DOI QR코드

DOI QR Code

Electrostatic Properties of N-Acetyl-Cysteine-Coated Gold Surfaces Interacting with ZrO2 Surfaces

  • Park, Jin-Won (Department of Chemical & Biomolecular Engineering, School of Energy and Biotechnology, Seoul National University of Science and Technology)
  • Received : 2012.02.15
  • Accepted : 2012.04.04
  • Published : 2012.09.20

Abstract

The coating N-acetyl cysteine (NAC) on gold surfaces may be used to design the distribution of either gold particle adsorbed to the $ZrO_2$ surface or vice versa by adjusting the electrostatic interactions. In this study, it was performed to find out electrostatic properties of the NAC-coated-gold surface and the $ZrO_2$ surface. The surface forces between the surfaces were measured as a function of the salt concentration and pH value using the AFM. By applying the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to the surface forces, the surface potential and charge density of the surfaces were quantitatively acquired for each salt concentration and each pH value. The dependence of the potential and charge density on the concentration was explained with the law of mass action, and the pH dependence was with the ionizable groups on the surface.

Keywords

References

  1. Soolaman, D. M.; Yu, H.-Z. J. Phys. Chem. C 2007, 111, 14157. https://doi.org/10.1021/jp071290+
  2. Hugon, A.; Delannoy, L.; Louis, C. Gold Bull. 2008, 41, 127. https://doi.org/10.1007/BF03216590
  3. Zhang, X.; Shi, H.; Xu, B.-Q. J. Catal. 2011, 279, 75. https://doi.org/10.1016/j.jcat.2011.01.002
  4. Wang, C.-M.; Fan, K.-N.; Liu, Z.-P. J. Am. Chem. Soc. 2007, 129, 2642. https://doi.org/10.1021/ja067510z
  5. Arrii, S.; Morfin, F.; Renouprez, A. J.; Rousset, J. L. J. Am. Chem. Soc. 2004, 126, 1199. https://doi.org/10.1021/ja036352y
  6. Zhang, X.; Wang, H.; Xu, B. Q. J. Phys. Chem. B 2005, 109, 9678. https://doi.org/10.1021/jp050645r
  7. Kamat, P. V. J. Phys. Chem. C 2007, 111, 2834. https://doi.org/10.1021/jp066952u
  8. Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647. https://doi.org/10.1126/science.281.5383.1647
  9. Sakurai, H.; Tsubota, S.; Haruta, M. Applied Catalysis A-General 1995, 102, 125.
  10. Li, X.; Fu, J.; Steinhart, M.; Kim, D. H.; Knoll, W. Bull. Korean Chem. Soc. 2007, 28, 1015.
  11. Schmid, G. Chem. Rev. 1992, 92, 1709. https://doi.org/10.1021/cr00016a002
  12. Noh, J.; Park, H.; Jeong, Y.; Kwon, S. Bull. Korean Chem. Soc. 2006, 27, 403. https://doi.org/10.5012/bkcs.2006.27.3.403
  13. Dasog, M.; Scott, R. W. J. Langmuir 2007, 12, 3381.
  14. Sandhyarani, N.; Pradeep, T. Chem. Phys. Lett. 2001, 338, 33. https://doi.org/10.1016/S0009-2614(01)00230-5
  15. Brewer, N. J.; Rawsterne, R. E.; Kothari, S.; Leggett, G. J. J. Am. Chem. Soc. 2001, 123, 4089. https://doi.org/10.1021/ja0155074
  16. Binnig, G.; Quate, C.; Gerber, G. Phys. Rev. Lett. 1986, 56, 930. https://doi.org/10.1103/PhysRevLett.56.930
  17. Derjaguin, B. V.; Landau, L. Acta Physiochem. 1941, 14, 633.
  18. Cleveland, J. P.; Manne, S.; Bocek, D.; Hansma, P. K. Rev. Sci. Instrum. 1993, 64, 403. https://doi.org/10.1063/1.1144209
  19. Derjaguin, B. V. Trans. Faraday Soc. 1940, 36, 203.
  20. Israelachvili, J. N.; Adams, G. E. J. Chem. Soc. Faraday Trans. 1978, 74, 975. https://doi.org/10.1039/f19787400975
  21. Shuin, V.; Kekicheff, P. J. Colloid Interface Sci. 1993, 155, 108. https://doi.org/10.1006/jcis.1993.1016
  22. Parker, J. L.; Christenson, H. K. J. Chem. Phys. 1988, 88, 8013. https://doi.org/10.1063/1.454260
  23. O'Shea, S. J.; Welland, M. E.; Pethica, J. B. Chem. Phys. Lett. 1994, 223, 336. https://doi.org/10.1016/0009-2614(94)00458-7
  24. Derjaguin, B. V. Kolloid Z 1934, 69, 155. https://doi.org/10.1007/BF01433225
  25. Hartmann, U. Phys. Rev. B 1991, 43, 2404. https://doi.org/10.1103/PhysRevB.43.2404
  26. Israelachivili, J. N. Intermolecular & Surface Forces; Academic Press: New York, 1991; pp 183-188, 275-282.
  27. Shin, H.; Agarwal, M.; de Guire, M. R.; Heuer, A. H. Acta Mater. 1998, 46, 801-815. https://doi.org/10.1016/S1359-6454(97)00258-9
  28. Verwey, E. J. W.; Overbeek, J. T. G. Theory of the Stability of Lyophobic Colloids; Elsevier: New York, 1948; pp 51-63.
  29. Hogg, R.; Healy, T. W.; Fuerstenau, D. W. Trans. Faraday Soc. 1966, 62, 1638. https://doi.org/10.1039/tf9666201638
  30. Hunter, R. J. Foundations of Colloid Science; Oxford University Press: Oxford, U.K., 1987; pp 397-409.
  31. Chan, D. Y. C.; Pashley, R. M.; White, L. R. J. Colloild Interface Sci. 1980, 77, 283. https://doi.org/10.1016/0021-9797(80)90445-2
  32. Parker, J. L. Surf. Sci. 1994, 3, 205.
  33. Park, J.-W.; Ahn, D. J. Colloids & Surf. B: Biointerf. 2008, 62, 157. https://doi.org/10.1016/j.colsurfb.2007.09.020
  34. Ducker, W. A; Senden, T. J.; Pashley, R. M. Nature 1991, 353, 239. https://doi.org/10.1038/353239a0
  35. Horn, R. G.; Smith, D. T.; Haller, W. Chem. Phys. Lett. 1989, 162, 404. https://doi.org/10.1016/0009-2614(89)87066-6
  36. Choi, J. Y.; Kim, D. K. J. Sol-Gel Sci. and Tech. 1999, 15, 231- 241. https://doi.org/10.1023/A:1008737008988
  37. Schultz, M.; Grimm, St.; Burckhardt, W. Solid States Ionics 1993, 63-65, 18. https://doi.org/10.1016/0167-2738(93)90080-M
  38. Pashley, R. M. J. Colloid Interface Sci. 1981, 83, 531. https://doi.org/10.1016/0021-9797(81)90348-9