin-Landau-Verwey-Overbeek) theory, to evaluate the potential and charge density of the surfaces quantitatively for each salt concentration and each pH value. The difference in the properties reflected the effect of the isoelectric point on the surface forces. The forces were interpreted for the evaluation with the law of mass action and the ionizable groups on the surface. The salt concentration dependence of the surface properties, found from the measurement at pH 8.0, was consistent with the prediction from the law. It was found that the mercaptopyruvic-acid layer had higher values for the surface charge densities and potentials than the titanium dioxide surfaces at pH 8, which may be attributed to the ionized-functional-groups of the mercaptopyruvic-acid layer.

Electrocatalytic Reduction of Hydrogen Peroxide at Nanoporous Gold Surfaces

  • Park, You-Hoon;Kim, Jong-Won
    • 전기화학회지
    • /
    • 제13권4호
    • /
    • pp.251-255
    • /
    • 2010
  • We report on the electrocatalytic reduction of hydrogen peroxide at nanoporous gold (NPG) surfaces. Various NPG surfaces with different surface structure were prepared by changing the conditions of electrodeposition for Ag-Au layers such as the concentration ratios of $KAu(CN)_2$ over $KAg(CN)_2$ and deposition charges. The effects of different electrochemical conditions on the electrocatalysis of $H_2O_2$ reduction were investigated. The NPG surfaces exhibited sensitive amperometric responses for $H_2O_2$ reduction, from which calibration plots with higher sensitivity than a bare Au surface were obtained.

Screw joint stability according to abutment screw materials

  • Jeong Yong-Tae;Chung Chae-Heon;Lee Heung-Tae
    • 대한치과보철학회지
    • /
    • 제39권3호
    • /
    • pp.297-305
    • /
    • 2001
  • Statement of problem. There have been previous studies about instability according to screw material by means of calculating preload in tightening screw or recording of the torque necessary to loosen screw after tightening screw. Purpose. The purpose of this study was to evaluate screw joint stability through the analysis of fitness at the mating thread surfaces between implant and screw after tightening screws made of different materials. Material and methods. In this study, screws were respectively used to secure a cemented abutment to a hexlock implant fixture; teflon coated titanium alloy screw and titanium alloy screw(Steri-Oss), gold-plated gold-palladium alloy screw and titanium alloy screw(Implant Innovation), gold screw and titanium screw(AVANA Dental Implant System). Each abutment screw was secured to the implant with recommended torque value using a digital torque controller. Each screw was again tightened after 10minutes. All samples were cross sectioned with sandpaper and polished. Then samples were evaluated with an scanning electron microscope analysis. Results. In titanium alloy screw, irregular contact and relatively large gap was present at mating thread surface. Also in teflon-coated titanium screw, incomplete seating and only partially contact was present at the mating thread surface. In gold-plated gold-palladium alloy screw, relatively close and tight contact without the presence of large gap was present by existing of gold coating at the mating thread surfaces. In gold alloy screw, relatively small gap between the mating components was seen. Conclusions. This result suggested that gold plated gold-palladium alloy screw and gold alloy screw achieved a greater degree of contact at the mating thread surfaces compared to titanium alloy screw and teflon-coated titanium alloy screw.

  • PDF

Strategies in Protein Immobilization on a Gold Surface

  • Park, Jeho;Kim, Moonil
    • Applied Science and Convergence Technology
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 2015
  • Protein immobilization on a gold surface plays an important role in the usefulness of biosensors that utilize gold-coated surfaces such as surface plasmon resonance (SPR), quartz crystal microbalance (QCM), etc. For developing high performance biosensors, it is necessarily required that immobilized proteins must remain biologically active. Loss of protein activity and maintenance of its stability on transducer surfaces is directly associated with the choice of immobilization methods, affecting protein-protein interactions. During the past decade, a variety of strategies have been extensively developed for the effective immobilization of proteins in terms of the orientation, density, and stability of immobilized proteins on analytical devices operating on different principles. In this review, recent advances and novel strategies in protein immobilization technologies developed for biosensors are briefly discussed, thereby providing an useful information for the selection of appropriate immobilization approach.

이산화지르코늄과 상호작용하는 금 표면 위의 글루타싸이온층 표면 물성 (Surface Properties of Glutathione Layer Formed on Gold Surfaces Interacting with ZrO2)

  • 박진원
    • Korean Chemical Engineering Research
    • /
    • 제52권4호
    • /
    • pp.538-543
    • /
    • 2014
  • 이산화지르코늄 표면에 흡착되는 금 입자의 분포 또는 그 반대 경우의 분포에 영향을 끼칠 수도 있는 정전기적 상호작용과 금 입자를 코팅한 Glutathione층의 표면물성을 규명하였다. 이를 위하여, 원자힘현미경(AFM)으로 Glutathione 층 표면과 이산화지르코늄표면 사이의 표면힘을 염 농도와 pH 값에 따라 측정하였다. 측정된 힘은 Derjaguin-Landau-Verwey-Overbeek(DLVO) 이론으로 해석되어 표면의 전하밀도와 포텐셜들이 정량적으로 산출되었다. 이 특성들이 염 농도와 pH에 대하여 나타내는 의존성을 질량보존의 법칙으로 기술하였다. pH 8 조건에서 실험으로 산출된 표면 특성의 염 농도 의존성은 이론적으로 예측했던 결과와 일치하는 것으로 관찰되었다. Glutathione 층의 표면이 이산화지르코늄 표면보다 높은 전하밀도와 포텐셜을 갖는 것이 발견되었는데, 이는 Glutathione 층의 이온화-기능-그룹에 기인한 것으로 생각된다.

금 표면 위의 메르캡토언데카노익산층 표면과 이산화지르코늄 표면 사이의 정전기적 상호작용 (Electrostatic Interaction between Mercaptoundecanoic-acid Layers on Gold and ZrO2 Surfaces)

  • 박진원
    • 공업화학
    • /
    • 제25권6호
    • /
    • pp.607-612
    • /
    • 2014
  • 이산화지르코늄 표면에 흡착되는 금 입자의 분포 또는 그 반대 경우의 분포에 영향을 끼칠 수도 있는 정전기적 상호작용과 금 입자를 코팅한 mercaptoundecanoic acid층의 표면물성을 규명하였다. 이를 위하여, 원자힘현미경(AFM)으로 mercaptoundecanoic acid층 표면과 이산화지르코늄표면 사이의 표면힘을 염 농도와 pH 값에 따라 측정하였다. 측정된 힘은 Derjaguin-Landau-Verwey-overbeek (DLVO) 이론에 의해 표면의 정량적인 전하밀도와 포텐셜 값들로 전환되었다. 이 값들이 염 농도와 pH에 따라 달라지는 특성을 질량보존의 법칙으로 기술하였으며, 산출된 표면 특성의 염 농도 의존성은 이론적으로 예측했던 결과와 일치하는 것으로 확인되었다. Mercaptoundecanoic acid층의 표면이 이산화지르코늄 표면보다 높은 전하밀도와 포텐셜을 갖는 것이 발견되었는데, 이는 mercaptoundecanoic acid층의 이온화 기능기에 기인한 것으로 생각된다.