Browse > Article
http://dx.doi.org/10.14478/ace.2014.1100

Electrostatic Interaction between Mercaptoundecanoic-acid Layers on Gold and ZrO2 Surfaces  

Park, Jin-Won (Department of Chemical and Biomolecular Engineering, College of Energy and Biotechnology Seoul National University of Science and Technology)
Publication Information
Applied Chemistry for Engineering / v.25, no.6, 2014 , pp. 607-612 More about this Journal
Abstract
The physical properties of mercaptoundecanoic-acid layer formed on gold surfaces, which may affect the distribution of either gold particles adsorbed to the zirconium dioxide surface or vice versa, were investigated. To conduct this investigation, the surface forces were measured between the surfaces with respect to the salt concentration and pH value using atomic force microscope (AFM). The forces were quantitatively converted by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to the surface potential and charge density of surfaces. The converted-value dependence on the salt concentration and pH was described with the law of mass action, and the dependence was consistent with the theoretical prediction. It was found that the mercaptoundecanoic-acid layer had higher values for the surface charge densities and potentials than the $ZrO_2$ surfaces, which may be attributed to the ionized-functional-groups of the mercaptoundecanoic-acid layer.
Keywords
Mercaptoundecanoic-acid; Gold surface; Zirconium dioxide surface; AFM; DLVO theory;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 X. Zhang, H. Wang, and B. Q. Xu, Remarkable nanosize effect of zirconia in Au/$ZrO_2$ catalyst for CO oxidation, J. Phys. Chem. B, 109, 9678-9683 (2005).   DOI   ScienceOn
2 P. V. Kamat, Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion, J. Phys. Chem. C, 111, 2834-2860 (2007).   DOI   ScienceOn
3 G. Schmid, Large clusters and colloids. Metals in the embryonic state, Chem. Rev., 92, 1709-1727 (1992).   DOI
4 M. Valden, X. Lai, and D. W. Goodman, Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties, Science, 281, 1647-1650 (1998).   DOI   ScienceOn
5 H. Sakurai, S. Tsubota, and M. Haruta, Hydrogenation of $CO_2$ over gold supported on metal oxides, Appl. Catal. A-General, 102, 125-136 (1993).   DOI   ScienceOn
6 X. Li, J. Fu, M. Steinhart, D. H. Kim, and W. Knoll, Au/titania composite nanoparticle arrays with controlled size and spacing by organic-inorganic nanohybridization in thin film block copolymer templates", Bull. Korean Chem. Soc., 28, 1015-1020 (2007).   과학기술학회마을   DOI
7 J. Noh, H. Park, Y. Jeong, and S. Kwon, Structure and Electrochemical Behavior of Aromatic Thiol Self-Assembled Monolayers on Au(111), Bull. Korean Chem. Soc., 27, 403-406 (2006).   과학기술학회마을   DOI
8 M. Dasog and R. W. J. Scott, Understanding the Oxidative stability of Au MPCs in the presence of halide ions under ambient conditions, Langmuir, 12, 3381-3387 (2007).
9 N. Sandhyarani and T. Pradeep, Oxidation of alkanethiol monolayers on gold cluster surface, Chem. Phys. Lett., 338, 33-36 (2001).   DOI   ScienceOn
10 W. A. Ducker, T. J. Senden, and R. M. Pashley, Direct measurement of colloidal forces using an atomic-force microscope, Nature, 353(6341), 239-241 (1991).   DOI
11 R. G. Horn, D. T. Smith, and W. Haller, Surface forces and viscosity of water measured between silica sheets, Chem. Phys. Lett., 162(4-5), 404-408 (1989).   DOI   ScienceOn
12 J. Y. Choi and D. K. Kim, Preparation of Monodisperse and Spherical Powders by Heating of Alcohol-Aqueous Salt Solution, J. Sol-Gel Sci. and Tech., 15, 231-241 (1999).   DOI   ScienceOn
13 M. Schultz, St. Grimm, and W. Burckhardt, The isoelectric point of pure and doped zirconia in relation to the preparation route, Solid States Ionics, 63-65, 18-24 (1993).   DOI   ScienceOn
14 R. M. Pashley, DLVO and hydration forces between mica surfaces in $Li^+,\;Na^+,\;K^+$, and $Cs^+$ electrolyte solution: A correlation of double-layer and hydration forces with surface cation-exchange properties, J. Colloid Interface Sci., 83(2), 531-546 (1981).   DOI   ScienceOn
15 N. J. Brewer, R. E. Rawsterne, S. Kothari, and G. J. Leggett, Oxidation of Self-assembled Monolayers by UV Light with a Wavelength 254 nm, J. Am. Chem. Soc., 123, 4089-4090 (2001).   DOI   ScienceOn
16 G. Binnig, C. Quate, and G. Gerber, Atomic Force Microscope, Phys. Rev. Lett., 56, 930-933 (1986).   DOI   ScienceOn
17 B. V. Derjaguin and L. Landau, The Theory of Stability of Highly Charged Lyophobic Sols and Coalescence of Highly Charged Particles in Electrolyte Solutions, Acta Physiochem. URSS, 14(11), 633-652 (1941).
18 V. E. Shubin and P. Kekicheff, Electrical Double-layer Structure Revisited Via a Surface Force Apparatus-Mica Interfaces In Lithium-nitrate Solutions, J. Colloid Interface Sci., 155(1), 108-123 (1993).   DOI   ScienceOn
19 J. P. Cleveland, S. Manne, D. Bocek, and P. K. Hansma, A Nondestructive Method for Determining the Spring Constant of Cantilevers for Scanning Force Microscopy, Rev. Sci. Instrum., 64(2), 403-405 (1993).   DOI
20 B. Derjaguin, On the Repulsive Forces Between Charged Colloid Particles and on the Theory of Slow Coagulation and Stability of Lyophobe Sols, Trans. Faraday Soc., 35(3), 203-214 (1940).   DOI
21 J. N. Israelachvili and G. E. Adams, Measurement of Forces Between 2 Mica Surfaces in Aqueous-electrolyte Solutions in Range 0-100 nm, J. Chem. Soc. Faraday Trans., 74, 975-1001 (1978).   DOI
22 J. L. Parker and H. K. Christenson, Measurements of the Forces Between a Metal-surface and Mica Across Liquids, J. Chem. Phys., 88(12), 8013-8014 (1988).   DOI
23 S. J. O'Shea, M. E. Welland, and J. B. Pethica, Atomic-force microscopy of local compliance at solid-liquid interfaces, Chem. Phys. Lett., 223(4), 336-340 (1994).   DOI   ScienceOn
24 C.-M. Wang, K.-N. Fan, and Z.-P. Liu, Origin of Oxide Sensitivity in Gold-Based Catalysts: A First Principle Study of CO Oxidation over Au Supported on Monoclinic and Tetragonal $ZrO_2$, J. Am. Chem. Soc., 129, 2642-2647 (2007).   DOI   ScienceOn
25 D. M. Soolaman and H.-Z. Yu, Monolayer-directed electrodeposition of oxide thin films: surface morphology versus chemical modification, J. Phys. Chem. C, 111, 14157-14164 (2007).   DOI
26 A. Hugon, L. Delannoy, and C. Louis, Supported gold catalysts for selective hydrogenation of 1,3-butadiene in the presence of an excess of alkenes, Gold Bull., 41, 127-138 (2008).   DOI
27 X. Zhang, H. Shi, and B.-Q. Xu, Vital roles of hydroxyl groups and gold oxidation states in Au/$ZrO_2$ catalysts for 1,3-butadiene hydrogenation, J. Catal., 279, 75-87 (2011).   DOI   ScienceOn
28 H. H. Kwak, G. Y. Han, J. W. Bae, and K. J. Yoon, Tungsten oxides supported on nano-size zirconia for cyclic production of syngas and hydrogen by redox operations, Korean J. Chem. Eng., 1000, 1-11 (2014).
29 M.-Y. Kim, G. Seo, J.-H. Park, C.-H. Shin, and E. S. Kim, Dispersion and Stability of Platinum Catalysts Supported on Titania-, Vanadia-, Zirconia- and Ceria-Incorporated Silicas, Korean Chem. Eng. Res., 49, 1-9 (2011).   DOI
30 S. Arrii, F. Morfin, A. J. Renouprez, and J. L. Rousset, Oxidation of CO on gold supported catalysts prepared by laser vaporization: direct evidence of support contribution, J. Am. Chem. Soc., 126, 1199-1205 (2004).   DOI   ScienceOn
31 B. V. Derjaguin, Analysis of friction and adhesion IV. The theory of the adhesion of small particles, Kolloid Z., 69(2), 155-164 (1934).   DOI
32 U. Hartmann, Van der Waals interactions between sharp probes and flat sample surfaces, Phys. Rev. B, 43(3), 2404-2407 (1991).   DOI   ScienceOn
33 J. N. Israelachivili, Intermolecular & Surface Forces, 183-192, Academic Press, New York, USA (1991).
34 H. Shin, M. Agarwal, M. R. de Guire, and A. H. Heuer, Deposition mechanism of oxide thin films on self-assembled organic monolayers, Acta Mater., 46, 801-815 (1998).   DOI   ScienceOn
35 D. Y. C. Chan, R. M. Pashley, and L. R. White, A simple algorithm for the calculation of the electrostatic repulsion between identical charged surfaces in electrolyte, J. Colloid Interface Sci., 77(1), 283-285 (1980).   DOI   ScienceOn
36 E. J. W. Verwey and J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids, 51-63, Elsevier, New York, USA (1948).
37 R. Hogg, T. W. Healy, and D. W. Fuersten, Mutual coagulation of colloidal dispersions, Trans. Faraday Soc., 62(522P), 1638-1651 (1966).   DOI
38 R. J. Hunter, Foundations of Colloid Science, 396-417, Oxford University Press, Oxford, U.K. (1987).
39 J. L. Parker, Surface force measurements in surfactant systems, Prog. Surf. Sci., 47(3), 205-271 (1994).   DOI   ScienceOn
40 J.-W. Park and D. J. Ahn, Temperature effect on nanometer-scale physical properties of mixed phospholipid monolayers, Colloids & Surf. B: Biointerfaces, 62(1), 157-161 (2008).   DOI   ScienceOn