DOI QR코드

DOI QR Code

Electrostatic Properties of N-Acetyl-Cysteine-Coated Gold Surfaces Interacting with TiO2 Surfaces

  • Park, Jin-Won (Gachon Bionano Research Institute, College of Bionano Technology, Kyungwon University)
  • Published : 2009.04.20

Abstract

It is found that that the coating N-acetyl cysteine (NAC) on gold surfaces may be used to design the distribution of either gold particle adsorbed to the $TiO_2$ surface or vice versa by adjusting the electrostatic interactions. In this study, we investigated electrostatic properties of the NAC-coated-gold surface and the $TiO_2$ surface. The surface forces between the surfaces were measured as a function of the salt concentration and pH value using the AFM. By applying the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to the surface forces, the surface potential and charge density of the surfaces were quantitatively acquired for each salt concentration and each pH value. The surface potential and charge density dependence on the salt concentration was explained with the law of mass action, and the pH dependence was with the ionizable groups on the surface.

Keywords

References

  1. Sun, S. Q.; Mendes, P.; Critchley, K.; Diegoli, S.; Hanwell, M.; Evans, S. D.; Leggett, G. J.; Preece, J. A.; Richardson, T. H. Nano Lett. 2006, 6, 345. https://doi.org/10.1021/nl052130h
  2. Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 2, 405.
  3. Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. J. Catal. 1989, 115, 301. https://doi.org/10.1016/0021-9517(89)90034-1
  4. Chou, J.; McFarland, E. W. Chem. Commun. 2004, 14, 1648.
  5. Li, J.; Zeng, H. C. Chem. Mater. 2006, 18, 4270. https://doi.org/10.1021/cm060362r
  6. Tian, Y.; Tatsuma, T. J. Am. Chem. Soc. 2005, 127, 7632. https://doi.org/10.1021/ja042192u
  7. Kamat, P. V. J. Phys. Chem. C 2007, 111, 2834. https://doi.org/10.1021/jp0666840
  8. Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647. https://doi.org/10.1126/science.281.5383.1647
  9. Sakurai, H.; Tsubota, S.; Haruta, M. Applied Catalysis A-General 1995, 102, 125. https://doi.org/10.1016/0926-860X(93)80224-E
  10. Li, X.; Fu, J.; Steinhart, M.; Kim, D. H.; Knoll, W. Bull. Korean Chem. Soc. 2007, 28, 1015. https://doi.org/10.5012/bkcs.2007.28.6.1015
  11. Schmid, G. Chem. Rev. 1992, 92, 1709. https://doi.org/10.1021/cr00016a002
  12. Noh, J.; Park, H.; Jeong, Y.; Kwon, S. Bull. Korean Chem. Soc. 2006, 27, 403. https://doi.org/10.5012/bkcs.2006.27.3.403
  13. Dasog, M.; Scott, R. W. J. Langmuir 2007, 12, 3381.
  14. Sandhyarani, N.; Pradeep, T. Chem. Phys. Lett. 2001, 338, 33. https://doi.org/10.1016/S0009-2614(01)00230-5
  15. Brewer, N. J.; Rawsterne, R. E.; Kothari, S.; Leggett, G. J. J. Am. Chem. Soc. 2001, 123, 4089. https://doi.org/10.1021/ja0155074
  16. Binnig, G.; Quate, C.; Gerber, G. Phys. Rev. Lett. 1986, 56, 930. https://doi.org/10.1103/PhysRevLett.56.930
  17. Derjaguin, B. V.; Landau, L. Acta Physiochem. 1941, 14, 633.
  18. Cleveland, J. P.; Manne, S.; Bocek, D.; Hansma, P. K. Rev. Sci. Instrum. 1993, 64, 403. https://doi.org/10.1063/1.1144209
  19. Derjaguin, B. V. Trans. Faraday Soc. 1940, 36, 203.
  20. Israelachvili, J. N.; Adams, G. E. J. Chem. Soc. Faraday Trans. 1978, 74, 975. https://doi.org/10.1039/f19787400975
  21. Shuin, V.; Kekicheff, P. J. Colloid Interface Sci. 1993, 155, 108. https://doi.org/10.1006/jcis.1993.1016
  22. Parker, J. L.; Christenson, H. K. J. Chem. Phys. 1988, 88, 8013. https://doi.org/10.1063/1.454260
  23. O'Shea, S. J.; Welland, M. E.; Pethica, J. B. Chem. Phys. Lett. 1994, 223, 336. https://doi.org/10.1016/0009-2614(94)00458-7
  24. Derjaguin, B. V. Kolloid Z. 1934, 69, 155. https://doi.org/10.1007/BF01433225
  25. Hartmann, U. Phys. Rev. B 1991, 43, 2404. https://doi.org/10.1103/PhysRevB.43.2404
  26. Israelachivili, J. N. Intermolecular & Surface Forces; Academic Press: New York, 1991; pp 183-188, 275-282
  27. Feiler, A.; Jenkins, P.; Ralston, J. Phys. Chem. Chem. Phys. 2000, 2, 5678.
  28. Verwey, E. J. W.; Overbeek, J. T. G. Theory of the Stability of Lyophobic Colloids; Elsevier: New York, 1948; pp 51-63.
  29. Hogg, R.; Healy, T. W.; Fuerstenau, D. W. Trans. Faraday Soc. 1966, 62, 1638. https://doi.org/10.1039/tf9666201638
  30. Hunter, R. J. Foundations of Colloid Science; Oxford University Press: Oxford, U. K., 1987; pp 397-409.
  31. Chan, D. Y. C.; Pashley, R. M.; White, L. R. J. Colloild Interface Sci. 1980, 77, 283 https://doi.org/10.1016/0021-9797(80)90445-2
  32. Parker, J. L. Surf. Sci. 1994, 3, 205. https://doi.org/10.1016/0039-6028(65)90046-4
  33. Park, J.-W.; Ahn, D. J. Colloids & Surf. B: Biointerf. 2008, 62, 157. https://doi.org/10.1016/j.colsurfb.2007.09.020
  34. Ducker, W. A; Senden, T. J.; Pashley, R. M. Nature 1991, 353, 239. https://doi.org/10.1038/353239a0
  35. Horn, R. G.; Smith, D. T.; Haller, W. Chem. Phys. Lett. 1989, 162, 404. https://doi.org/10.1016/0009-2614(89)87066-6
  36. Pashley, R. M. J. Colloid Interface Sci. 1981, 83, 531. https://doi.org/10.1016/0021-9797(81)90348-9