Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.10.2861

Effect of 11-Mercaptoundecylphosphoric-acid Layer Formation on Gold Surfaces Interacting with Titanium Dioxide Surfaces  

Park, Jin-Won (Department of Chemical Engineering, College of Engineering, Seoul National University of Science and Technology)
Publication Information
Abstract
We studied effects of the 11-Mercaptoundecylphosphoric-acid layer formation on gold surfaces that have the interactions with the titanium dioxide surface for design of gold- titanium dioxide distribution. The atomic force microscope (AFM) was used to measure forces between the surfaces as a function of the salt concentration and pH value. The forces were analyzed with the DLVO (Derjaguin-Landau-Verwey-Overbeek) theory, to evaluate the potential and charge density of the surfaces quantitatively for each salt concentration and each pH value. The interpretation for the evaluation was performed with the law of mass action and the ionizable groups on the surface.
Keywords
11-Mercaptoundecylphosphoric-acid; Au-$TiO_2$ catalyst; AFM; DLVO theory; Surface forces;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Li, X.; Fu, J.; Steinhart, M.; Kim, D. H.; Knoll, W. Bull. Korean Chem. Soc. 2007, 28, 1015.   DOI   ScienceOn
2 Schmid, G. Chem. Rev. 1992, 92, 1709.   DOI
3 Jeong, Y.; Han, J. W.; Lee, C.; Noh, J. Bull. Korean Chem. Soc. 2008, 29, 1105.   DOI   ScienceOn
4 Noh, J.; Park, H.; Jeong, Y.; Kwon, S. Bull. Korean Chem. Soc. 2006, 27, 403.   DOI   ScienceOn
5 Sun, S. Q.; Mendes, P.; Critchley, K.; Diegoli, S.; Hanwell, M.; Evans, S. D.; Leggett, G. J.; Preece, J. A.; Richardson, T. H. Nano Lett. 2006, 6, 345.   DOI   ScienceOn
6 Peter, A.; Baia, M.; Toderas, F.; Lazar, M.; Tudoran, L. B.; Danciu, V. Studia Universitatis Babes-Bolyai Chemia 2009, 54, 161.
7 Kowalska, E.; Mahaney, O. O. P.; Abe, R.; Ohtani, B. J. Catalys. 2010, 12, 2344.
8 Derjaguin, B. V. Kolloid Z 1934, 69, 155.   DOI
9 Horn, R. G.; Smith, D. T.; Haller, W. Chem. Phys. Lett. 1989, 162, 404.   DOI   ScienceOn
10 Pashley, R. M. J. Colloid Interface Sci. 1981, 83, 531.   DOI   ScienceOn
11 Hartmann, U. Phys. Rev. B 1991, 43, 2404.   DOI   ScienceOn
12 Israelachivili, J. N. Intermolecular & Surface Forces; Academic Press: New York, 1991; pp 183-188, 275-282.
13 Feiler, A.; Jenkins, P.; Ralston, J. Phys. Chem. Chem. Phys. 2000, 2, 5678.   DOI
14 Verwey, E. J. W.; Overbeek, J. T. G. Theory of the Stability of Lyophobic Colloids; Elsevier: New York, 1948; pp 51-63.
15 Hogg, R.; Healy, T. W.; Fuerstenau, D. W. Trans. Faraday Soc. 1966, 62, 1638.   DOI
16 Hunter, R. J. Foundations of Colloid Science; Oxford University Press: Oxford, U.K., 1987; pp 397-409.
17 Chan, D. Y. C.; Pashley, R. M.; White, L. R. J. Colloild Interface Sci. 1980, 77, 283.   DOI   ScienceOn
18 Parker, J. L. Surf. Sci. 1994, 3, 205.   DOI   ScienceOn
19 Ducker, W. A; Senden, T. J.; Pashley, R. M. Nature 1991, 353, 239.   DOI
20 Park, J.-W.; Ahn, D. J. Colloids & Surf. B: Biointerf. 2008, 62, 157.   DOI   ScienceOn
21 Chou, J.; McFarland, E. W. Chem. Commun. 2004, 14, 1648.
22 Dasog, M.; Scott, R. W. J. Langmuir 2007, 12, 3381.
23 Sandhyarani, N.; Pradeep, T. Chem. Phys. Lett. 2001, 338, 33.   DOI   ScienceOn
24 Brewer, N. J.; Rawsterne, R. E.; Kothari, S.; Leggett, G. J. J. Am. Chem. Soc. 2001, 123, 4089.   DOI   ScienceOn
25 Ducker, W. A.; Senden, T. J. Langmuir 1992, 8, 1831.   DOI
26 Binnig, G.; Quate, C.; Gerber, G. Phys. Rev. Lett. 1986, 56, 930.   DOI   ScienceOn
27 Derjaguin, B. V.; Landau, L. Acta Physiochem. 1941, 14, 633.
28 Cleveland, J. P.; Manne, S.; Bocek, D.; Hansma, P. K. Rev. Sci. Instrum. 1993, 64, 403.   DOI
29 Derjaguin, B. V. Trans. Faraday Soc. 1940, 36, 203.
30 Israelachvili, J. N.; Adams, G. E. J. Chem. Soc. Faraday Trans. 1978, 74, 975.   DOI
31 Shuin, V.; Kekicheff, P. J. Colloid Interface Sci. 1993, 155, 108.   DOI   ScienceOn
32 Parker, J. L.; Christenson, H. K. J. Chem. Phys. 1988, 88, 8013.   DOI
33 O’Shea, S. J.; Welland, M. E.; Pethica, J. B. Chem. Phys. Lett. 1994, 223, 336.   DOI   ScienceOn
34 Perlich, J.; Memesa, M.; Diethert, A.; Metwalli, E.; Wang, W.; Roth, S. V.; Timmann, A.; Gutmann, J. S.; Muller-Buschbauma, P. Chem. Phys. Chem. 2009, 10, 799.   DOI   ScienceOn
35 Li, J.; Zeng, H. C. Chem. Mater. 2006, 18, 4270.   DOI   ScienceOn
36 Tian, Y.; Tatsuma, T. J. Am. Chem. Soc. 2005, 127, 7632.   DOI   ScienceOn
37 Kafizasa, A.; Kellicia, S.; Darra, J. A.; Parkin, I. P. J. Photochem. & Photobiol. A-Chem. 2009, 204, 183.   DOI   ScienceOn
38 Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647.   DOI   ScienceOn
39 Sakurai, H.; Tsubota, S.; Haruta, M. Applied Catalysis A-General 1995, 102, 125.   DOI   ScienceOn