Browse > Article
http://dx.doi.org/10.5757/ASCT.2015.24.1.1

Strategies in Protein Immobilization on a Gold Surface  

Park, Jeho (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Moonil (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Publication Information
Applied Science and Convergence Technology / v.24, no.1, 2015 , pp. 1-8 More about this Journal
Abstract
Protein immobilization on a gold surface plays an important role in the usefulness of biosensors that utilize gold-coated surfaces such as surface plasmon resonance (SPR), quartz crystal microbalance (QCM), etc. For developing high performance biosensors, it is necessarily required that immobilized proteins must remain biologically active. Loss of protein activity and maintenance of its stability on transducer surfaces is directly associated with the choice of immobilization methods, affecting protein-protein interactions. During the past decade, a variety of strategies have been extensively developed for the effective immobilization of proteins in terms of the orientation, density, and stability of immobilized proteins on analytical devices operating on different principles. In this review, recent advances and novel strategies in protein immobilization technologies developed for biosensors are briefly discussed, thereby providing an useful information for the selection of appropriate immobilization approach.
Keywords
Protein immobilization; Biosensor; Gold surface; Orientation; Immobilization technique;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Oh, Y. Lee, J. Heath, and M. Kim, IEEE Sensors J. 15, 637 (2015).   DOI   ScienceOn
2 F. Rusmini, Z. Zhong, and J. Feijen, Biomacromolecules 8, 1775 (2007).   DOI   ScienceOn
3 Y. Jung, J. Y. Jeong, and B. H. Chung, Analyst 133, 697 (2008).   DOI   ScienceOn
4 J. E. Butler, L. Ni, W. R. Brown, K. S. Joshi, J. Chang, B. Rosenberg, and E. W. J. Voss, Mol. Immunol. 30, 1165 (1993).   DOI   ScienceOn
5 C. Jianrong, M. Yuqing, H. Nongyue, W Xiaohua, L Sijiao, Biotechnol. Adv. 22, 505 (2004).   DOI   ScienceOn
6 S. O. Jung, H. S. Ro, B. H. Kho, Y. B. Shin, M. G. Kim, and B. H. Chung, Proteomics 5, 4427 (2005).   DOI   ScienceOn
7 H. B. Pyo, Y. B. Shin, M. G. Kim, and H. C. Yoon, Langmuir 21, 166 (2005).   DOI   ScienceOn
8 J. Homola, Anal. Bioanal. Chem. 377, 528 (2003).   DOI
9 M. A. Cooper, Anal. Bioanal. Chem. 377, 834 (2003).   DOI
10 J. Nilsson, S. Stahl, J. Lundeberg, M. Uhlen, and P. Nygren, Protein Express. Purif. 11, 1 (1997).   DOI   ScienceOn
11 J. M. Jung, Y. B. Shin, M. G. Kim, H. S. Ro, H. T. Jung, and B. H. Chung, Anal. Biochem. 330, 251 (2004).   DOI   ScienceOn
12 C. M. Niemeyer, Trends Biotechnol. 20, 395 (2002).   DOI   ScienceOn
13 C. Boozer, J. Ladd, S. Chen, Q. Yu, J. Homola, and S. Jiang, Anal. Chem. 76, 6967 (2004).   DOI   ScienceOn
14 C. Boozer, J. Ladd, S. Chen, and S. Jiang, Anal. Chem. 78, 1515 (2006).   DOI   ScienceOn
15 R. C. Bailey, G. A. Kwong, C. G. Radu, O. N. Witte, and J. R. Heath, J. Am. Chem. Soc. 129, 1959 (2007).   DOI   ScienceOn
16 R. Wacker, C. M. Niemeyer, Chembiochem. 5, 453 (2004).   DOI   ScienceOn
17 I. H. Cho, E. H. Paek, H. Lee, J. Y. Kang, T. S. Kim, and S. H. Paek, Anal. Biochem. 365, 14 (2007).   DOI   ScienceOn
18 E. J. Jeong, Y. S. Jeong, K. Park, S. Y. Yi, J. Ahn, S. J. Chung, M. Kim, and B. H. Chung, J. Biotechnol. 135, 16 (2008).   DOI   ScienceOn
19 L. E. Schaufler, and R. E. Klevit, J. Mol. Biol. 329, 931 (2003).   DOI   ScienceOn
20 D. Hao, M. Ohme-Takagi, and K. Yamasaki, FEBS Lett. 536, 151 (2003).   DOI   ScienceOn
21 M. Oda, K. Furukawa, A. Sarai, and H. Nakamura, FEBS Lett. 454, 288 (1999).   DOI   ScienceOn
22 E. Maillart, K. Brengel-Pesce, D. Capela, A. Roget, T. Livache, M. Canva, Y. Levy, and T. Soussi, Oncogene 23, 5543 (2004).   DOI   ScienceOn
23 S. A. Johnston, M. J. Zavortink, C. Debouck, and J. E. Hopper, Proc. Natl. Acad. Sci. USA 83, 6553 (1986).   DOI   ScienceOn
24 R. Brent, and M. Ptashne, Nature 312, 612 (1984).   DOI   ScienceOn
25 K. Park, J. M. Lee, Y. Jung, T. Habtemariam, A. Woubit, C. D. Fermin, and M. Kim, Analysis 136, 2506 (2011).
26 Y. Jung, J. M. Lee, H. Jung, and B. H. Chung, Anal. Chem. 79, 6534 (2007)   DOI   ScienceOn
27 T. H. Ha, S. O. Jung, J. M. Lee, K. Y. Lee, Y. Lee, J. S. Park, and B. H. Chung, Anal. Chem. 79, 546 (2007).   DOI   ScienceOn
28 S. M. Patrie, and M. Mrksich, Anal. Chem. 79, 5878 (2007).   DOI   ScienceOn
29 D. Gao, N. McBean, J. S. Schultz, Y. Yan, A. Mulchandani, and W. Chen, J. Am. Chem. Soc. 128, 676 (2006).   DOI   ScienceOn
30 J. Park, H. H. Nguyen, A. Woubit, and M. Kim, Appl. Sci. Converg. Technol. 23, 61 (2014).   DOI   ScienceOn
31 J. M. Kogot, H. J. England, G. F. Strouse, and T. M. Logan, J. Am. Chem. Soc. 130, 16156 (2008).   DOI   ScienceOn
32 P. Peluso, D. S. Wilson, D. Do, H. Tran, M. Venkatasubbaiah, D. Quincy, B. Heidecker, K. Poindexter, N. Tolani, M. Phelan, K. Witte, L. S. Jung, P. Wagner, and S. Nock, Anal. Biochem. 312, 113 (2003).   DOI   ScienceOn
33 M. Cretich, F. Damin, G. Pirri, and M. Chiari, Biomol. Eng. 23, 77 (2006).   DOI   ScienceOn
34 I. Vikholm-Lundin, and W. M. Albers, Biosens. Bioelectron. 21, 1141 (2006).   DOI   ScienceOn
35 B. Y. Kim, C. B. Swearingen, J. A. Ho, E. V. Romanova, P. W. Bohn and J. V. Sweedler, J. Am. Chem. Soc. 129, 7620 (2007).   DOI   ScienceOn
36 J. M. Lee, H. K. Park, Y. Jung, J. K. Kim, S. O. Jung, and B. H. Chung, Anal. Chem. 79, 2680 (2007).   DOI   ScienceOn
37 E. J. Franco, H. Hofstetter, and O. Hofstetter, J. Sep. Sci. 29, 1458 (2006).   DOI   ScienceOn
38 R. Danczyk, B. Krieder, A. North, T. Webster, H. Hogenesch, and A. Rundell, Biotechnol. Bioeng. 84, 215 (2003).   DOI   ScienceOn
39 P. B. Harbury, T. Zhang, P. S. Kim, and T. Alber, Science 262, 1401 (1993).   DOI
40 E. K. O'Shea, J. D. Klemm, P. S. Kim and T. Alber, Science 254, 539 (1991).   DOI